Twenty-four new beetle species discovered in Australian rain forests

As many as twenty-four new species from Australian rainforests are added to the weevil genus Trigonopterus. Museum scientists Dr. Alexander Riedel, State Museum of Natural History Karlsruhe, Germany, and Rene Tanzler, Zoological State Collection Munich, Germany, have first discovered them among unidentified specimens in different beetle collections. The study is published in the open-access journal ZooKeys.

Australia is well known for its extensive deserts and savanna habitats. However, a great number of native Australian species are restricted to the wet tropical forests along the east coast of northern Queensland. These forests are also the home of the recent discoveries.

Most of the weevil species now recognised as new have already been collected in the 80s and 90s of the past century. Since then they had been resting in museum collections until German researcher Alexander Riedel had the opportunity to study them.

“Usually a delay of decades or even centuries occurs between the encounter of a new species in the field and its thorough scientific study and formal naming,” he explains. “This is due to the small number of experts who focus on species discovery,” he elaborates. “There are millions of unidentified insect specimens stored in collections around the world but only few people have the training necessary to identify those of special interest.”

However, old museum specimens alone are not enough either. Nowadays, researchers try to include DNA data in their descriptions, and the necessary sequencing techniques work more efficiently with freshly collected material. Therefore, the scientists set off to the field after they have studied the collections of others. Nevertheless, the German team were led to the discovery of one additional new species, which had never been seen before. They called itTrigonopterus garradungensis after the place where it was found.

All of the newly described weevils are restricted to small areas. Some are found only in a single locality. Presumably, this is a consequence of their winglessness, which has prevented them from spreading around. Furthermore, most of them dwell in the leaf litter where they are easily overlooked. Usually, they come to light during specific surveys of the litter fauna.

This is what Geoff Monteith from the Queensland Museum in Brisbane, for instance, has done in the past. As a result, his work is now relevant to conservation because highly localised species are extremely vulnerable to changes of their habitat such as climate change or the arrival of invasive species.

It is likely that Trigonopterus weevils have originated in Australia, the oldest landmass in the region. The island of New Guinea is geologically much younger, but there the genus has quickly enough diversified into hundreds of species. Studies investigating such evolutionary processes depend on names and clear diagnoses of the species. As a result of the present research, for the Australian fauna these are now available.

Besides the publication in the open-access journal ZooKeys, high-resolution photographs of each species are uploaded to the Species ID website, along with the scientific description. All this puts a face to the species name, and therefore is an important prerequisite for future studies on their evolution.

###

Original Source:

Riedel A, Tanzler R (2016) Revision of the Australian species of the weevil genus Trigonopterus Fauvel. ZooKeys 556: 97-162. doi: 10.3897/zookeys.556.6126

Night calls reveal two new rainforest arboreal frog species from western New Guinea

Tracked by their calls at night after heavy rains, two species of narrow-mouthed frogs have been recorded as new. During the examinations it turned out that one of the studied specimens is a hermaphrodite and another one represents the first record of the genus Cophixalus for the Misool Island.

The field work, conducted by Steve Richards, South Australian Museum, Adelaide, and his team, took place in the Raja Ampat Islands, Indonesian part of New Guinea. Their findings, compiled by Dr. Rainer Guenther, Museum fur Naturkunde, Berlin, are available in the open access journal Zoosystematics and Evolution.

Belonging to the narrow-mouthed frog genus Cophixalus that occurs mainly in New Guinea and northern Australia, the two new species have been differentiated by their morphological features along with the specificity of their advertisement calls, produced by males to attract their partners. Both are characterised by small and slender bodies, measuring less than 23 mm in length.

Curious enough, when dissected one of the male specimens, assigned to the new species C. salawatiensis, revealed a female reproductive system with well-developed eggs. Simultaneously, neither its sound-producing organs, nor its calls differed in any way from the rest of the observed males from the same species. Therefore, it is to be considered a hermaphrodite.

Both new frog species have been retrieved from logged lowland rainforests. There the scientists noted that after heavy rains at night the males perched on leaves of bushes and produced sounds, characteristic for each species.

All specimens have been placed in the collection of the Museum Zoologicum Bogoriense (MZB) in Cibinong (Bogor), Indonesia.

###

Original source:

Guenther R, Richards S, Tjaturadi B, Krey K (2015) Two new species of the genus Cophixalusfrom the Raja Ampat Islands west of New Guinea (Amphibia, Anura, Microhylidae).Zoosystematics and Evolution 91(2): 199-213.doi: 10.3897/zse.91.5411

Diggers from down under: 11 new wasp species discovered in Australia

After being mostly neglected for more than a hundred years, a group of digger wasps from Australia has been given a major overhaul in terms of species descriptions and identification methods. This approach has led to an almost 50% rise in the number of recognized species of these wasps on the continent. The study was published in the open access journal ZooKeys.

They call them with names like “Great Golden Digger” or “Great Black Wasp” in the US and there is a good reason behind it. However, some of these digger wasp species do not impress solely with their looks, but also with their wide range of distribution. Members of the wasp genusSphex can be found in almost every area of the world. Two researchers from the Museum für Naturkunde in Berlin, Thorleif Dörfel and Dr. Michael Ohl, have now reexamined the species diversity of Sphex in Australia.

More than a century has passed since the last revision of this group in the Down Under. Using pinned, dried individuals from museum collections all over the world, Dörfel and Ohl inspected over 900 specimens and recorded the morphological characters that they deemed most useful for species differentiation.

A very different lifestyle sets apart some species in the genus Sphex from the common idea that most people evoke on hearing the term “wasp”. Not being eusocial, each female constructs a separate, subterranean nest for their offspring, which is then filled with grasshoppers (or other insects, depending on the wasp species) that have been paralyzed by a sting as a food supply for the larvae. These wasps avoid contact with humans and generally do not show aggressive behavior toward us.

