Described 28 years post-collection, new grass species makes a strong case for conservation

Originally collected 28 years ago in Ecuador, new species Poa laegaardiana has been just described, only to find out its prospects for surviving in its type location seem bleak nowadays. The study was published in the open access journal PhytoKeys.

When roaming in the Cordillera de los Andes of Ecuador, near the village of Facundo Vela, little did Smithsonian scientist and author, Dr. Paul M. Peterson, know that a small grass specimen will not only turn out to be an intriguing new species, but will also make a big statement on the importance of conservation.

Scientific drawing showing what makes new species P. laegaardiana distinct from its congeners

Almost three decades after its original collection the new species P. laegaardiana has finally emerged from its herbarium collection, but the story took an unexpected twist.

It took the authors a single Google Earth search to find out that what used to be the natural habitat of the newly found densely tufted bunchgrass, is now occupied predominantly by small farms.

Heavy agricultural use of the terrain, poses a good possibility for P. laegaardiana to have already been extirpated from this location. With the species currently known only from this area, chances are that this newly described species, might in fact turn out to be already extinct.

“Further studies are needed to search the area and browse collections for specimens from different locations,” explains Dr. Peterson. “But, in fact, it may well be that with our study we are documenting a possible extinction of a species, happening in the space of just 30 years. The story of P. laegaardiana serves to show how human-induced habitat loss can indeed be a major threat to the survival of life on Earth.”

The new species was named after renowned Danish botanist Simon Laegaard, who has made extensive collections in South America, Greenland, Ecuador, and Bolivia (accompanied by the authors) contributing to the documentation of the flora to make informed conservation and management plans.

Google Earth image comparison between the area of collection in 2011 and today. With the area having been plowed, chances of the grass still existing there are small, however it may still be found along the margins of the fields. CREDIT Left: @2018DigitalGlobe; Right: @2018Google @2018CNES/Airbus

###

Original Source:

Peterson PM, Soreng RJ (2018) Poa laegaardiana, a new species from Ecuador (Poaceae, Pooideae, Poeae, Poinae). PhytoKeys 100: 141-147. https://doi.org/10.3897/phytokeys.100.25387

New bush tomato species is the link between botany and an Oscar-nominated Hollywood movie

A new Australian bush tomato species, discovered by a team of researchers led by biology professor Chris Martine of Bucknell University, has been named after main character Mark Watney from the book and film The Martian. The authors, among whom is the undergraduate student Emma Frawley, have published the new species in the open-access journal PhytoKeys.

Martine announced the new name, Solanum watneyi, in The Huffington Post last year when he described it as a tribute to the heroic portrayal of Watney as a NASA botanist and engineer who saves himself with plant science expertise after being stranded on Mars.

In fact, Matt Damon’s botanist character impressed both the audience and the critics so much that it resulted in several Academy Awards nominations to the whole production team. The actor himself received a Golden Globe among many other prestigious recognitions including the BAFTA for Best Actor and the Critics’ Choice Award for Best Actor.   

This is a botanist portrayal that turns an unusually bright spotlight on authentic scientific endeavor,” Martine explains the choice. “Scientist heroes are already unusual in Hollywood, but a space-deserted protagonist who studies plants as a profession is something extraordinary.

However, according to Martine, the decision to name the species after Watney also has some taxonomic relevance.

“The plant that Watney manages to grow on Mars is none other than Solanum tuberosum (the potato), a member of the same genus as our new species,” he says.

This connection was not missed by Andy Weir, author of the book-turned-movie and father of the Watney character, who expressed his approval of the name on his Facebook page.  

“What higher honor could a botanist like Watney ask for than to have a plant named after him?” writes Weir. “And to have it be a relative of the potato as well? Perfect!”

[PR] Solanum watneyi Martine Img2Martine collected specimens of the new species during a six-week expedition to the Northern Territory of Australia with his wife, Rachel, and their two children. Rachel drew the illustration of the species that appears in the PhytoKeys paper.

