Assessment, monitoring, and mitigation of chemical stressors on the health of wild pollinators: Pensoft joins WildPosh

Pensoft is amongst the participants of a new Horizon Europe project aiming to better evaluate the risk to wild pollinators of pesticide exposure, enhancing their health & pollination services.

Wild fauna and flora are facing variable and challenging environmental disturbances. One of the animal groups that is most impacted by these disturbances are pollinators, which face multiple threats, driven to a huge extent by the spread of anthropogenic chemicals, such as pesticides. 

WildPosh (Pan-european assessment, monitoring, and mitigation of chemical stressors on the health of wild pollinators) is a multi-actor, transdisciplinary project whose overarching mission and ambition are to significantly improve the evaluation of the risk to wild pollinators of pesticide exposure, and enhance the sustainable health of pollinators and pollination services in Europe.

On 25 and 26 January 2024, project partners from across Europe met for the first time in Mons, Belgium and marked the beginning of the 4-year endeavour that is WildPosh. During the two days of the meeting, the partners had the chance to discuss objectives and strategies and plan their work ahead. 

This aligns with the objectives of the European Green Deal and EU biodiversity strategy for 2030, emphasising the need to reduce pollution and safeguard pollinators. WildPosh focuses on understanding the routes of chemical exposure, evaluating toxicological effects, and developing preventive measures. By addressing knowledge gaps in pesticide risk assessment for wild pollinators, the project contributes to broader efforts in biodiversity conservation.

During the kick-off meeting in Mons, WildPosh’s project coordinator Prof. Denis Michez (University of Mons, Belgium) gave an introductory presentation.

As a leader of Work Package #7: “Communication, knowledge exchange and impact”, Pensoft is dedicated to maximising the project’s impact by employing a mix of channels in order to inform stakeholders about the results from WildPosh and raise further public awareness of wild and managed bees’ health.

Pensoft is also tasked with creating and maintaining a clear and recognisable project brand, promotional materials, website, social network profiles, internal communication platform, and online libraries. Another key responsibility is the development, implementation and regular updates of the project’s communication, dissemination and exploitation plans, that WildPosh is set to follow for the next four years.

“It is very exciting to build on the recently concluded PoshBee project, which set out to provide a holistic understanding of how chemicals affect health in honey bees, bumble bees, and solitary bees, and reveal how stressors interact to threaten bee health. WildPosh will continue this insightful work by investigating these effects on wild pollinators, such as butterflies, hoverflies and wild bee species, with the ultimate goal of protecting these small heroes who benefit the well-being of our planet,”

says Teodor Metodiev, WildPosh Principal Investigator for Pensoft.

For the next four years, WildPosh will be working towards five core objectives: 

1) Determine the real-world agrochemical exposure profile of wild pollinators at landscape level within and among sites 

2) Characterise causal relationships between pesticides and pollinator health 

3) Build open database on pollinator traits/distribution and chemicals to define exposure and toxicity scenario

4) Propose new tools for risk assessment on wild pollinators

5) Drive policy and practice.


Consortium:

The consortium consists of 17 partners coming from 10 European countries. Together, they bring extensive experience in Research and Innovation projects conducted within the Horizon programmes, as well as excellent scientific knowledge of chemistry, modelling, nutritional ecology, proteomics, environmental chemistry and nutritional biology.

  1. University of Mons
  2. Pensoft Publishers
  3. Eesti Maaülikool (Estonian University of Life Sciences)
  4. BioPark Archamps
  5. French National Agency for Food, Environmental and Occupational Health & Safety
  6. French National Centre for Scientific Research
  7. Martin Luther University Halle-Wittenburg
  8. Albert Ludwigs University Freiburg
  9. UFZ Helmholtz Centre for Environmental Research
  10. University of Turin
  11. Italian National Institute of Health
  12. National Veterinary Research Institute – State Research Institute
  13. University of Novi Sad Faculty of Sciences
  14. University of Novi Sad, BioSense Institute-Research Institute for Information Technologies in Biosystems
  15. University of Murcia
  16. Royal Holloway and Bedford New College
  17. The University of Reading

Visit can follow WildPosh on X/Twitter (@WildPoshProject), Instagram (/wildposhproject) and Linkedin (/wildposh-eu)

Study reveals new records for the Serbian wild bee fauna

This new study not only presents new records of bee species in Serbia and confirms some old ones, but also provides additional information about European distribution.

Pollinators play a crucial role in our ecosystems by pollinating flowering plants and crops, contributing to the planetary and human well-being. During the past decade, the decline in insect pollinators has become a more and more disturbing issue that countless scientific and public communities are trying to tackle every day.

