Fourteen years after the Gulf of Mexico oil spill, endemic fishes face an uncertain future

A study investigating the spill’s impact on endemic fish species suggests potential loss of biodiversity.

The 2010 Gulf of Mexico Deepwater Horizon was the largest accidental oil spill in history. With almost 100 million gallons (379 million liters) of oil combined with dispersants suggested to remain in the Gulf, it is one of the worst pollution events ever. More than a decade later, its long-term effects  are still not fully understood.

A ship sails among spilled oil in the Gulf of Mexico after the BP Deepwater Horizon oilspill disaster.
A ship sails among spilled oil in the Gulf of Mexico after the BP Deepwater Horizon oilspill disaster. Photo by Kris Krug shared under a CC BY-NC-SA 2.0 license.

In a new study, researchers from Louisiana State University and Tulane University examined the endemic Gulf of Mexico fish species that may have been most impacted by the oil spill to see how their distribution has changed over the years. To get their data, they studied museum specimens from natural history collections, looked at relevant literature, and combed biodiversity databases.

Lead author Prosanta Chakrabarty in the fish collections of the Louisiana State University Museum of Natural Science, where many specimens from the Gulf of Mexico are housed.
Lead author Prosanta Chakrabarty in the fish collections of the Louisiana State University Museum of Natural Science where many specimens from the Gulf of Mexico are housed. Photo credit: Eddy Perez, LSU

With 1541 fish species known from the region, and 78 endemic fish species, the Gulf of Mexico is one of the most biologically rich and resilient marine environments in the world, but how much of this diversity is still left intact?

The study found that 29 out of the Gulf’s 78 endemic fish species haven’t been reported in museum collections since 2010. The Yucatan killifish, for example, which is considered endangered, was last reported pre-spill, in 2005, off the Yucatán Peninsula.

Six of the non-reported species are considered of greatest concern, because their areas of distribution largely overlap with the affected area – although the authors note that their absence in the Gulf in recent years cannot automatically be attributed to the oil spill.

Jars of voucher specimens of fishes at the Louisiana State University Museum of Natural Science.
Jars of voucher specimens of fishes at the Louisiana State University Museum of Natural Science. Photo credit: Eddy Perez, LSU

“Understanding the impacts of catastrophic environmental events such as the 2010 Gulf of Mexico Oil Spill does not end when the wellhead is capped or when the last drops of oil cease to flow. The disaster only begins to end when the data no longer show impacts of the event. We are far from the beginning of the end for the Deepwater Horizon Oil Spill. Lingering chemicals, lost generations of wildlife and a continued ecosystem imbalance may all be factors that prevent an environment from rebounding from such cataclysmic events,” the authors note in their research article.

However, they also point out that nature’s ability to recover should not be overlooked.

“The Gulf of Mexico continues to face many challenges, from the Dead Zone, to climate change, loss of coast habitats and continued oil spills. Efforts like this report aim to bring attention to vulnerable species that continue to be impacted by human activities and to the unique endemic fauna of the region,” the researchers write in conclusion.

Research article:

Chakrabarty P, Sheehy AJ, Clute X, Cruz SB, Ballengée B (2024) Ten years later: An update on the status of collections of endemic Gulf of Mexico fishes put at risk by the 2010 Oil Spill. Biodiversity Data Journal 12: e113399. https://doi.org/10.3897/BDJ.12.e113399

NOAA Fisheries Zoologist Describes New Fish Species

Dr. Katherine Bemis of the National Systematics Laboratory recently helped describe a new species of fish, the papillated redbait.

New species alert! Dr. Katherine Bemis of NOAA Fisheries’ National Systematics Laboratory and her collaborators recently described a new fish species: Emmelichthys papillatus, or the papillated redbait. Its discovery was published in the journal ZooKeys.

Emmelichthys papillatus. Photograph by the Kagoshima University Museum

The papillated redbait is a member of the family Emmelichthyidae. There are only 18 known species in this family, which are commonly called redbaits, rovers, or rubyfishes. These deepwater species can be found in warm, tropical waters and are usually bright shades of red, orange, and pink.

How did Bemis and her team make this remarkable discovery? To find out, we’ll have to first travel to a fish market in the Philippines.

A molecular mystery

As part of an interagency campaign to create a reference library of fish DNA “barcodes,” Bemis and her colleagues regularly travel abroad to collect fish specimens. Some come from seafood markets overseas where they are being sold for food. In the field, these new specimens are assigned a preliminary species identification. Then, they’re transported to the Smithsonian Institution and National Systematics Laboratory for genetic sequencing, data collection, and a secondary species confirmation.

Dr. Katherine Bemis holds the holotype–the specimen upon which a new species’ description is based–of the papillated redbait. Credit: Haley Randall/NOAA Fisheries

Since getting involved with this project in 2021, Bemis and teammate Dr. Matthew Girard of the Smithsonian National Museum of Natural History have analyzed thousands of samples. None have made a bigger splash, though, than two small pink fish collected from a Philippine fish market on the island of Cebu.