In order to make sure the new species is not in fact a previously known and closely related Solanum species, the family team collected hundreds of seeds of both species. Thus, the plants could be grown and compared side-by-side in a research greenhouse.

In the summer of 2015, Bucknell undergraduate student Emma Frawley, class 2017, studied the plants, ultimately gathering and analyzing enough morphometric data to confirm the distinctiveness of Solanum watneyi. This is how Frawley, a double major in environmental studies and Spanish, became a co-author of the present paper.

The new species occurs in and around the western part of Judbarra/Gregory National Park, where it was occasionally encountered by regional botanists who nicknamed the oddball plant “Bullita” after the cattle station that once operated in the area.

“The nickname started being applied in the 1970s,” said Martine, who studied historical collections of the plant at the Northern Territory Herbarium. “But no one had yet done statistical comparisons between that plant and its similar relative.”

Watney is not the only one being recognized by the botanical community following the release of The Martian. In recognition of his botanist star turn, the Botanical Society of America has extended an honorary membership to actor Matt Damon, who portrays the space botanist in the film.

 

Note:  Also listed as authors on the recent publication are Bucknell University Burpee Postdoctoral Fellow Jason Cantley and University of California-Berkeley Research Botanist Ingrid Jordon-Thaden.

 

Original source:

 

Martine CT, Frawley ES, Cantley JT, Jordon-Thaden IE (2016) Solanum watneyi, a new bush tomato species from the Northern Territory, Australia named for Mark Watney of the book and film “The Martian”. PhytoKeys 61: 1–13. doi: 10.3897/phytokeys.61.6995

World’s smallest of giant flowers discovered in the Philippines

Some of the world’s giant flowers, those of the parasitic plant genus Rafflesia, can reach up to a meter and a half in diameter. Therefore, what could be more impressive about them are ‘dwarves’ such as the record-breaking one that was recently discovered by scientists from the University of the Philippines Diliman and the University of the Philippines Los Baños. Its average diameter is only 9.73 cm and has been named  consueloae. The study is published in the open-access journal PhytoKeys.

Curiously enough, the discovery happened after a field assistant accidentally tripped over a pile of forest litter to expose a decayed flower. Later on, lead researcher Prof Perry S. Ong would describe the novel finding as “serendipitous”.

The new species is named Rafflesia consueloae in honor of Ms Consuelo ‘Connie’ Rufino Lopez, lifelong partner of Filipino industrialist Oscar M. Lopez. “With her demure, but strong personality traits, which Rafflesia consueloae also possesses, she provides the inspiration for Mr Lopez’s pursuit of biodiversity conservation in the Philippines,” Prof Ong says.

Image 2 IMG_9892.JPEG Photo by Edwino S. Fernando

Rafflesia flowers are unique in that they are entirely parasitic on roots and stems of specific vines in the forests and have no distinct roots, stems, or leaves of their own,” explains co-author Prof Edwino S. Fernando. “Thus, they are entirely dependent on their host plants for water and nutrients.”

In Sumatra and Borneo another species of the same genus, Rafflesia arnoldi, holds the record of being the largest single flower in the world with a diameter of up to 1.5 meter. In the Philippines, Rafflesia schadenbergiana, found only in Mindanao, is still large with a flower diameter of 0.8 meter. Professor Fernando, added that Rafflesia consueloae is the 6th species from Luzon Island and the 13th for the entire Philippine archipelago.

The new species has been classified as Critically Endangered, based on IUCN criteria as it has less than 100 km2 extent of occurrence with its two small populations. The continued protection of the populations of this species is important as some local people still hunt wildlife within the area and forest fires are likely in the dry season, factors which might threaten the survival of R. consueloae.

The field and laboratory work of the field scientists are part of the Comprehensive Biodiversity Conservation Monitoring Program of Pantabangan-Carranglan Project, funded by the First Gen Hydro Power Corportation (FGHPC) and Wildlife Forensics and DNA Barcoding of Philippine Biodiversity of the University of the Philippines Diliman – Department of the Environment and Natural Resources – Biodiversity Management Bureau (DENR-BMB).