Published in the Journal of Hymenoptera Research, a new study aims to contribute to updating the knowledge on wild bee diversity in Serbia, necessary for determining conservation priorities and future endeavours at the national level, but also for improving the understanding of the status of European pollinators. The study is also making an attempt to upgrade the exciting data provided by the recently published checklist of European bees, European bees country records, and, focusing on Serbia, a preliminary list of 706 bee species.

Map of Serbia showing the localities where bee specimens were collected.

To do that, researchers used data from the implementation of the national project SPAS, and within the EU-funded project Safeguard. With the aim of monitoring the diversity and abundance of insect pollinators in Serbia, 54 sites were surveyed three times throughout the 2022 season.

The transect walks and pan traps used for the assessment led to the discovery of 312 bee species. Results show that 25 of these have not been previously recorded for Serbia. Furthermore, the study confirms the presence of 26 species, without any available records from the 21st century.

Graphic view of the number of species detected depending on the sampling methods A at all studied sites B at a subset of sites where both sampling methods were conducted.

The authors also share that 79 of the examined species were known only from literature-based data and six of the recorded species are considered threatened with 67 (10 newly recorded) assessed as Data Deficient in the European Red List of Bees. In addition, the study manages to achieve the goal of updating the current knowledge of bee species occurring in Serbia. By recording 25 new species, the Safeguard study successfully extends the national list with new recordings – from 706 to 731 species.

This new study not only presents new records of bee species in Serbia and confirms some old ones, but also provides additional information about European distribution, required for new assessment at the European level.

Research article:

Mudri-Stojnić S, Andrić A, Józan Z, Likov L, Tot T, Grković A, Vujić A (2023) New records for the wild bee fauna (Hymenoptera, Anthophila) of Serbia. Journal of Hymenoptera Research 96: 761-781. https://doi.org/10.3897/jhr.96.107595

New insect genus discovered in one of the most biodiverse rain forest regions in the world

In their latest study, the researchers of the University of Turku in Finland describe a new wasp genus, Capitojoppa, to science.

The Allpahuayo-Mishana National Reserve in Peru has often been described as the most biodiverse rainforest in the world. For example, in recent decades, scientist have discovered several new bird species from the region. The researchers of the University of Turku in Finland have studied the insect biodiversity in Allpahuayo-Mishana for over twenty years. In their latest study, the scientist described a new wasp genus, Capitojoppa, to science.

In their newly published study, the researchers describe a new wasp genus Capitojoppa to science, categorising it to the subfamily Ichneumoninae

Capitojoppa amazonica is a large parasitoid wasp species that has only been discovered in the Allpahuyao-Mishana National Reserve in the Peruvian Amazon. Photographer: Kari Kaunisto, Biodiversity Unit of the University of Turku. 

“Wasps belonging to this subfamily are usually large and colourful, especially in the tropics, and as larvae feed internally on moth and butterfly caterpillars and pupae. We have studied the biodiversity of ichneumonines in the Allpahuyao-Mishana National Reserve with the samples collected by the researchers of the University of Turku in Finland. In our studies, we have discovered several species unknown to science which we will describe in the future. The current study kicks off this research,” says Doctoral Candidate Brandon Claridge from the Utah State University in the United States.

The Allpahuyao-Mishana National Reserve first gained prominence in the scientific community in the late 1980s when an American botanist Alwyn Gentry documented the highest number of tree species at a single locality known to date.

“Gentry wanted to discover how many tree species can grow in one hectare (2.5 acres) of the Amazon rainforest. In his study, he discovered nearly 300 tree species in that one-hectare research patch. We have studied the insect biodiversity in the same research areas since 1998 and report some of the highest numbers of insect species in the world from this region. We also found Capitojoppa near the same research hectare used by Gentry,” says Professor of Biodiversity Research Ilari E. Sääksjärvi from the University of Turku, who collected the specimens during his field studies. 

Species unknown to science are described in research journals. Their names often describe the species’ characteristics or range. 

Photo: Kari Kaunisto, Biodiversity Unit of the University of Turku.

“The name Capitojoppa tells scientists a great deal about the characteristics of the newly discovered wasp genus. The wasps of the genus have a large head, which is reflected in the capito part of the name. It also refers to the barbet bird genus Capito found in South America, which have a large and strong beak. The joppa part of the name refers to the wasp genus Joppa that the Capitojoppa resembles. The specific species name amazonica refers to the Amazon,” Claridge explains. 

Finnish researchers helped in the conservation efforts of the Allpahuayo-Mishana Reserve in the 1990s. 