While collecting data from these specimens, Girard made an exciting observation. Their genetic sequences did not match their initial species identification as golden redbaits—or any other species in the genetic library, for that matter. So which species did Girard and Bemis have on their hands?

Dr. Matthew Girard examines the holotype of the papillated redbait under a microscope. Credit: Dr. Katherine Bemis. Source NOAA Fisheries

In search of answers, Bemis and Girard examined other aspects of the specimens’ biology, including their anatomy. They discovered that these fish differed from the golden redbait in several ways, including:

  • A different number of gill rakers, structures inside the mouth that help fish to feed
  • A different number of pectoral fin rays
  • Two fleshy structures called papillae on the pectoral girdle

These differences, combined with the genetic data, provided evidence that the two specimens were not golden redbaits, but a previously undiscovered species. With only two confirmed specimens, Bemis and Girard wondered if other individuals could be identified in global natural history collections.

Underneath the gill cover, you can observe the two characteristic papillae (singular: papilla) of the papillated redbait labeled with arrows (left). The closely-related golden redbait lacks papillae in the same area (right). Photos courtesy of Dr. Matthew Girard. Source NOAA Fisheries

After some detective work, Bemis and Girard spotted a third specimen they hypothesized might also be the undescribed species. A fish with similar color also identified as a golden redbait had been collected from a fish market in the Philippines by the Kagoshima University Museum in Japan. Bemis and Girard studied the specimen and confirmed their hypothesis with genetic and anatomical data. This specimen became the third record of papillated redbait and, ultimately, the holotype for the species—the specimen upon which a new species description is based.

More to discover

Even after describing new species, there’s always more to learn. Bemis and Girard are energized that there is still much to discover about the papillated redbait and the redbait family, which is relatively poorly known. Any opportunity to add to this small body of knowledge and study redbait species in greater detail is valuable. “I’ve had researchers that work on fish taxonomy say to me, ‘I didn’t even know this family existed.’ That’s how little we know about this group,” Girard emphasizes.

Bemis also notes that because data on the papillated redbait comes from only three specimens purchased in fish markets, she still has lots of questions. For example, Bemis says that they don’t yet know if the new species occurs outside Philippine waters, or the exact habitat in which they occur. “We also don’t know anything about their reproduction or what they eat—really basic aspects of their biology remain to be studied. Now that we recognize that it is different, we only have more to study as new specimens of papillated redbait are collected,” Bemis says.

“It is always a happy and productive moment working with U.S. scientists,” says Dr. Mudjekeewis “Mudjie” Santos of the Philippine National Fisheries Research and Development Institute. Santos was instrumental in the collection of specimens, providing fisheries data on the papillated redbait, and coining a name for the new species in Tagalog, the national language of the Philippines. Here, he examines fish in a Philippine market. Photo courtesy of Dr. Mudjekeewis Santos. Source NOAA Fisheries

One thing is for certain, though. There are more species just waiting to be discovered, and they might be right under our noses. “I think the craziest thing is that the papillated redbait is a new species that came from a market,” Girard says. “The fact that there are undescribed species being sold without us even realizing it underscores how much we still have to learn about marine biodiversity.”

Research article:

Girard MG, Santos MD, Bemis KE (2024) New species of redbait from the Philippines (Teleostei, Emmelichthyidae, Emmelichthys). ZooKeys 1196: 95-109. https://doi.org/10.3897/zookeys.1196.111161

This story was originally published by NOAA Fisheries. It is republished here with their permission.

“Oscar describes Oscar”: Interview with Oscar Lasso-Alcalá, Pt 3

“This is why Mikolji’s Oscar is a highly appreciated species in the aquarium hobby. It is more than just a fish in an aquarium when it is considered a true pet.”

In this last part, we talked with ichthyologist Oscar Miguel Lasso-Alcalá about what makes Astronotus mikoljii – a new to science cichlid species that he recently described in ZooKeys – so special.

Find Part 1 and Part 2 of the interview.

What makes this species so charismatic and loved by aquarists and ichthyologists?

I already spoke about my experience as an aquarist from an early age, where the qualities of the species of the Astronotus genus, known as Oscars are highlighted.

Different varieties and color patterns have been obtained from them through selective breeding, or genetic manipulation, which are called living modified organisms (LMOs) or genetically modified organisms (GMOs).

However, the true lovers of nature, the aquarians of the “Biotope Aquarium” movement  and the like, prefer pure specimens to manipulated or artificially modified ones. This is why Mikolji’s Oscar is a highly appreciated species in the aquarium hobby. It is more than just a fish in an aquarium since it is considered a true pet.

For ichthyologists, it is remarkably interesting and at the same time very challenging to study a genus like Astronotus, which already has only three described species (Astronotus ocellatus, A. cassiprinnis and A. mikoljii).

This is an unusual situation, which, as we have reported, requires an integrative approach and the work and experience of different specialists for its study. With all certainty, as in the case of Mikolji’s Oscar, other species of the genus Astronotus remain to be studied and described, and we hope that we will have the fortune to participate with our experience in these new works.

Local people have long known this species. What role does it have in their lives?

