More than just hippos and crocs: The hidden biodiversity of the iSimangaliso Wetland Park

iSimangaliso Wetland Park, a UNESCO World Heritage Site in the sub-tropical north-eastern corner of South Africa has become famous for its birdlife, crocodiles and hippopotamuses that frolic in the warm estuarine waters of Lake St Lucia. However, there’s more to the park than the “big and hairy”, according to aquatic ecologist Prof Renzo Perissinotto at Nelson Mandela Metropolitan University (NMMU) in Port Elizabeth, whose research is published in the open access journal ZooKeys.

“Although we have spent several decades focusing on life in the estuary, we only recently came to realise that much of the wealth of biodiversity in the park exists in the small freshwater ponds that are adjacent to, but disconnected from, the main lake,” he says.Image 1

The St Lucia lake itself is generally brackish and is located on a large sandy expanse known as the Maputaland coastal plain. Dotted across the landscape of this coastal foreland are numerous temporary freshwater ponds, seeps and small streams that are disconnected from the brackish lake body.

A team of self-proclaimed “beetle nerds”, led by Prof Perissinotto, got together from NMMU and Plymouth University (UK) and uncovered more species of water beetles in these tiny water bodies than is known for any other similar-sized region in southern Africa.

The beetle collection trips were done over a 16-month period and revealed 68 species of predaceous water beetles alone, termed more formally as the “Hydradephaga”. The iSimangaliso Wetland Park houses approximately 20% of the total number of known species for this beetle group in the whole of southern Africa. Of the species collected during their expeditions, five have never been recorded in South Africa before, highlighting our poor understanding of aquatic insect distributions in this part of the world.

Most of the species collected (almost 80%) belonged to the family Dytiscidae, more commonly known as “diving beetles” due to their lifestyle that involves coming up for air and immediately diving back down to the depths to carry on hunting unsuspecting prey, which can be as large as small fish and amphibians.Image 2

Prof Perissinotto and his NMMU colleague Dr Matthew Bird, together with water beetle specialist Prof David Bilton (Plymouth University), collected specimens ranging from 1 mm to almost 5 cm in length (the tadpole eaters). According to Prof Bilton, “Irrespective of size, these water beetles are a crucial component of the iSimangaliso ecosystem in that they are the primary predators in these temporary wetlands, which generally lack fish. Their abundance and diversity can be used to gauge the overall health of wetland ecosystems as they are sensitive to pollution, for instance”.

###

Original source:

Perissinotto R, Bird MS, Bilton DT (2016) Predaceous water beetles (Coleoptera, Hydradephaga) of the Lake St Lucia system, South Africa: biodiversity, community ecology and conservation implications. ZooKeys 595: 85-135. doi: 10.3897/zookeys.595.8614

Singing in the rain: A new species of rain frog from Manu National Park, Amazonian Peru

A new rain frog species has been described from Amazonian Peru and the Amazonian foothills of the Andes. The frog, given the name Pristimantis pluvialis, was found by researchers from Southern Illinois University Carbondale, the University of Michigan, and the National University of San Antonio Abad of Cusco in Peru. The discovery is published in the open access journal ZooKeys.

Several individuals of P. pluvialis were found during nocturnal surveys near Manu National Park, a region recognized as having the highest diversity of reptiles and amphibians of any protected area.

The species has also been collected within the private conservation area Bosque Nublado, owned by the Peruvian NGO Perú Verde, and within the Huachiperi Haramba Queros Conservation Concession, the first such type of concession granted to a native community in Peru.

The new species is likely found within the park as well, bringing the number of known amphibian species in this area to 156. Similarly to other species within its genus, which is among the largest vertebrate genera, the new rain frog exhibits direct development. This means that it is capable of undergoing its entire life cycle without a free-living tadpole stage.

It can be distinguished from other members of its genus by call, skin texture, and the presence of a rostral papilla. It was given the name “pluvialis”, translatable to “rainy” from Latin, to denote the incredibly rain-soaked habitat it lives in (>8 meters of rain yearly), and because it was found calling only after heavy rains.