“Allpahuayo-Mishana is a part of the Amazon that has an unprecedented abundance of species. Due to the region’s complex geological history, there are several different types of rainforest growing in the Reserve. The species biodiversity of many organisms is highest on the whole planet at Allpahuayo-Mishana. We actively continue our studies in the region. Unfortunately, the area is currently changing rapidly due to human activities. With our insect studies, we are trying to find out how the impact of human activities, such as climate change, alter the nature in the rainforest,” says Professor Sääksjärvi. 

The group’s research article was published in the journal ZooKeys.

Research article:

Claridge BR, Kaunisto KM, Sääksjärvi IE (2023) Capitojoppa, a new genus of Ichneumoninae (Hymenoptera, Ichneumonidae) from Peruvian Amazonia. ZooKeys 1178: 69-76. https://doi.org/10.3897/zookeys.1178.108929

Experts in insect taxonomy “threatened by extinction” reveals the first European Red List of Taxonomists

While insect populations continue to decline, taxonomic expertise in Europe is at serious risk, confirms data obtained within the European Red List of Insect Taxonomists, a recent study commissioned by the European Union. 

Expertise tends to be particularly poor in the countries with the richest biodiversity, while taxonomists are predominantly male and ageing

While insect populations continue to decline, taxonomic expertise in Europe is at serious risk, confirms data obtained within the European Red List of Insect Taxonomists, a recent study commissioned by the European Union. 

Scientists who specialise in the identification and discovery of insect species – also known as insect taxonomists – are declining across Europe, highlights the newly released report by CETAF, International Union for Conservation of Nature (IUCN) and Pensoft. The authors of this report represent different perspectives within biodiversity science, including natural history and research institutions, nature conservation, academia and scientific publishing.

Despite the global significance of its taxonomic collections, Europe has been losing taxonomic expertise at such a rate that, at the moment nearly half (41.4%) of the insect orders are not covered by a sufficient number of scientists. If only EU countries are counted, the number looks only slightly more positive (34.5%). Even the four largest insect orders: beetles (Coleoptera), moths and butterflies (Lepidoptera), flies (Diptera) and wasps, bees, ants and sawflies (Hymenoptera) are only adequately ‘covered’ in a fraction of the countries.

To obtain details about the number, location and productivity of insect taxonomists, the team extracted information from thousands of peer-reviewed research articles published in the last decade, queried the most important scientific databases and reached out to over fifty natural science institutions and their networks. Furthermore, a dedicated campaign reached out to individual researchers through multiple communication channels. As a result, more than 1,500 taxonomists responded by filling in a self-declaration survey to provide information about their personal and academic profile, qualification and activities. 

Then, the collected information was assessed against numerical criteria to classify the scientists into categories similar to those used by the IUCN Red List of Threatened SpeciesTM. In the European List of Insect Taxonomists, these range from Eroded Capacity (equivalent to Extinct) to Adequate Capacity (equivalent to Least Concern). The assessment was applied to the 29 insect orders (i.e. beetles, moths and butterflies etc.) to figure out which insect groups the society, conservation practitioners and decision-makers need not be concerned at this point.

Overview of the taxonomic capacity in European countries based upon the Red List Index (colour gradient goes from red (Eroded Capacity) to green (Adequate Capacity).
Image by the European Red List of Taxonomists consortium.

On a country level, the results showed that Czechia, Germany and Russia demonstrate the most adequate coverage of insect groups. Meanwhile, Albania, Azerbaijan, Belarus, Luxembourg, Latvia, Ireland and Malta turned out to be the ones with insufficient number of taxonomists.

In most cases, the availability of experts seems to correlate to GDP, as wealthiest countries tend to invest more in their scientific institutions.

What is particularly worrying is that the lack of taxonomic expertise is more evident in the countries with the greatest species diversity. This trend may cause even more significant problems in the knowledge and conservation of these species, further aggravating the situation. Thus, the report provides further evidence about a global pattern where the countries richest in biodiversity are also the ones poorest in financial and human resources. 

The research team also reminds that it is European natural history museums that host the largest scientific collections – including insects – brought from all over the globe. As such, Europe is responsible to the world for maintaining taxonomic knowledge and building adequate expert capacity.

Other concerning trends revealed in the new report are that the community of taxonomists is also ageing and – especially in the older groups – male-dominated (82%). 

One reason to have fewer young taxonomists could be due to limited opportunities for professional training (…), and the fact that not all professional taxonomists provide it, as a significant number of taxonomists are employed by museums and their opportunities for interaction with university students is probably not optimal. Gender bias is very likely caused by multiple factors, including fewer opportunities for women to be exposed to taxonomic research and gain an interest, unequal offer of career opportunities and hiring decisions. A fair-playing field for all genders will be crucial to address these shortcomings and close the gap.

comments Ana CasinoCETAF’s Executive Director.