It is important to clarify that Astronotus mikoljii is a new species for science, but it is not a “new species” for people who already knew it locally under the name of Pavona, Vieja, or Cupaneca in Venezuela or Pavo Real, Carabazú, Mojarra and Mojarra Negra in Colombia. Nor for the aquarium trade, where it was known by the common name of Oscar and scientific name of Astronotus ocellatus, or, to a lesser degree, as Astronotus cassiprinnis.

This species has been of great food importance for thousands of years for at least nine indigenous ethnic groups.

Much less is it a new species for the nine thousand-year-old indigenous ethnic groups that share their world with the habitat of this fish, who baptized it with some 14 different names, known in their languages as mijsho (Kariña), boisikuajaba (Warao), hácho (Pumé = Yaruro), phadeewa, jadaewa (Ye’Kuana = Makiritare), perewa, parawa (Eñepá = Panare), yawirra (Kúrrim = Kurripako), kohukohurimï, kohokohorimï, owënawë kohoromï” (Yanomami = Yanomamï), eba (Puinave), Itapukunda (Kurripako), uan (Tucano).

Hence, the importance of scientific names, since the same species can have multiple common names, in the same language or in multiple languages.

It is important to note that very few studies that describe new species for science include the common names of the species, as given by the indigenous ethnic groups or natives of the regions, where the species live.

This species has been of great food importance for thousands of years for at least nine indigenous ethnic groups, and for more than 500 years to the hundreds of human communities of locals who inhabit the Orinoco River basin in Venezuela and Colombia. In our studies, in the plains of Orinoco from 30 years ago, we were able to verify its consumption, as well as high gastronomic value, due to its pleasant taste and enhanced texture.

However, due to my imprint as an aquarist, I have not wanted to consume it on the different occasions that it was offered to me, because it is very difficult to eat the beloved pets that we had in our childhood.

Why is this fish important to people and to ecosystems?

It is especially important to highlight that the Astronotus mikoljii species plays a very important role in the ecosystem, due to its biological and ecological background.

Although it can feed from different sources, it is a fundamentally carnivorous species, and therefore, it “controls” other species in the ecosystem.

Without Mikolji’s Oscar, the aquatic ecosystem would lose one of its fundamental links and the delicate balance of its functioning, because the species it feeds on could increase their populations uncontrollably, becoming veritable pests. This would put in great danger the entire future of the aquatic ecosystem of the Orinoco River basin and the permanence of other species of ecological importance.

In addition, it would surely affect other species used by man, both those of commercial importance (sold as food or as ornamental species), and for the subsistence fishing of native and indigenous inhabitants.

Mikolji’s Oscar, although a carnivorous species, also has its natural predators, for example piranhas and other predatory fish. For this reason, it evolved with an ocellus, or false eye, at the base of the caudal fin, to confuse its predators and guarantee its survival. Obviously, this species will be compromised if we don’t learn about it, use its populations wisely and preserve it in the long term.

***

Photos by Ivan Mikolji.

***

You can find Part 1 and Part 2 of the interview with Oscar.

***

Follow the ZooKeys journal on Twitter and Facebook.

“Oscar describes Oscar”: Interview with Oscar Lasso-Alcalá, Pt 2

“Working in science in a country under these conditions, and getting to publish the results of the investigations in high-level scientific journals such as ZooKeys, is an act of “true heroism”.

Oscar Miguel Lasso-Alcalá, MSc. is a Spanish-Venezuelan ichthyologist. This summer, his team described a new species of Oscar fish in the journal ZooKeys.

In this second part of his interview, he tells us about the challenges in his work and shares the story behind the new cichlid’s name. You can find Part 1 of the interview.

What did you find to be the biggest challenge?

Throughout the past seven years, the description of this species has been a real challenge. Our group of researchers knew from the beginning that it was going to be a difficult job.  However, we never imagined the magnitude of the problems or challenges we would encounter.

We had to study the specimens from the Orinoco River basin in Venezuela and Colombia, and rivers from the hydrographic basin of the Gulf of Paria in Venezuela, which were within our reach, in the main scientific collections of fishes in Venezuela. Similarly, we studied the specimens from the Amazon River basin in one of the main collections in Brazil. We studied the traditional external morphology (morphometric characters, or the body, and meristic measurements, or the number of structures or parts such as scales, fins, etc.) and their coloration, as well as their internal morphology, that is, the study of structures of their skeleton, with the use of high-definition radiographs, where we found the main differences with other species.

A novel technique was the study of the shape of the otoliths, or “ear stones”, a technique not used before in the study of this group of fish. That is why I mentioned before that we also made some great scientific discoveries.

In addition to the long and meticulous laboratory work, we also had to conduct field work, not only to capture new specimens for the morphological study, but also for the genetic and molecular study, a new methodology that has become popular in recent years as a way to support taxonomy and systematics in the description and classification of species.

For this latest work, we also relied on a recent study in this area of ​​research, carried out by the genetics specialists on our work team. This means our research was based on what is currently called “integrative taxonomy”, which is the sum of different techniques, methods, and technologies, at the service of achieving our goal: the description of a new species for science and for the world.