###

Original source:

Galindon JMM, Ong PS, Fernando ES (2016) Rafflesia consueloae (Rafflesiaceae), the smallest among giants; a new species from Luzon Island, Philippines. PhytoKeys 61: 37-46. doi: 10.3897/phytokeys.61.7295

Serendipitous orchid: An unexpected species discovered in Mexican deciduous forests

A new elegant orchid species that grows on rocks in deciduous forests of the Pacific slope of Oaxaca state, Mexico, has finally put an end to a long standing dispute among taxonomists. ‘Sheltered’ under the name of a close relative, the plant has been proved by a research team, led by Dr. Leopardi-Verde, to be different enough for a species of its own. Its distinct features, including shape, size and colors, are discussed and published in the open-access journal PhytoKeys.

When scientists Drs. Carlos L. Leopardi-Verde, Universidad de Colima and Centro de Investigacion Cientifica de Yucatan, German Carnevali and Gustavo A. Romero-Gonzalez, both affiliated with Centro de Investigacion Cientifica de Yucatan and Harvard University Herbaria, stumbled across a beautiful orchid in bloom, they found themselves so surprised by its unique colors and forms that later on they chose the specific epithet inopinatus, meaning “unexpected”.

One of the most distinctive characters of the new plant is the yellow labellum patterned with crimson to reddish brown lines. Typically for its species complex, this orchid’s leaves are wide and leatherlike and the flowers are relatively large, showy, and leathery to fleshy-leathery petals and sepals. The color of the flowers varies from bronze-green with dark purple lines near the base to pale pink and creamy white splashed with reddish-brown spots and lines towards the top.

The plant is between 30 and 42 cm tall, while together with its flowers it reaches between 80 and 90 cm. Each branch of the inflorescence bears from 3 to 8 flowers, which bloom between March and July. Having been recorded only from a few sites on the Pacific slope of Oaxaca state, Mexico, the species appears to be rare.

The authors explain the similarities between the new species and its close relatives. They also discuss the long-held confusion about its taxonomic placement. As a result of the study, a hypothesis about hybridization that has played a role in the evolution and origin of the novelty has been refuted.

###

Original source:

Leopardi-Verde CL, Carnevali G, Romero-Gonzalez GA (2016) Encyclia inopinata (Orchidaceae, Laeliinae) a new species from Mexico. PhytoKeys 58: 87-95. doi: 10.3897/phytokeys.58.6479

Guardian ants: How far does the protection of a plant-ant species to its specific host go?

Seemingly helpless against their much more lively natural enemies, plants have actually come up with a wide range of defences. In the present research, published in the open-access Journal of Hymenoptera Research, Dr. Adriana Sanchez, Universidad del Rosario, Colombia, and Edwin Bellota, Texas A&M University, USA, focus on the mutualistic relationship developed between a specific Neotropical knotweed and an ant species. During a series of ant-exclusion experiments the scientists observed and subsequently reported an aggressive and highly protective behaviour.

In order to assess the extent of protection these plant-ants provide their exclusive host with, the researchers compared the percentage of herbivory between control plants and experimental ones, which had their resident ants removed. The unambiguous results showed a 15-fold increase in the herbivory in the latter group, which kept on growing even further as the time progressed.

Normally, the studied ants patrol their hosts during both day and night at temperatures sometimes as low as 13C. Every time they found a herbivore, they were seen to attack it aggressively by biting and stinging.

“When an ant encountered a caterpillar, a worker approached and detected it with its antennae, and then recruited more workers. Typically more than 10 workers were recruited around the intruder in less than five minutes,” shared their observations the researchers. “Several workers harassed the herbivore by stinging or biting, until it dropped off the plant. The caterpillars usually hung by a silk thread and attempted to move back onto the plant. However, individuals of Pseudomyrmex continued to chase them until they dropped again. This cycle was repeated several times.”