***

Entomologist examining a small insect under a microscope.
Photo by anton_shoshin/stockadobe.com.
The European Red List of Taxonomists concludes with practical recommendations concerning strategic, science and societal priorities, addressed to specific decision-makers.

The authors give practical examples and potential solutions in support of their call to action.

For instance, in order to develop targeted and sustainable funding mechanisms to support taxonomy, they propose the launch of regular targeted Horizon Europe calls to study important insect groups for which taxonomic capacity has been identified to be at a particularly high risk of erosion.

To address specific gaps in expertise – such as the ones reported in the publication from Romania – a country known for its rich insect diversity, yet poor in taxonomic expertise – the consortium proposes the establishment of a natural history museum or entomological research institute that is well-fitted to serve as a taxonomic facility.

Amongst the scientific recommendations, the authors propose measures to ensure better recognition of taxonomic work at a multidisciplinary level. The scientific community, including disciplines that use taxonomic research, such as molecular biology, medicine and agriculture – need to embrace universal standards and rigorous conduct for the correct citation of scientific publications by insect taxonomists.

Societal engagement is another important call. “It is pivotal to widely raise awareness of the value and impact of taxonomy and the work of taxonomists. We must motivate young generations to join the scientific community” points Prof. Lyubomir Penev, Managing Director of Pensoft.

***

Understanding taxonomy is a key to understanding the extinction risk of speciesIf we strategically target the gaps in expert capacity that this European Red List identifies, we can better protect biodiversity and support the well-being and livelihoods of our societies. With the climate crisis at hand, there is no time left to waste,

added David Allen from the IUCN Red List team.

As a dedicated supporter of the IUCN Red List, I am inspired by this call to strengthen the capacity, guided by evidence and proven scientific methods. However, Europe has much more scientific capacity than most biodiversity-rich regions of the world. So, what this report particularly highlights is the need for massively increasing investment in scientific discovery, and building taxonomic expertise, around the world,”  

said Jon Paul Rodríguez, Chair of the IUCN Species Survival Commission.

***

Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag. 

Tracking an invasion – a single Asian hornet sparked the ongoing spread across Europe

It is likely that all Asian hornets in Europe are descended from a single queen introduced to France in 2004.

In Europe, the Asian (or “Yellow-legged”) Hornet (Vespa velutina) is a predator of insects such as honeybees, hoverflies, and other wasps, and poses serious risks to apiculture, biodiversity and pollination services. This hornet can measure up to 4cm in length and, like all other social wasps, is capable of delivering a painful sting, although it is not aggressive by nature. Thought to have been introduced into Europe from China in 2004, the Asian Hornet has rapidly spread across the continent. While it has been thus far controlled in Britain, the hornet is well established across mainland Europe and the Channel Islands. In April 2021, the Irish National Parks and Wildlife Service confirmed that a single specimen had been found, ‘alive but dying’ in a private dwelling in Dublin, marking the first Irish record of this species.  

The Asian Hornet specimen recovered in Dublin. Image by Dr Aidan O’Hanlon

The circumstances of how the specimen arrived in the Irish capital are not known, but with the area’s extensive regional, national and international connectivity, there can be many possible pathways of introduction. In an Irish context, it was of particular interest to determine whether this individual originated in Europe/Britain or represented a potential new invasion source from within its native range in Southeast Asia.

The specimen was deposited in the National Museum of Ireland and identified by Dr. Aidan O’Hanlon, who suggested performing genetic analysis to determine its provenance. In collaboration with scientists from the School of Biological, Earth and Environmental Sciences (BEES), University College Cork, and partners on the EU Atlantic Positive Project (which aims to establish Europe-wide methodologies for the control of the Asian hornet), genetic analysis was performed and data were compared with those from specimens provided from several other locations across Europe. The researchers then published their findings in Journal of Hymenoptera Research.

An Irish hornet. Image by Danel Solabarrieta, licensed under CC BY-SA 2.0.

“Earlier work had demonstrated that Asian hornets in Europe apparently shared the same genetic lineage, based on studies of a single gene. We took this a step further and looked at two additional genes which would be more sensitive in detecting variation within the invasive population”, explains Dr. Eileen Dillane of BEES.

Data from all three genetic markers confirmed that not only are Asian hornets in Europe of a single pedigree, but are likely descended from a single mated queen hornet that somehow arrived in France in 2004.  Furthermore, this lineage has not yet been described within the native range. 