Many other difficulties came up along the way, which is why this research took over seven years to be published. Normally, researchers cannot focus 100% of their time on one single research, and workloads fluctuate. Sometimes we think that a greater number of specialists would help distribute the workload evenly or that getting input from others with different fields of experience, sometimes specialized, would help enrich the work, but that also makes it more difficult to reach agreement. Reaching perfection is never possible, and it took a long time for us to reach a level of results that was both acceptable to all and well accepted in the field of taxonomy and systematics.

One of the biggest challenges was purely financial. While we had some funds from Brazilian research support organizations and two universities, this was not the case in Venezuela, a country plunged in a serious political, social, economic, and humanitarian crisis.

Working in science in a country under these conditions, and being able to publish your results in high-level scientific journals, including ZooKeys, is an act of “true heroism”, as my brother José Antonio often says when cheering on my publication.

How come you named it after Ivan Mikolji?

People who do not know about the great work carried out by river explorer Ivan Mikolji might wonder about that, but the thousands of people, connoisseurs and followers of his work are absolutely clear on the justification for this appointment.

Find more about Ivan Mikolji and his work on his website: https://mikolji.com/.

In addition to being an excellent professional explorer, author, underwater photographer, audiovisual producer and even plastic artist, he is a tireless and enthusiastic disseminator of the biodiversity and natural history of freshwater fish in Venezuela and Colombia.

His work has contributed greatly to the knowledge and conservation of the aquatic ecosystems of both countries. His motto is: “You cannot preserve something that you don’t know exists.”

He has made dozens of photography and art exhibitions in Venezuela, Mexico and the United States, as well as award-winning documentaries on the Orinoco River and its biodiversity that have acquired millions of views.

Mikolji has also inspired thousands of “conservationist” aquarists, as a judge in a worldwide movement called “Biotope Aquariums,” where people try to simulate, as much as possible, the ecosystems and aquatic biodiversity of their places of origin, for the conservation of their local biodiversity.

In addition, his educational work further includes the “Wild Aquarium”, a new movement and methodology, where he recreates in the same place (in situ), a “Biotope aquarium”, helping local communities (children and adults) learn about local aquatic ecosystems and biodiversity and their conservation.

In addition to his great artistic, informative, and educational work, with the enormous data accumulated in more than 15 years of work and field observations, in the recent years, he has participated in different research projects, publishing books and numerous scientific articles, some of them with us. For this reason, in 2020, he was appointed Associate Researcher of the Museo de Historia Natural La Salle (Caracas) of the Fundación La Salle de Ciencias Naturales, in Venezuela. By the way, we are planning research that we hope to announce soon in various publications.

Regarding Astronotus mikoljii, our good friend and now colleague Ivan Mikolji, was the one who initially proposed that we describe this species that he loves so much. He selflessly supported all the authors throughout the study in diverse ways, even in the field work in Venezuela. Ivan helped us in the search for equipment and materials, in the search for information, in the photographic work, and now in the dissemination of this study. For this reason, the article, in just one week, achieved more than 4,500 downloads, both on ZooKeys and ResearchGate web platforms, a true record for a study of this type.

Most importantly, throughout these years, Ivan has always encouraged us not to lose our course and objective, even in the most difficult moments. After years of knowing him, we have cultivated an excellent friendship. This is why we decided that it was just and necessary to recognize his work, help, companionship, and friendship, naming this beautiful and beloved species in his honor.

Photos by Ivan Mikolji.

***

You can find Part 1 and continue reading with Part 3.

***

Follow the ZooKeys journal on Twitter and Facebook.

“Oscar describes Oscar”: Interview with Oscar Lasso-Alcalá, Pt 1

“As an ichthyologist, I feel pride in collaborating and contributing to science, nationally, regionally, and globally.”

Oscar Miguel Lasso-Alcalá, MSc., is a Spanish-Venezuelan ichthyologist with undergraduate studies in Oceanography, Fishing Technology and Aquaculture, and Postgraduate studies in Agricultural Zoology and Estuary Ecology. He has worked in diverse areas such as taxonomy, biology, ecology, freshwater, estuarine, and marine fisheries and management. For 33 years, he has participated in more than 70 research projects and published over 250 studies. He has made more than 250 scientific expeditions to different regions of Venezuela and six other countries in America. He has dedicated much of his work to studying, educating, and managing introduced species and their invasions.

This summer, Oscar’s team described a new species of cichlid fish from northern South America in our journal ZooKeys. We spoke to him to find out how they came to the discovery and what it means to him.

When did you discover the new species?

Although some taxonomists have specimens that they believe, or have preliminarily diagnosed, to correspond to different, undescribed or new-to-science species (in my case I know of around 15 species I’ve diagnosed as new), Astronotus mikoljii was different. We did not discover that it was a new species overnight.

Normally, the process of discovering a new species takes a long time and a lot of work. It is not an easy task. First, you need to analyze the external and internal morphology. You study the color pattern and other characteristics and compare them to those of known, described species that are akin or similar to the one being studied, looking for the main differences. It is also very important to carry out exhaustive documentary and bibliographical research, to learn about all related species that have been previously described. Then, if there is complete certainty that it’s a different species that has not been previously described and published, there’s an entire process of formal description of the new species.