While patrolling, they were noticed to remove any found debris from the top of the leaves. When they failed to find any signs of mosses, fungi or lichens on the sampled saplings, the scientists suggested that the ants not only protect their host from herbivores, but also from various disease-causing agents.

Plant vitality, growth and reproduction are seriously threatened by herbivores such as, in the case of the hereby studied knotweed, Triplaris americana, caterpillars and grasshoppers. Fighting for their life, plants use structural defenses, toxins, digestibility-reducing compounds, or mutualistic relationship with the enemies of their herbivores.

The herein researched Neotropical plant have found its way of survival through becoming the only host to the ant species Pseudomyrmex dendroicus, characterised with remarkable eyes, light brown body and potent venom, injected through a well-developed sting. In its turn, the knotweed shelters their entire colony in its hollow stems while another symbiont, scale insects, feeds them with the sugary sticky liquid it secrets on digesting plant sap.

###

Original source:

Sanchez A, Bellota E (2015) Protection against herbivory in the mutualism betweenPseudomyrmex dendroicus (Formicidae) and Triplaris americana(Polygonaceae). Journal of Hymenoptera Research 46: 71-83. doi: 10.3897/JHR.46.5518.

New gorgeous coffee tree species from Honduras is critically endangered

Amid the challenging terrain of north-western Honduras, where Dr. Kelly’s team faced rugged and steep forest areas cut across here and there by a few trails, a gorgeous tree with cherry-like fruits was discovered. Being about 10 metres (33 ft) high and covered with cream-colored flowers, it was quickly sorted into the Coffee family (Rubiaceae), but it was its further description that took much longer. Eventually, it was named Sommera cusucoana, with its specific name stemming from its so far only known locality, the Cusuco National Park. The study is available in the open-access journal PhytoKeys.

During a plant diversity study in the Cusuco National Park, conducted by Drs. Kelly, Dietzch and co-workers as a part of a broader survey by Operation Wallacea, an international organisation dealing with biodiversity and conservation management research programmes.

A couple of curious findings in the past decade provide a strong incentive to further work. The place turns out to be not only of high biodiversity, but to also contain rare and hitherto unknown plant and animal species.

For instance, the tree Hondurodendron (from Greek, ‘Honduras Tree’) and the herbaceous plant Calathea carolineae are another two endemic species discovered as a result of the Operation Wallacea survey.

In 2013, two individuals of another unknown, 10-metre high (33 ft) tree with cream-colored flowers and red, cherry-like fruits were found by Daniel Kelly and Anke Dietzsch from Trinity College, University of Dublin, Ireland. The two were aided by local guide Wilmer Lopez.

The multinational collaboration did not stop then and there. Although the scientists quickly figured that the tree belonged to the Coffee family, they needed some additional help to further identify their discovery. Thus, they were joined by two leading specialist in this plant group, first Charlotte Taylor from Missouri Botanical Garden and then David Lorence from the National Tropical Botanical Garden in Hawaii.

It was actually David who was the first to recognise the unknown tree as a member of theSommera genus, a group of nine known species of trees and shrubs. Later, the team decided to name the new plant Sommera cusucoana to celebrate its singular locality, the Cusuco National Park.

“Sadly, there has been extensive logging in the vicinity in recent years, and we fear for the future of our new species,” the authors stressed. “According to the criteria of the International Union for the Conservation of Nature (IUCN), it must be regarded as Critically Endangered.”

“We hope that the publication of this and other discoveries will help to galvanize support for the conservation of this unique and beautiful park and its denizens,” they concluded.

###

Original Source:

Lorence DH, Dietzsch AC, Kelly DL (2015) Sommera cusucoana, a new species of Rubiaceaefrom Honduras. PhytoKeys 57: 1-9. doi: 10.3897/phytokeys.57.5339

World-famous, yet nameless: Hybrid flowering dogwoods named by Rutgers scientists

Garden lovers and horticulturalists now have two new species names to add to their vocabulary and memory. The world’s most commercially successful dogwood garden trees have finally received proper scientific names decades after their introduction into horticulture. The big-bracted, or flowering, dogwoods are beloved trees with cloud-like branches blossoming in early spring in white, sometimes red or pink. The new scientific names are published by a team of American scientists in the open-access journal PhytoKeys.