“Our research has revealed the remarkable potential for population expansion of eusocial insects in invaded areas, even when original genetic diversity is extremely low”, says Dr. Simon Harrison, who is part of the research team .

Female V. velutina specimen from Dublin, Ireland.

These findings are both bad news and good news for the control of the Asian hornet in Europe. Whilst single mated queens can evidently rapidly re-colonise areas from where hornets have been eradicated (for example, where intensive efforts have destroyed all nests in an area), the close relatedness of all individuals of the Asian hornet in Europe offers hope for eradication methods based on biological control. 

In the Irish context, it is unlikely that this is the beginning of a larger-scale invasion, as the climate and habitat landscape of Ireland is likely less than ideal for the Asian hornet, which requires higher summer temperatures and a greater supply of energy-rich food. “Nonetheless, climate change is likely to increase the threat of a successful invasion in the future, so vigilance against this species must be maintained”, the authors of the study advise.

Original source:

Dillane E, Hayden R, O’Hanlon A, Butler F, Harrison S (2022) The first recorded occurrence of the Asian hornet (Vespa velutina) in Ireland, genetic evidence for a continued single invasion across Europe. Journal of Hymenoptera Research 93: 131-138. https://doi.org/10.3897/jhr.93.91209

New unusual bee species discovered with dog-like snout

Published in the Journal of Hymenoptera Research, author Dr Kit Prendergast named the new species after her pet dog Zephyr.

A new native bee species with a dog-like “snout” has been discovered in Perth bushland though Curtin-led research that sheds new light on our most important pollinators.

Published in the Journal of Hymenoptera Research, author Dr Kit Prendergast, from the Curtin School of Molecular and Life Sciences, has named the new species after her pet dog Zephyr after noticing a protruding part of the insect’s face looked similar to a dog’s snout, and to acknowledge the role her dog played in providing emotional support during her PhD.

Dr Prendergast said the rare and remarkable finding would add to existing knowledge about our evolving biodiversity and ensure the bees, named Leioproctus zephyr, were protected by conservation efforts.

“When I first examined the specimens that I collected during my PhD surveys discovering the biodiversity of native bees in urbanised regions of the southwest WA biodiversity hotspot, I was instantly intrigued by the bee’s very unusual face,” Dr Prendergast said.

Insects in general are so diverse and so important, yet we don’t have scientific descriptions or names for so many of them.

Dr Kit Prendergast

“When I went to identify it, I found it matched no described species, and I was sure that if it was a known species, it would be quite easy to identify given how unusual it was in appearance.

“You can only confirm a particular species once you look at them under a microscope and go through the long process of trying to match their characteristics against other identified species, then going through museum collections.

“When perusing the WA Museum’s Entomology collection, I discovered that a few specimens of Leioproctus zephyrus had first been collected in 1979, but it had never been scientifically described.”

Dr Prendergast said she was excited to play a role in making this species known and officially naming them.

“Insects in general are so diverse and so important, yet we don’t have scientific descriptions or names for so many of them,” Dr Prendergast said.

“The Leioproctus zephyr has a highly restricted distribution, only occurring in seven locations across the southwest WA to date, and have not been collected from their original location. They were entirely absent from residential gardens and only present at five urban bushland remnants that I surveyed, where they foraged on two plant species of Jacksonia.

“Not only is this species fussy, they also have a clypeus that looks like a snout. Hence, I named them after my dog Zephyr. She has been so important to my mental health and wellbeing during the challenging period of doing a PhD and beyond.”

Through DNA barcoding, Dr Prendergast was able to confirm that the new species was most closely related to other species of unidentified Leioproctus.

Originally published by Curtin University. Republished with permission.

Follow the Journal of Hymenoptera Research on Facebook and Twitter.

More and more people are becoming aware of the dangers posed by invasive hornets

A study published in the open access journal NeoBiota reveals that citizens and stakeholders are becoming more and more aware of the Asian yellow-legged hornet

Wasps and hornets have a remarkable capacity of surviving transportation and establishing invasive populations in new areas. In some cases, this can generate massive environmental and socio-economic impacts. Such is the case of the Asian yellow-legged hornet (Vespa velutina), which has been spreading throughout Europe and worldwide, threatening to seriously impact beekeeping.