Did you immediately recognize it as a new species?

Absolutely not. Mikolji’s Oscar is difficult to differentiate externally. The first researcher who evidenced the main differences of Astronotus ocellatus (a binomial as it was previously known) from the Orinoco River basin, was the Swedish ichthyologist Sven Oscar Kullander, curator at the Swedish Museum of Natural History in Stockholm. He is one of the greatest specialists in the world on species of the Cichlidae family, to which the species we were studying belongs. This was first published in 1981, followed by his 1983, 1986, and 1989 studies (including his Ph.D. thesis) and later in other studies of his published in 2003 (all cited in our recent article published in the ZooKeys journal).

Likewise, my brother, the Spanish and Venezuelan ichthyologist Carlos Andrés Lasso, currently a researcher at the Instituto de Recursos Biológicos Alexander von Humboldt of Colombia, with more than 40 years of experience, also recognized this species from the Orinoco River as different from the one present in the Amazon River basin. In 18 different studies carried out in Venezuela and Colombia (all cited in our article), he records this species as Astronotus cf ocellatus (“cf” means the species name is yet to be confirmed), or directly as Astronotus sp., already assuring that it was a different species and new to science.

We are letting the world know a defined and individual species exists.

With this background, we responsibly acknowledge that it was Sven and Carlos who discovered Mikolji’s Oscar, and not us. Our credit and recognition are given for the process of describing the new species and for its publication. It is very important to clarify here that the discovery of a new-to-science species and its description (and publication) are two different facts, situations, and processes. However, in our study, we discovered some very important morphological characteristics, as well as genetic information, that allowed the differentiation of this species from those already known.

What was most exciting about this finding?

 As an ichthyologist, I feel pride in collaborating and contributing to science, nationally, regionally, and globally. I feel satisfaction every time I share my research results at a scientific event or meeting (congress, symposium), or publish them in a scientific book (or part of it) or in a popular journal. This is not just an ordinary job for me, since I really like to investigate, and almost always have a lot of fun with this activity. As I have said in many of the interviews that I have had throughout my over 30-year career: to me, it’s not a job, it’s a way of living.

It fills me with great satisfaction to have the opportunity, more than 40 years after first meeting these Oscars, to be able to study them, describe them, and give them the name and place they deserve in science, and in the world.

The description of a species which is new to science is something really special, not only for me and my colleagues in this study, but for the vast majority of taxonomists. This is not only due to the fact that our last names will always appear next to the scientific name, but also to the fact that we are letting the world know a defined and individual species exists. By adding another species, we increase the known biodiversity of a country, a region, and the world, and therefore, we demonstrate that biodiversity must be studied, managed, conserved, and used rationally and independently.

Astronotus mikoljii is a very charismatic species, highly appreciated, valued, and loved in the aquarium hobby.

I remember that as a kid (between 7 and 13 years old), in the aquariums built at home by two of my older brothers, José Antonio and Carlos, to whom I largely owe being an ichthyologist today, we had some specimens of Oscars from Orinoco. We bought them in a local aquarium store in Caracas and took care of them, loved them like little children. I remember that in addition to feeling happily identified with the name (Oscar), they felt like real pets. They “got excited” when they saw us, took food directly from our hands without biting our fingers, and even let themselves be caressed, as if they were docile puppies or kittens. They were my favorite fish.

Years later, as an adult, beginning my research years, in the late 80’s and early 90’s, even with aquariums in our house (I had more than 20 in my good time as an aquarist), we had new specimens of these Oscars. This time, they were specimens captured by my brother and me, in the floodplains of the Orinoco River (Llanos de Apure), where for more than five years we studied the biology and ecology of some 200 local fish species, many of them unique in the world just like Mikolji’s Oscar. From that field study came the doctoral thesis of my brother Carlos, and the undergraduate theses of half a dozen other researchers, including mine.

It fills me with great satisfaction to have the opportunity, more than 40 years after first meeting these Oscars, to be able to study them, describe them, and give them the name and place they deserve in science, and in the world. It also fills me with deep satisfaction, having the opportunity to describe a “large-sized” species that was apparently already known, both locally and nationally (for its importance in fishing), as well as internationally in the world of aquarism. That is why, as I shared our study and finding on social media, I wrote: “Oscar describes the Oscar: Mikolji’s Oscar.

We are also extremely grateful to the many people who helped us and collaborated with us in this study, by collecting new specimens in the field, reviewing fish collections under their care, taking X-rays, searching for specialized bibliographies, studying the native or indigenous names, and even editing and publishing the article in Zookeys journal.

Likewise, it was exciting to share this research experience with colleagues from Brazil (co-authors of this study, just like me), who trusted us and our meticulous work.

Photos by Ivan Mikolji

The story continues with Part 2 and Part 3.

***

Follow the ZooKeys journal on Twitter and Facebook.