Unfortunately, when a fungal disease, known as the amphibian chytrid fungus, arrived in the area back in the early 2000s, many frog species in and around the region began to decline. Out of the studied ten individuals of the presently described new species, four were found to be infected. However, the impact of the disease on these particular rain frogs is still unknown, and their numbers do not seem to have decreased.Image 3

“This discovery highlights the need for increased study throughout the tropics, for example Manu NP and its surrounding areas have been well studied, but despite these efforts, new species are being continuously discovered,” points out first author Alex Shepack, a PhD student in the laboratory of co-author Dr Alessandro Catenazzi at Southern Illinois University.

###

Original source:

Shepack A, von May R, Ttito A, Catenazzi A (2016) A new species of Pristimantis (Amphibia, Anura, Craugastoridae) from the foothills of the Andes in Manu National Park, southeastern Peru. ZooKeys 594: 143-164. doi: 10.3897/zookeys.594.8295

Finding the real treasure of the Incas: Two new frog species from an unexplored region

Inaccessibility and mysticism surrounding the mist-veiled mountains of the central Andes make this region promising to hide treasures. With an area of 2197 km2, most of the Llanganates National Park, Ecuador, is nearly unreachable and is traversed only by foot. However, fieldwork conducted by researchers from the Museo de Zoología at Catholic University of Ecuador resulted in the discovery of a more real and tangible gem: biodiversity.

Among other surprises, during their expeditions the researchers discovered two new species of rain frogs, formally named P. llanganati and P. yanezi. The new species are characterized by the spiny appearance typical of several species inhabiting montane forests. The study was published in the open access journal ZooKeys.

The new rain frogs belong to the megadiverse genus Pristimantis. They are direct-developing frogs, which means that they lack a tadpole stage and therefore do not undergo metamorphosis.Amphibia

The Neotropical Andes houses a spectacular radiation of Pristimantis, especially in the Montane Forests of the eastern slopes of the Ecuadorian Andes. The species richness of this genus is still underestimated as a consequence of their cryptic morphology and the still sparse amphibian inventories in unexplored regions such as the Llanganates National Park.

The discovery reminds the authors of a mystic local legend dating from the 16th century, when the Inca Empire fell into the hands of Spanish conquerors. Word has it that in exchange for the young emperor’s life, Atahualpa, Incas offered to fill an entire room with tons of gold. However, the Spaniards broke their promise and the emperor was executed. A small group of loyal Incas led by General Rumiñahui decided to hide both, the mummy of Atahualpa and the gold, in the depths of the jungle of the Llanganates National Park.

###

Original source:

Navarrete MJ, Venegas PJ, Ron SR (2016) Two new species of frogs of the genus Pristimantis from Llanganates National Park in Ecuador with comments on the regional diversity of Ecuadorian Pristimantis (Anura, Craugastoridae). ZooKeys 593: 139-162. doi: 10.3897/zookeys.593.8063

One of 8 new endemic polyester bees from Chile bears the name of a draconic Pokemon

Among the eight new bee species that Spencer K. Monckton has discovered as part of his Biology Master’s degree at York University, there is one named after a popular draconic creature from the Japanese franchise Pokémon. Called the stem-nesting Charizard, the new insect belongs to a subgenus, whose 17 species are apparently endemic to Chile, yet occupy a huge variety of habitats.

The young scientist, who is currently a PhD student at the University of Guelph, studying sawfly systematics and phylogeography, has his work published in the open access journal ZooKeys.

Known as polyester bees, the family to which the new species belong is characterized by the curious secretions these bees produce. Once applied to the walls of their nest cells, the secretion dries into a smooth, cellophane-like lining.

The new bee species are endemic to Chile, yet they occupy a huge variety of habitats ranging from the hyper-arid Atacama Desert in the north, to moist forests of monkey puzzle trees in the south, spanning elevations from the Pacific coast to more than 3200 metres above sea level. All of them are also solitary and nest in hollow plant stems.

Although the new bee species might lack the fiery breath of the dragon-like Pokémon, much like its namesake, it is normally found around mountains. Also, like the fictional species, the new bee has a distinctively long, snout-like face and broad hind legs, with antennae in place of horns.male charizard 2 head

However, the stem-nesting Charizard bee, as well as the other new species, are tiny creatures that measure between 4 and 7 mm in length. Unlike the predominantly orange colouration of the Pokémon, both males and females are mostly dark brown to black, patterned with variable yellow markings.