However, research shows that such invasions do not go unnoticed. A team of researchers working on the Asian yellow-legged hornet in Italy (Dr Jacopo Cerri from the University of Primorska, Slovenia, and Dr Simone Lioy, Prof. Marco Porporato and Prof. Sandro Bertolino, from Turin University, Italy) discovered that citizen awareness about invasive hornets is increasing

Asian yellow-legged hornet (Vespa velutina) attacking a colony of honey bees (Apis mellifera) in Italy. Photo by Prof. Marco Porporato

Moreover, they found that the relevant stakeholders – such as beekeepers – are aware of the hornet’s impacts. They consider the Asian yellow-legged hornet as one of the major causes of honey bee decline in Italy, comparing its effects to those of pesticides, and believing it causes more damage than diseases or other native insects.

To evaluate public awareness of this invasive hornet,the researchers adopted an innovative methodology, which they describe in a paper in the open-access journal NeoBiota. In addition to surveying beekeepers, the authors also analysed Internet searches, focusing on Google queries and visits to relevant Wikipedia pages.

Honey bee. Photo by Andy Murray, CC BY-SA 2.0, via Wikimedia Commons

The team found that beekeepers stayed up to date with information on the Asian yellow-legged hornet thanks to a wide range of different channels, such as the Internet, specialized magazines, and activities with other members of their community. Interestingly, they found that conventional media and mailing lists seemed to be of little contribution to knowledge on this species.

With high reproductive potential and no specialized predators, the Asian yellow-legged hornet predates intensively upon the western honey bee, which could decrease pollination, undermine honey production and inflict consequences for the overwinter survival of colonies. It also limits the foraging activity of honey bees by determining a “foraging paralysis”, a state in which honey bees do not leave the colony, fearing its predation. On top of that, as the species builds its nests mainly in or near urban areas, it poses a risk of stings to people, which in some cases could lead to fatalities.

An increased consciousness in citizens and stakeholders will hopefully lead to a higher number of ‘aware eyes’ able to spot invasive hornets in different environments, the researchers explain. Timely reporting of their presence would allow the speedy activation of more appropriate management measures, containing any possible damages before it’s too late.

Research article:       

Cerri J, Lioy S, Porporato M, Bertolino S (2022) Combining surveys and on-line searching volumes to analyze public awareness about invasive alien species: a case study with the invasive Asian yellow-legged hornet (Vespa velutina) in Italy. NeoBiota 73: 177-192. https://doi.org/10.3897/neobiota.73.80359

A star in subtropical Japan: a new species of parasitoid wasp constructs unique cocoon masses hanging on 1-meter-long strings

A new species of parasitoid wasp that constructs remarkable star-shaped cocoon masses is reported from the biodiversity hot spot Ryukyu Islands. Japanese researchers observed how the wasps construct “stars” after making their way out of the moth larvae they inhabit during their own larval stage. In their study, published in the open-access journal Journal of Hymenoptera Research, the team discuss the ecological significance of the cocoon mass and the evolution of this peculiar structure.

A unique “star” was discovered from the Ryukyu Islands, a biodiversity hot spot in subtropical Japan: a star-shaped structure that turned out to be the cocoon mass of a new species of parasitoid wasp. Researchers Shunpei Fujie (Osaka Museum of Natural History), So Shimizu, Kaoru Maeto (Kobe University), Koichi Tone (Okinawa Municipal Museum), and Kazunori Matsuo (Kyushu University) described this parasitoid wasp as a new species in the open-access Journal of Hymenoptera Research.

The new parasitoid wasps, Meteorus stellatus. Photo by Fujie S

Parasitoid wasps parasitize a variety of organisms, mostly insects. They lay eggs in the host, a larva of hawk moth in this case, where the wasp larvae later hatch. After eating the host from the inside out, the larvae spin threads to form cocoons, in which they pupate, and from which the adult wasps eventually emerge. 

The larvae of Meteorus stellatus emerging from a host moth. Photo by Tone K

Larvae of the newly discovered parasitoid wasp form star-shaped masses of cocoons lined up in a spherical pattern, suspended by a thread that can reach up to 1 meter in length. The structure, 7 to 14 mm wide and 9 to 23 mm long, can accommodate over 100 cocoons.

The star-shaped cocoon mass and the cable of the new parasitoid wasps. Photo by Shimizu S

Despite its peculiarity, the wasp species constructing these masses had not been previously described: morphological observation and molecular analysis revealed that it was new to science. The authors aptly called it Meteorus stellatus, adding the Latin word for “starry” to its scientific name.

Thanks to the recent publication, we now have the first detailed report about the construction of such a remarkable cocoon mass in parasitoid wasps. We can also see what the process looks like, as the researchers were able to film the wasps escaping from the moth larvae and forming the star-shaped structure.

Why does M. stellatus form cocoons in such a unique structure?