Estimating somatic growth of fishes from maximum age or maturity

Two new data-limited methods to estimate somatic growth, applicable to species with indeterminate growth such as fishes or invertebrates.

Somatic growth rate is a central life-history parameter, especially in species like fishes or invertebrates which grow throughout their lives. It is needed in conservation and fisheries management but it can sometimes be tricky to estimate.

In a recent study published in the journal Acta Ichthyologica et Piscatoria, Dr. Rainer Froese of the Helmholtz Centre for Ocean Research proposes new simplified methods for somatic growth estimation.

A school of Jacks pass overhead at Viuda (Widow) dive site, in Coiba National Park, Panama, a UNESCO World Heritage site. Photo by LASZLO ILYES under a CC-BY 2.0 license.

Dr. Froese presents two new data-limited methods to estimate somatic growth from maximum length combined with either length or age at maturation or with maximum age. They are applicable to a wide range of species, sizes, and habitats. Using these new methods, growth parameter estimates were produced for the first time for 110 fish species.

“The growth estimates derived with the new methods presented in this study appear suitable for consideration and preliminary guidance in applications for conservation or management,” Dr. Froese points out in his study.

He goes on to suggest that journals accept growth estimates performed with the new methods as new knowledge, if they are the first for a given species.

In order to facilitate the conservation and management of natural resources, FishBase will continue to compile growth parameters, including results obtained with these new methods.

Research article:

Froese R (2022) Estimating somatic growth of fishes from maximum age or maturity. Acta Ichthyologica et Piscatoria 52(2): 125-133. https://doi.org/10.3897/aiep.52.80093

First-ever fish species described by a Maldivian scientist

Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described by a Maldivian researcher.

Named after the country’s national flower, the species is added to the tree of life as part of the California Academy of Sciences’ global Hope for Reefs initiative

Originally published by the California Academy of Sciences

Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described—the scientific process an organism goes through to be recognized as a new species—by a Maldivian researcher.

The new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa), described in the journal ZooKeys, is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.

Scientists from the California Academy of Sciences, the University of Sydney, the Maldives Marine Research Institute (MMRI), and the Field Museum collaborated on the discovery as part of the Academy’s Hope for Reefs initiative aimed at better understanding and protecting coral reefs around the world.

“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists. This time, it is different and getting to be part of something for the first time has been really exciting, especially having the opportunity to work alongside top ichthyologists on such an elegant and beautiful species,”

says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb.

First collected by researchers in the 1990s, C. finifenmaa was originally thought to be the adult version of a different species, Cirrhilabrus rubrisquamis, which had been described based on a single juvenile specimen from the Chagos Archipelago, an island chain 1,000 kilometers (621 miles) south of the Maldives. 

In this new study, however, the researchers took a more detailed look at both adults and juveniles of the multicolored marvel, measuring and counting various features, such as the color of adult males, the height of each spine supporting the fin on the fish’s back and the number of scales found on various body regions. These data, along with genetic analyses, were then compared to the C. rubrisquamis specimen to confirm that C. finifenmaa is indeed a unique species. 

Importantly, this revelation greatly reduces the known range of each wrasse, a crucial consideration when setting conservation priorities.  

“What we previously thought was one widespread species of fish, is actually two different species, each with a potentially much more restricted distribution. This exemplifies why describing new species, and taxonomy in general, is important for conservation and biodiversity management,”

says lead author and University of Sydney doctoral student Yi-Kai Tea. 

Despite only just being described, the researchers say that the Rose-Veiled Fairy Wrasse is already being exploited through the aquarium hobbyist trade. 

“Though the species is quite abundant and therefore not currently at a high risk of overexploitation, it’s still unsettling when a fish is already being commercialized before it even has a scientific name. It speaks to how much biodiversity there is still left to be described from coral reef ecosystems,”

says senior author and Academy Curator of Ichthyology Luiz Rocha, PhD, who co-directs the Hope for Reefs initiative.

Last month, Hope for Reefs researchers continued their collaboration with the MMRI by conducting the first surveys of the Maldives’ ‘twilight zone’ reefs—the virtually unexplored coral ecosystems found between 50- to 150-meters (160- to 500-feet) beneath the ocean’s surface—where they found new records of C. finifenmaa along with at least eight potentially new-to-science species yet to be described. 

This new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa) became the first Maldivian fish to ever be described by a local researcher.
Photo by Yi-Kai Tea.

For the researchers, this kind of international partnership is pivotal to best understand and ensure a regenerative future for the Maldives’ coral reefs. 

“Nobody knows these waters better than the Maldivian people. Our research is stronger when it’s done in collaboration with local researchers and divers. I’m excited to continue our relationship with MMRI and the Ministry of Fisheries to learn about and protect the island nation’s reefs together,”

says Rocha says

“Collaborating with organizations such as the Academy helps us build our local capacity to expand knowledge in this field. This is just the start and we are already working together on future projects. Our partnership will help us better understand the unexplored depths of our marine ecosystems and their inhabitants. The more we understand and the more compelling scientific evidence we can gather, the better we can protect them,”

adds Najeeb.