Yet, sometimes these yellow markings can turn orange when specimens are preserved, as was the case for the first specimen that Spencer Monckton observed of this species, which, he says, “cemented the comparison”.

In his research paper Spencer Monckton not only describes eight new endemic polyester bees, but he also provides thoroughly illustrated keys for identification of both the males and females of each of the species.

###

Original source:

Monckton SK (2016) A revision of Chilicola (Heteroediscelis), a subgenus of xeromelissine bees (Hymenoptera, Colletidae) endemic to Chile: taxonomy, phylogeny, and biogeography, with descriptions of eight new species. ZooKeys 591: 1-144. doi: 10.3897/zookeys.591.7731

Scientist collects 30 sawfly species not previously reported from Arkansas

Sawflies and wood wasps form a group of insects that feed mainly on plants when immature. Field work by Dr. Michael Skvarla, which was conducted during his Ph.D. research at the University of Arkansas, Fayetteville, USA, has uncovered 30 species of these plant-feeding wasps that were previously unknown in the state. The study is published it in the open access journal Biodiversity Data Journal.

After collecting sawflies in tent-like Malaise traps or hanging funnel traps, Dr. Michael Skvarla sent the specimens to retired sawfly expert Dr. David Smith for identification.

In total, 47 species were collected, 30 of which had not been found in Arkansas before. While many of the species are widespread in eastern North America, eight species were known only from areas hundreds of kilometers away.

“I knew that many insect groups had not yet been surveyed in Arkansas, but I was surprised that 66% of the sawfly species we found were new to the state,” Skvarla says.Fig 2 - Acordulecera dorsalis

“In addition, over a quarter of the newly recorded species represent large range extensions of hundreds of miles; Monophadnoides conspiculatus, for instance, was previously known only from the Appalachian Mountains. This work highlights how much basic natural history is left to discover about insects.”

Sawflies and wood wasps comprise the wasp suborder Symphyta and derive their common names from the serrated or saw-shaped ovipositor many species use to lay eggs into plant tissue, and because some species bore into wood.

While some sawfly and woodwasp species can be pests on crops or ornamental plants, most do not pose an economic concern, and all are harmless to people.

###

Original source:

Skvarla M, Smith D, Fisher D, Dowling A (2016) Terrestrial arthropods of Steel Creek, Buffalo National River, Arkansas. II. Sawflies (Insecta: Hymenoptera: “Symphyta”). Biodiversity Data Journal 4: e8830. doi: 10.3897/BDJ.4.e8830

New immigrant: Shiny Cowbirds noted from a recording altitude of 2,800 m in Ecuador

Two juveniles of Shiny Cowbird, a parasitic bird that lays its eggs in the nests of other birds, were spotted in the Andean city of Quito, Ecuador, for the first time. This finding represents an altitudinal expansion of approximately 500 m.

Breeding populations might have been prompted by forest fragmentation and/or climate change, suggest the research team, led by Dr Verónica Crespo-Pérez, professor at Pontificia Universidad Católica del Ecuador (PUCE). Resultingly, the ‘immigrants’ could be threatening native birds. The study is published in the open access Biodiversity Data Journal.

“The Shiny Cowbird is native to the lowlands of South America but within the last 100 years, it has been expanding its distribution to higher altitudes and latitudes” says the lead author.

The bird had already been noted from high altitudes in Bolivia and Perú, and in some localities in the Ecuadorian Andes. Since 2000, Juan Manuel Carrión, co-author and director of the Zoo in Quito, recalls observing Shiny cowbirds near his home in a valley near Quito at 2,300 m above sea level (asl). However, one has never before been reported from an altitude as high as 2,800 m asl.

Moreover, the fact that the observed individuals were juveniles means that the species is already breeding in the city.

“Such a significant expansion of reproductive birds, of approximately 500 m, could be related to human disturbances, like forest fragmentation or climate change,” adds Crespo-Pérez.

The observations took place at the PUCE campus about a year ago. Two juvenile Shiny cowbirds were seen parasitizing two different pairs of Rufous-collared Sparrow, one of the most common birds in Quito. The cowbirds displayed food-begging behaviors to adult sparrows, including chasing the sparrows on the ground and chanting intensely on bushes and tree branches.