The authors of the study believe this unique structure helps the wasps survive through the most critical time, i.e. the period of constructing cocoons and pupating, when they are exposed to various natural enemies and environmental stresses. The star shape most likely reduces the exposed area of individual cocoons, thus increasing their defense against hyper-parasitoids (wasps attacking cocoons of other parasitoid wasps), while the long thread that suspends the cocoon mass protects the cocoons from potential enemies like ants.

“How parasitoid wasps have evolved to form such unique masses instead of the common individual cocoons should be the next thing on our ‘to-research’ list,” say the authors.

Research article:

Fujie S, Shimizu S, Tone K, Matsuo K, Maeto K (2021) Stars in subtropical Japan: a new gregarious Meteorus species (Hymenoptera, Braconidae, Euphorinae) constructs enigmatic star-shaped pendulous communal cocoons. Journal of Hymenoptera Research 86: 19-45. https://doi.org/10.3897/jhr.86.71225

Dolichomitus meii Wasp Discovered in Amazonia Is Like a Flying Jewel

“The species’ striking colouring protects it from birds that prey on insects. They do not snatch the wasp sitting on the tree trunk as they think it will taste bad or that it is dangerous.”

Parasitoid wasps (Hymenoptera) are one of the most species rich animal taxa on Earth, but their tropical diversity is still poorly known. Now, scientists have discovered the Dolichomitus meii and Polysphincta parasitoid wasp species previously unknown to science in South America. The new species found in the rainforests entice with their colours and exciting habits. Researchers at the University of Turku have already described 53 new animal species this year.

Researchers at the Biodiversity Unit of the University of Turku, Finland, study insect biodiversity particularly in Amazonia and Africa. In their studies, they have discovered hundreds of species previously unknown to science. Many of them are exciting in their size, appearance, or living habits.

“The species we have discovered show what magnificent surprises the Earth’s rainforests can contain. The newly discovered Dolichomitus meii wasp is particularly interesting for its large size and unique colouring. With a quick glance, its body looks black but glitters electric blue in light. Moreover, its wings are golden yellow. Therefore, you could say it’s like a flying jewel,” says Postdoctoral Researcher Diego Pádua from the Instituto Nacional de Pesquisas da Amazônia (INPA) in Brazil, who has also worked at the Biodiversity Unit of the University of Turku.

Dolichomitus parasitoid wasps are parasitic on insect larvae living deep in tree trunks. They lay a single egg on the insect larva and the wasp hatchling eats the host larva as it develops.  

Dolichomitus meii
The Dolichomitus meii wasp was discovered in western Amazonia. Its body looks black but glitters electric blue in light. The wasp lays its eggs on insect larvae living deep in wood. It reaches the host larvae with a long ovipositor. Picture: Filippo De Giovanni and Rodrigo Araújo

“The ovipositor of the Dolichomitus meii wasp is immensely long. It sticks the ovipositor into holes in the wood and tries to find host larvae inside. The species’ striking colouring protects it from birds that prey on insects. They do not snatch the wasp sitting on the tree trunk as they think it will taste bad or that it is dangerous,” says Professor of Biodiversity Research Ilari E. Sääksjärvi from the University of Turku.

Polysphincta Parasitoid Wasps Manipulate the Behaviour of the Host Spider

At the same time as the publication on the Dolichomitus meii species, the researchers published another research article on South American wasp species. The article describes altogether seven new wasp species belonging to the Polysphincta genus.

Polysphincta bonita refers to the species’ beautiful appearance. The species is parasitic on spiders. Picture: Diego Padúa and Ilari E. Sääksjärvi

The Polysphincta parasitoid wasps are parasitic on spiders. The female attacks a spider in its web and temporarily paralyses it with a venomous sting. After this, the wasp lays a single egg on the spider, and a larva hatches from the egg. The larva gradually consumes the spider and eventually pupates.

“The wasps that are parasitic on spiders are extremely interesting as many of them can manipulate the behaviour of the host spider. They can change the way a spider spins its web, so that before its death, the spider does not spin a normal web to catch prey. Instead, they spin a safe nest for the parasitoid wasp pupa,” describes Professor Sääksjärvi.

Researchers at University of Turku Have Already Discovered 53 New Species This Year

The new species are often discovered through extensive international collaboration. This was also the case with the newly published studies.

“For example, the discovery of the Dolichomitus meii species was an effort of six researchers. Moreover, these researchers all come from different countries,” says Professor Sääksjärvi.

The work to map out biodiversity previously unknown to science continues at the University of Turku and there are interesting species discoveries ahead.

“I just counted that, in 2021, the researchers of the Biodiversity Unit at the University of Turku have described already 53 new species from different parts of the globe – and we’re only halfway through the year,” Sääksjärvi announces cheerfully.