***

Research article:

Tea Y-K, Najeeb A, Rowlett J, Rocha LA (2022) Cirrhilabrus finifenmaa (Teleostei, Labridae), a new species of fairy wrasse from the Maldives, with comments on the taxonomic identity of C. rubrisquamis and C. wakanda. ZooKeys 1088: 65-80. https://doi.org/10.3897/zookeys.1088.78139

***

Follow ZooKeys on Twitter and Facebook.

Learning more about vampire fish: first report of candiru attached to an Amazonian thorny catfish

For the first time, scientists report a vampire fish attached to the body of an Amazonian thorny catfish. Very unusually, the candirus were attached close to the lateral bone plates, rather than the gills, where they are normally found. Since the hosts were not badly harmed, and the candirus apparently derived no food benefit, scientists believe this association is commensalistic rather than parasitic. The research is published in the open-access journal Acta Ichthyologica et Piscatoria.

Guest blog post by Chiara C. F. Lubich, André R. Martins, Carlos E. C. Freitas, Lawrence E. Hurd and Flávia K. Siqueira-Souza

The Amazon River Basin is home to about 15% of all freshwater fish species known to science, and an estimated 40% yet to be named. These include some of the most bizarre fishes: the vampire fishes, locally known as candiru, members of the catfish subfamily Vandelliinae.). They survive by attaching themselves to the bodies of other fish and sucking on their blood, hence their common name. Yet, it was only recently that we found out that one candiru species, belonging to the genus Paracanthopoma, seems to be making use of its host in quite a different way.

During a sampling study of freshwater fish fauna in a lake of the Demeni River Basin, a left bank tributary of the Negro River, we found candirus attached to the surface of the body of an Amazonian species of a thorny catfish. By the end of the survey, we had observed a total of twenty candirus attached to the outside of the bodies of nine larger Doras phlyzakion, one or two per host. Very unusually, the candirus were attached close to the lateral bone plates, rather than the gills, where these fish are normally found.

Location of the study: Demeni River, left bank tributary of Negro River, Amazonas State, Brazil.

As a result of these observations, we recently published the first record of a candiru attached to the body surface of an Amazonian thorny catfish in an article in the open-access scholarly journal Acta Ichthyologica et Piscatoria.

Vampire fish have long and robust snouts, with strong dentary teeth that help them stay attached to the epidermis of their host and feed on its blood. However, when we performed a macroscopic analysis of the stomach contents of the preserved Paracanthopoma specimens, we were surprised to find no coagulated blood, nor flesh, skin or mucus. This might indicate an interaction between parasite and host that is more benign than usually attributed to vampire fish. 

Doras phlyzakion with vampire fish (Paracanthopoma sp.)  fixed into its epidermis close to the bony plates of the lateral line. Arrows: areas with reddish wounds.

We believe the association between candiru and host in this case might be commensalistic (where one organism benefits from another without harming it), rather than parasitic, because the hosts were not badly harmed, and the candiru apparently derived no food benefit. 

But what else would they seek on the back of Amazonian thorny catfish? One explanation could be that, since candirus are tiny and nearly transparent, they might be avoiding getting noticed by visual predators by riding on larger fish. Another hypothesis is that they could be using their big cousins to transport them over longer distances that they wouldn’t be able to cover themselves, eventually making it to safety or new food sources.

Research article:

Lubich CCF, Martins AR, Freitas CEC, Hurd LE, Siqueira-Souza FK (2021) A candiru, Paracanthopoma sp. (Siluriformes: Trichomycteridae), associated with a thorny catfish, Doras phlyzakion (Siluriformes: Doradidae), in a tributary of the middle Rio Negro, Brazilian Amazon. Acta Ichthyologica et Piscatoria 51(3): 241-244. https://doi.org/10.3897/aiep.51.e64324

Acta Ichthyologica et Piscatoria signs with Pensoft and moves to ARPHA

The scholarly publisher and technology provider Pensoft welcomes the latest addition to its diverse portfolio of scholarly outlets – the open-access, peer-reviewed journal Acta Ichthyologica et Piscatoria (AIeP), which publishes research in the fields of ichthyology and fisheries.

AIeP is an international scientific journal publishing articles in any aspect of ichthyology and fisheries concerning true fishes (fin-fishes), including taxonomy, biology, morphology, anatomy, physiology, pathology, parasitology, reproduction and zoogeography. The academic outlet, which was launched in 1970, favours research based on original experimental data or experimental methods, or new analyses of already existing data. AIeP is indexed by all major indexers, including Web of Science and Scopus. The journal’s first Impact Factor was released in 2010, and currently stands at 0.629 (2019).

The first 2021 issue of the the open-access, peer-reviewed international journal Acta Ichthyologica et Piscatoria is already online on a brand-new website

In joining the Pensoft portfolio, AIeP gets a brand-new user-friendly website with improved design and access to Pensoft’s self-developed full-featured platform ARPHA, which offers an end-to-end publishing solution from submission to publication, distribution and archiving. With features, such as papers available in semantically enhanced HTML and machine-readable XML formats, automated data export to aggregators, and web-service integrations with major global indexing databases, the easy-to-use, open-access platform ensures that published research is easy to discover, access, cite and reuse by both humans and machines all over the world.