“These observations mean that the birth mother of the cowbird laid her eggs in the nests of the sparrows, who inadvertently, became the cowbird’s foster parents and incubated, fed and cared for the it as if it were its own, even though the cowbird is almost twice as big,” says Miguel Pinto, co-author and professor at Escuela Politécnica Nacional, and former postdoctoral fellow at the Smithsonian Institution.

“The sparrows were not feeding fledglings of their own species, which suggests that the Cowbird could be having some negative effect on the Sparrow, at least on their ability to reproduce,” points out Tjitte de Vries, co-author and professor at PUCE.

There are several published reports of negative effects of Cowbirds on other birds, especially on species that are already endangered or have restricted distribution ranges. Therefore, this report of an expansion of the Shiny Cowbird towards higher altitudes may be of concern, mainly for native, endemic or endangered bird species.

###

Original source:

Crespo-Pérez V, Pinto C, Carrión J, Jarrín E R, Poveda C, de Vries T (2016) The Shiny Cowbird, Molothrus bonariensis (Gmelin, 1789) (Aves: Icteridae), at 2,800 m asl in Quito, Ecuador.Biodiversity Data Journal 4: e8184. doi: 10.3897/BDJ.4.e8184

Curious new bush species growing ‘bleeding’ fruits named by a US class of 150 7th graders

A class of 150 US 7th graders has helped select a name for a newly discovered plant, which amazes with its fruits that appear to be bleeding once they are cut open. Bucknell University biology professor Chris Martine and life science teacher Bradley Catherman challenged the students to come up with ideas for what to call the new Australian species last spring.

Looking for a way to engage local youngsters in biodiversity science, Martine scheduled a presentation to the collective 7th grade life science classes at Donald H. Eichhorn Middle School. As the day of his assembly approached, he started to think that the best way to generate interest might be to somehow allow the students to participate in the actual research he was doing in his lab at the time. Only, he knew there were few things he could do with 150 13- and 14-year olds sitting in a gymnasium.

“I emailed Mr. Catherman and I said, ‘How about we ask them to name a new species for me?’ explained Martine. “And then I showed up with live plants, preserved specimens, and my notes from the Outback – and we said, ‘Go ahead, tell us what to call this thing.'”

Nearly a year later, Martine and his co-authors, including two undergraduate students, have published the new species in the open access journal PhytoKeys. The news is coming just in time for the National Teacher Appreciation Day, thus giving tribute to Bradley Catherman, a life science teacher who is not afraid to step beyond the standard curriculum and make that extra step to actually engage his students with their studies.

OLYMPUS DIGITAL CAMERA

“I was really impressed with Mr. Catherman’s willingness to work outside of the typical curriculum on this,” said Martine, “In an age when K-12 teachers are increasingly pressured to ‘teach to the test’ he is still willing to think creatively and try something unusual.”

Curiously, the new flowering bush species ‘behaves’ nothing like an ordinary plant. While its unripened fruits are greenish white on the inside when cut open, they start ‘bleeding’ in no more than two minutes. The scientists have even filmed a video short showing how their insides turn bloody scarlet at first, before growing darker, appearing just like clotting blood.

A week after the presentation, each of the students submitted an essay in which they suggested a name, explained the meaning, and translated it into Latin (the language that scientific names are required to be in). Catherman and Martine then selected the two best essays for the inaugural Discovery Prize, a new middle school science award established by Martine and his wife, Rachel.

“As you might imagine, the suggestions ran the gamut from the silly to the scientific,” said Martine. “But for every request to name the species after a favorite food, family pet, or Taylor Swift, there were many suggestions based on the data the students had been provided.”

According to Martine, a number of the students suggested names based on two characteristics of the plant’s berries: the ‘bleeding’ unripened fruits and the dry and bone-hard mature ones. Based on this, the plant will now be known as Solanum ossicruentum, best translated to Australian blood bone tomato, with “ossi” meaning “bone” and “cruentum” meaning “bloody”. The species belongs to the genus of the tomato.mature fruit

The species is native to the sub-arid tropical zone of northern Australia. Martine collected the seeds, he grew his research plants from, during a 2014 expedition to Western Australia and the Northern Territory. However, specimens of the plant had actually been gathered for years before then.