With 23 species known from Australia before this study, now the number has risen to 34. Most of these newly discovered species come from large quantities of material which had not been identified up to species level before. Dörfel and Ohl’s work also provides an up-to-date identification key, both in a regular and in an interactive form, that covers all known Australian species of the genus. Specifically designed to be easily usable and containing many helpful images, it can be utilized by anyone with even minimal prior training.

“Many insect groups are in urgent need of a revision or reclassification”, explained Thorleif Dörfel. “Our understanding of ecosystems depends on the ability to identify the species that are a part of them. The focus of this study was merely a single continent, but we are currently preparing a follow-up project in which we plan to examine representatives of this wasp genus from every major geographic area. Hopefully, this is going to help everybody who works on these animals, whether now or in another one hundred years.”

###

Original source:

Dörfel TH, Ohl M (2015) A revision of the Australian digger wasps in the genus Sphex(Hymenoptera, Sphecidae). ZooKeys 521: 1-104. doi: 10.3897/zookeys.521.5995

Bush Blitz: The largest Australian nature discovery project finds 4 new bee species

Four new native bee species were recognised as part of the largest Australian nature discovery project, called ‘Bush Blitz‘. The South Australian bee specialists used molecular and morphological evidence to prove them as new. Three of the species had narrow heads and long mouth parts – adaptations to foraging on flowers of emu-bushes, which have narrow constrictions at the base. The new species are described in the open access journal ZooKeys.

Bees are important pollinators of crops and native plants, but habitat loss and pesticides are proved to be causing a serious decline in their populations in Europe and the United States of America. Meanwhile, the conservation status of native Australian bees is largely unknown because solid baseline data are unavailable and about one third of the species are as yet unknown to science. Furthermore, identification of Australian bees is hampered by a lack of keys for about half of the named species.

With their present publication, bee specialists Katja Hogendoorn (University of Adelaide), Remko Leijs and Mark Stevens (South Australian Museum) are now trying to make Australian native bees more accessible to the scientific community. The study introduces a new Barcoding of Life project, ‘AUSBS‘, which will be built to contain the barcode sequences of the identified Australian native bees.

In future, this database can help scientists who have molecular tools, but insufficient knowledge of bees, to identify known species. Yet, that is not the only use of the database. “Bee taxonomists can access and use the molecular information to answer specific problems, for example, how certain species are related or whether or not a male and female belong to the same species”, says Dr. Hogendoorn. “And combined with morphological information, the molecular database can help to identify new species”, she adds.

In their publication, the researchers demonstrate the utility of the database. After careful evaluation of the DNA sequence data and subsequent morphological comparison of the collected bees to museum type specimens, they recognised four new species in the genusEuhesma, which they subsequently described.

Three of the species belong to the group of bees that specialise on the flowers of emu-bushes. These bees have evolved narrow faces and very long mouth parts to collect the nectar through a narrow constriction at the base of the flowers. A similar evolution has been already observed in other groups of bees. The fourth species belongs to a different group within this large genus and has a normally shaped head.

So far, the project includes 271 sequences of 120 species that were collected during the Bush Blitz surveys, Australia’s largest nature discovery project. The researchers intend to build on the existing DNA database to cover as many as possible of the Australian species. “It is hoped that this will stimulate native bee research”, says Dr. Hogendoorn. “With about 750 Australian bee species still undescribed and many groups in need of revision there is an enormous job to do”, she concludes.

###

Original source:

Hogendoorn K, Stevens M, Leijs R (2015) DNA barcoding of euryglossine bees and the description of new species of Euhesma Michener (Hymenoptera, Colletidae, Euryglossinae).ZooKeys 520: 41-59.doi: 10.3897/zookeys.520.6185

Under the wing of science: Two methods for aging nestling Carnaby’s cockatoo species

Multi-year research on two populations of the endangered endemic Carnaby’s cockatoo in southwestern Australia was conducted in order for two separate methods for nestlings aging to be assessed. If accurate enough, Dr. Denis Saunders and his team believe that the results could be vital in the threatened species’ preservation, as explained in the Carnaby’s cockatoo’s recovery plan.

One of the methods they have looked into is based on changes in the physical appearance of nestlings over the 10-11 week nestling period. The other relies on measurements of a nestling’s folded wing length and its comparison with growth curves from measurements of nestlings of known age. In their paper the Australian team also examines the timing and length of the egg-laying season. Their research is published in the open-access journal Nature Conservation.

The researchers point out that accurate nestling aging is essential for many ecological studies. The data could be used in investigating population dynamics, life histories, behaviour, longevity, conservation planning and management. It could also help in scheduling the visits of breeding areas so that the disturbance for the populations is minimised without compromising the results.

The scientists found out that observing the changes in a nestling’s size and feathers is less accurate than measuring the folded wing length. Its main disadvantage turned out to be the lack of distinguishable physical changes once the birds become about nine-week-old. However, “with experience it may be useful for gaining an approximation of the commencement and end of the breeding season without having to handle nestlings to take measurements,” the team says.

Their research on the egg-laying dates concluded that the most effective approach for examining nestlings is to conduct two visits per breeding season. Curiously, their findings showed that in wetter autumns the egg-laying begins earlier.

The team also suggests that their methods could be adopted for aging the currently under-researched closely related Baudin’s cockatoo until more species-specific technique is found.

###

 

Original source:

 

Saunders DA, Dawson R, Nicholls AO (2015) Aging nestling Carnaby’s cockatoo, Calyptorhynchus latirostris, and estimating the timing and length of the breeding season.Nature Conservation 12: 27-42. doi: 10.3897/natureconservation.12.4863