AIeP’s first issue published with Pensoft features 14 scientifically diverse open-access articles on ichthyology and fisheries covering a wide geographic scope. Some of the issue’s most interesting reads explore the eating habits of the spotted rose snapper in the Gulf of California, offer the first underwater photograph of a rare scorpionfish in Japan, and record the first ever occurrence of the pharaoh cardinal fish in Libyan waters, in what constitutes the westernmost Mediterranean area of colonization of this non-indigenous species.

Amongst the published papers there are also practical suggestions for species conservation and sustainable fisheries management – for example, an evaluation of the size of freshwater fish in Bangladeshi wetlands recommends only harvesting fishes with a total length of over 8.80 cm.

Follow Acta Ichthyologica et Piscatoria on Facebook and Twitter.

Additional information

About ARPHA:

ARPHA is the first end-to-end, narrative- and data-integrated publishing solution that supports the full life cycle of a manuscript, from authoring to reviewing, publishing and dissemination. ARPHA provides accomplished and streamlined production workflows that can be customized according to the journal’s needs. The platform enables a variety of publishing models through a number of options for branding, production and revenue models to choose from.

About Pensoft:

Pensoft is an independent academic publishing company, well-known worldwide for its innovations in the field of semantic publishing, as well as for its cutting-edge publishing tools and workflows. In 2013, Pensoft launched the first ever end to end XML-based authoring, reviewing and publishing workflow, as demonstrated by the Pensoft Writing Tool (PWT) and the Biodiversity Data Journal (BDJ), now upgraded to the ARPHA Publishing Platform. Flagship titles include: Research Ideas and Outcomes (RIO), One Ecosystem, ZooKeys, Biodiversity Data Journal, PhytoKeys, MycoKeys and many more.

Contacts:

Wojciech Piasecki, Editor-in-Chief at AIeP

editor@aiep.pl

Lyubomir Penev, founder and CEO at Pensoft and ARPHA

l.penev@pensoft.net 

A new character for Pokémon? Novel endemic dogfish shark species discovered from Japan

A new endemic deep-water dogfish shark: Squalus shiraii, was discovered in the tropical waters of Southern Japan by an international team of scientists led by Dr. Sarah Viana from South African Institute for Aquatic Biodiversity. The finding brings the amount of spurdogs shark species inhabiting Japanese waters to six. The discovery is published in the open-access journal Zoosystematics and Evolution.

Newly discovered creatures can often be as impressive and exciting as the ones from the Japanese movies and shows. Many of those fictional characters, including inhabitants of the famous Pokémon universe, might have their analogues among the real animals native to Japan. Maybe, a new species of the dogfish shark published in the open-access journal Zoosystematics and Evolution is also “a real Pokémon” to be?

A new deep-water dogfish shark: Squalus shiraii, was discovered in the tropical waters of Southern Japan by an international team of scientists, led by Dr. Sarah Viana from South African Institute for Aquatic Biodiversity


 Map of the North-western Pacific Ocean, showing the geographical distribution of Squalus shiraii
Credit: Sarah Viana
License: CC-BY 4.0

The new shark has the body length of 59-77 cm and some unique characteristics such as tall first dorsal fin and caudal fin with broad white margins. Currently, the species is known exclusively as a Japanese endemic, occurring in the tropical shallow waters of Southern Japan in the North-western Pacific.


Squalus shiraii lateral view
Credit: Sarah Viana
License: CC-BY 4.0

Spurdogs represent commercially important for the world fish trade taxa. They are caught for a range of purposes: consumption of meat, fins and liver oil. Despite their high occurrence, the accurate identification data of species is scarce, population threats and trends remain unknown.

Japan currently represents one of the world’s leading shark fish trade countries, though, during the last decades the amount of shark catches is decreasing and over 78 elasmobranch species traded in Japanese shark fin markets are now evaluated as threatened.

The new species Squalus shiraii previously used to be massively misidentified with shortspine spurdog, due to the resembling shape of body, fins and snout length. However, there are some differences, defining the specificity of the new species.

Squalus shiraii has body brown in colour, postventral and preventral caudal margins whitish, dorsal and ventral caudal tips broadly white and black upper caudal blotch evident in adults. S. mitsukurii has body conspicuously black to dark grey and caudal fins black throughout with post-ventral caudal margin fairly whitish and black upper caudal blotch not evident in adults”, shares lead author Dr. Viana.

Scientists propose the name for the newly described species as Shirai’s spurdog in honour to Dr. Shigeru Shirai, the former Japanese expert of the group.

Original source:
Viana STFL, Carvalho MR (2020) Squalus shiraii sp. nov. (Squaliformes, Squalidae), a new species of dogfish shark from Japan with regional nominal species revisited. Zoosystematics and Evolution 96(2): 275-311. https://doi.org/10.3897/zse.96.51962

Contact:
Dr. Sarah Viana
Email: stviana@gmail.com