“This is just one of thousands of unnamed Australian species that have been collected by dedicated field biologists and then stored in museums,” said Martine, who studied specimens of the new species in the Northern Territory Herbarium before hunting for it in the bush.

“There is a wealth of museum material just waiting to be given names – and, of course, the organisms represented by those specimens await that recognition, as well as the attention and protection that come with it.”

 

IMG_5089Luckily for Solanum ossicruentum, attention and protection are not too much of an issue.

“Not only is it widespread and fairly abundant,” said Martine, “but one of the healthiest populations occurs in Mirima National Park, a popular and easily-accessible natural area just outside the Western Australian town of Kununurra.”

“Plus, middle schoolers can be tough to deal with. I don’t think anyone in their right mind would mess with this plant, now,” the botanist joked.

###

Original source:

Martine CT, Cantley JT, Frawley ES, Butler AR, Jordon-Thaden IE (2016) New functionally dioecious bush tomato from northwestern Australia, Solanum ossicruentum, may utilize “trample burr” dispersal. PhytoKeys 63: 19-29. doi: 10.3897/phytokeys.63.7743

Flightless survivors: Incredible invertebrate diversity in Los Angeles metropolitan area

Urban wildlife is surprisingly understudied. We tend to know more about animals in exotic places than about those that live in our cities.

This is why researchers Emile Fiesler, president of Bioveyda Biological Inventories, Surveys, and Biodiversity Assessments, USA, and Tracy Drake, manager of the Madrona Marsh Preserve, looked into the fauna of the Madrona Marsh Preserve, California, a small nature preserve in one of the world’s largest metropolitan areas.

Consequently, they published the astonishing number of 689 species of invertebrates, which have managed to survive decades of farming and oil exploration, followed by development pressures, in the open access Biodiversity Data Journal. The study was minimally invasive as the live animals have been recorded with macro-photography.

Even though it is the insects that first developed the ability to fly, long before the dinosaurs became birds, the latter have always received the most of our attention. This major evolutionary breakthrough, which has occurred more than once in the past, is also a reason why insects are currently the most diverse animals on earth in terms of number of species.

“Insects and other invertebrates have filled all ecological niches and all corners of our planet,” explain the authors. “No surprise that these small creatures conquered our cities and invaded our homes as well.”

Most of the urban dwellers, however, have been introduced – accidentally or deliberately – by humans.

“The remainder – native ‘wild’ species – are able to survive in the city mainly due to their adaptivity,” they point out. “It is therefore surprising to find a number of flightless species in a small area surrounded by urbanization.”

The Madrona Marsh Preserve is located in Torrance, which is part of the Los Angeles metropolitan area. The greater Los Angeles Metropolitan area is one of the world’s largest, with a human population of more than 17 million.

Figure 2 = Bradynobaenid Wasp Fiesler-2016The Madrona Marsh Preserve, boasting seasonal wetlands, is well known as a birdwatchers’ paradise. Besides birds, its other vertebrates (mammals, reptiles, amphibians, and fishes), as well as its flowering plants, are relatively well known. The invertebrate fauna of the Preserve, on the other hand, aside from butterflies and dragonflies, was virtually unknown.

Interestingly, night surveys revealed the presence of a ‘second shift’ diversity, or creatures seemingly complementary to those active during the day.

Among the long-time survivors are wingless camel crickets as well as velvet ants, which are wasps whose flightless females look like furry ants. Another curiosity that intrigued the researchers is an obscure flightless female bradynobaenid wasp.

The researchers were especially surprised by their encounter with a large Solifugid [image 3] – also known as Camel Spider or Wind Scorpion. Solifugids are little-known arachnids that are neither spiders, nor scorpions, and can grow up to 15 cm (6 in). Their order’s name Solifugae translates from Latin as “those that flee from the sun”.Figure 3 = Solifugid Fiesler-2016

All in all, the biodiversity study resulted in 689 species without a backbone, belonging to 13 classes, 39 orders, and 222 families, found on this island surrounded by urbanization.

“Not unlike the moas and dodos, these ‘island’ inhabitants stayed grounded through the ages,” acknowledge the researchers.