The two hybrid species were artificially hybridized at Rutgers University by renowned ornamental tree breeder Dr. Elwin R. Orton decades ago and are now commonly grown across the United States, Europe and Japan. These two hybrids were developed from Florida, Kousa and Pacific dogwoods (Cornus spp.), all well known ornamental trees. The breeding program, which started in 1965, had the aim to create garden dogwoods with better aesthetic qualities, such as larger pink or red floral bracts, unique growth habits and better disease-resistance.

So, why do we need formal names? “Crucial to communication in all parts of our lives is the naming of objects and phenomena,” explains Mr. Mattera, a Rutgers University graduate student in the School of Environmental and Biological Sciences. “Humanity needs words to tell other people what we are talking about, and the words need to have uniform and clear meanings,” he adds. Before their publication these horticultural plants largely lived in a taxonomic no-man’s land and could not easily be placed into horticultural databases.

Co-author Dr. Lena Struwe, a botanist also at Rutgers University, explains that “Even artificial hybrids created by the fusion of species from separate pieces of the Earth are living, evolving things that need scientific names so they fit into our encyclopedias of life.” She continues, “even if these are mostly sterile, but stable, hybrids they are now widespread components of worldwide garden biodiversity that get pollinated by native insects and interact with other local native and non-native species.”

Common garden plant hybrids, even if artificially produced from wild species, need formal species names to promote international communication and further scientific understanding. “If you can’t put a name on something, you can’t explain what you see, own, or remember,” Dr. Lena Struwe explains and adds: “Names and words are the basis for the transfer of all knowledge”.

The new hybrid species Cornus × rutgersensis was created by the hand-crossing of a an Asian species, the Kousa dogwood, with the common Florida dogwood. Most gardeners and horticulturist will recognize the pink-bracted cultivar Stellar Pink®, the most successful Cornus × rutgersensis hybrid. The crosses made by Dr. Orton were the world’s first known hybrid crosses between these two species. Many familiar with this hybrid may recall hearing this name before, and they probably have. Cornus × rutgersensis and similar names had been used informally by those in the horticultural trade before, but now the authors hope to provide clarity by formally publishing the name in the present paper. The researchers suggest Rutgers’ dogwood as the common-name for this hybrid.

The second hybrid, Cornus × elwinortonii, honors career-long ornamental plant breeder Dr. Orton from Rutgers University in New Brunswick, NJ (United States). This cross produced a hybrid with larger white petal-like bracts around each flower head and resistance to the dogwood-killing fungal disease, dogwood anthracnose, that affects the native Pacific and Florida dogwoods. The cultivar Venus® is the most prominent example of this hybrid. The researchers have proposed the common name Orton’s dogwood for horticultural usage.

Both hybrid species represent long-distance artificial crosses of wild species that would never meet in nature, which were further developed into beloved commercial garden plants. Despite their parents being quite different in their flowers and fruits, the two new hybrid species are a clear combination of their ancestors.

“Such intermixing of parental characters is the key to successful plant breeding and artificial selection of new horticultural and agricultural varieties that can provide new forms of beauty, as well as new disease- and stress-resistant plants,” explains Rutgers University plant breeder Dr. Thomas Molnar, in Department of Plant Biology and Pathology.

According to the International Code of Nomenclature for algae, fungi, and plants (ICN), all proposed scientific names, including hybrid names, require that they are formally published and described in a scientific publication, as well as represented by a type specimen in a scientific collection. The formal types of these new hybrids will be deposited in several herbaria, and are also represented by living trees at Rutgers University in New Jersey (USA).

###

Original source:

Mattera R, Molnar T, Struwe L (2015) Cornus × elwinortonii and Cornus × rutgersensis(Cornaceae), new names for two artificially produced hybrids of big-bracted dogwoods.PhytoKeys 55: 93-111. doi: 10.3897/phytokeys.55.9112