###

Original source:

Fiesler E, Drake T (2016) Macro-invertebrate Biodiversity of a Coastal Prairie with Vernal Pool Habitat. Biodiversity Data Journal 4: e6732. doi: 10.3897/BDJ.4.e6732

 

About the authors:

Emile Fiesler is president of Bioveyda Biodiversity Inventories, Surveys, and Studies, and Tracy Drake is manager of the Madrona Marsh Preserve.

A new scorpion from California reveals hidden biodiversity in the Golden State

California is known for its high biological diversity. The state encompasses a wide variety of habitats, from temperate coastal scrub and cool redwood forests to high-elevation conifer forests and grasslands that are home to an equally diverse variety of plants and animals. Biologists have been intensively studying and characterizing the biodiversity of California for centuries.

Recent fieldwork by researchers Warren Savary and Rob Bryson uncovered a new species of scorpion in the foothills of the Sierra Nevada in northeastern California. It is related to several species in the genusPseudouroctonus, and is only the fourth new species of scorpion to be described from California in the past twenty years. The description is published in the open access journal ZooKeys.

The lead author, Warren Savary, is a field associate of the California Academy of Sciences and has been studying the scorpion diversity of California since the 1970s. He and a collaborator described a new species endemic to the White and Inyo Mountains in eastern California in 1991.

“California is home to a remarkable variety of scorpions,” says Savary. “However, the more I study them, the more I realize that we’ve only just scratched the surface. A lot of scorpion diversity remains to be described.” He and co-author Rob Bryson, a researcher at the University of Washington, have started using DNA to help better understand scorpion diversity.

“Scorpions have been around for a long time — over 400 million years — and many are quite similar in general appearance,” comments Bryson. “We can use DNA sequences to help us piece together how scorpions have evolved and how they are related. Despite looking similar, DNA often reveals that even assumed close relatives can be quite divergent.”

Savary and Bryson are working on publishing the descriptions of several other new species of scorpions from California. “2016 will be an exciting year for scorpion discoveries,” they promise.

###

Original source:

Savary WE, Bryson Jr RW (2016) Pseudouroctonus maidu, a new species of scorpion from northern California (Scorpiones, Vaejovidae). ZooKeys 584: 49-59. doi: 10.3897/zookeys.584.6026

New curiously scaled beetle species from New Britain named after ‘Star Wars’ Chewbacca

Chewbacca, the fictional ‘Star Wars’ character, has given his name to a new species of flightless beetle, discovered in New Britain, Papua New Guinea. Although Trigonopterus chewbacca was only one of the four black new weevil beetles found during the expedition, it stood out with its curious scales, which made the authors think of Han Solo’s loyal companion.

Scientists Dr Matthew H. Van Dam, SNSB-Zoological State Collection, Germany, Raymond Laufa, The University of Papua New Guinea and Dr Alexander Riedel, Natural History Museum Karlsruhe have their paper, where they describe the new species, published in the open access journal ZooKeys.

Failing to understand how was it possible that the hyperdiverse beetle genus Trigonopterus has never been spotted in New Britain, two of the researchers travelled to the island to double-check the foliage and leaf litter. Interestingly, the genus thrives best in Melanesia, the Oceania subregion, where Papua New Guinea is located, yet there had been only a single Trigonopterus species known from Bismarck Archipelago prior to the present study.

Eventually, having spent ten days sifting leaf litter and beating foliage, the authors discovered eighteen individuals in primary forests growing on limestone karst, and later assigned them to four separate species. However, these few findings are still striking, given the abundance of the beetles in similar localities in the New-Guinean mainland.

Unlike its sci-fi namesake, the Chewbacca beetle cannot rely on its measurements to scare other possibly malevolent species off. It only measures between 2.78 and 3.13 mm. Dissimilar again, is its body, which is black and rhomboid-shaped, while its legs and antenna appear rusty. What likens the beetle to “Chewie”, however, is its distinctively dense scales, covering its head and legs.

In conclusion, the authors note that the beetle genus must have colonised New Britain at least four times in the past. “Given the size, mountainous topography and tropical vegetation of New Britain, it is likely that Trigonopterus has undergone some local speciation on the island, but this possibility requires further investigation,” they say.

 

Original source:

 

Van Dam MH, Laufa R, Riedel A (2016) Four new species of Trigonopterus Fauvel from the island of New Britain (Coleoptera, Curculionidae). ZooKeys 582: 129-141. doi: 10.3897/zookeys.582.7709