The discoveries of the research group were published in the Biodiversity Data Journal and ZooKeys.

Research articles:

Di Giovanni F, Pádua DG, Araujo RO, Santos AD, Sääksjärvi IE (2021) A striking new species of Dolichomitus Smith, 1877 (Hymenoptera: Ichneumonidae; Pimplinae) from South America. Biodiversity Data Journal 9: e67438. https://doi.org/10.3897/BDJ.9.e67438

Pádua DG, Sääksjärvi IE, Spasojevic T, Kaunisto KM, Monteiro RF, Oliveira ML (2021) A review of the spider-attacking Polysphincta dizardi species-group (Hymenoptera, Ichneumonidae, Pimplinae), with descriptions of seven new species from South America. ZooKeys 1041: 137-165. https://doi.org/10.3897/zookeys.1041.65407

The ants, bees and wasps of Canada, Alaska and Greenland – a checklist of 9250 species

Knowing what species live in which parts of the world is critical to many fields of study, such as conservation biology and environmental monitoring. This is also how we can identify present or potential invasive and non-native pest species. Furthermore, summarizing what species are known to inhabit a given area is essential for the discovery of new species that have not yet been known to science.

American Pelecinid Wasp (Pelecinus polyturator) from Driftwood Provincial Park, Ontario, Canada. Photo by Henri Goulet

For less well-studied groups and regions, distributional species checklists are often not  available. Therefore, a series of such checklists is being published in the open-access, peer-reviewed Journal of Hymenoptera Research, in order to address the issue for a group of organisms that, despite its size and diversity, is still poorly known: the insect order Hymenoptera, which includes ants, bees and wasps. The surveyed area spreads across northern North America, which comprises Canada, Alaska (U.S.) and Greenland (Denmark), and occupies about 9.3% of the world’s total land mass.

The last distributional survey of Hymenoptera in North America was published in 1979, where about 6000 described species were recorded from Canada and 600 from Alaska. The current survey lists 8933 species in Canada and 1513 in Alaska, marking an increase of 49% and 152%, respectively. A total of 9250 described species are recorded from northern North America. Considering that there are approximately 154,000 described species of Hymenoptera, northern North America has about 6% of the current world total. 

A cuckoo wasp of the genus Hedychridium from Manitoulin Island, Ontario, Canada. Photo by Henri Goulet

Highlights of the series will include updated distributions of over 900 species of bees, which will provide valuable insight into native pollinators at a time when honey bees are in decline. Nearly 230 species of ants and over 100 species of vespid wasps (hornets and yellow jackets) are recorded, including pest species such as the widespread pharaoh ant and the newly invasive Asian giant hornet in British Columbia.

Pigeon tremex (Tremex columba) from Manitou Lake, Manitoulin Island, Ontario, Canada. Photo by Henri Goulet

By far, the majority of species of Hymenoptera found in northern North America and the world are parasitoids, which develop on or in other invertebrate hosts and are therefore of great interest to the biological control of pests. Of the 9250 species recorded, more than three-quarters (over 7150 species) are parasitoids. These distributional lists provide essential baseline information required prior to undertaking studies to introduce biological control agents of invasive pests that may have escaped their native, natural enemies when they arrived in North America.

Megarhyssa macrura from Ottawa, Ontario, Canada. Photo by Henri Goulet

The topical collection “Checklists of the Hymenoptera of Canada, Alaska and Greenland” is to contain a total of eleven papers, where the introduction and the first two checklists: of sawflies (758 species) and one of the groups of “microhymenoptera” (the chalcidoid parasitic wasps) (1246 species) have just been published.The other checklists are to follow over the next several years. The associated data are also being uploaded to the Global Biodiversity Information Facility (GBIF), allowing for periodic updates over time.

When complete, this will be the largest species checklist for any group of organisms in northern North America. Considering that it is estimated that we currently have documented less than half of the species of Hymenoptera present in northern North America, there is still a great amount of work to do on this fascinating group of insects.

###

Original sources:

Bennett AMR (2021a) Checklists of the Hymenoptera of Canada, Alaska and Greenland – Introduction. Journal of Hymenoptera Research 82: 1-19. https://doi.org/10.3897/jhr.82.60054

Bennett AMR (2021b) Checklist of the Hymenoptera of Canada, Alaska and Greenland. Agriculture and Agri-Food Canada. Checklist dataset https://doi.org/10.5886/4piso5 [accessed via GBIF.org: 12 March 2021].

Goulet H, Bennett AMR (2021) Checklist of the sawflies (Hymenoptera) of Canada, Alaska and Greenland. Journal of Hymenoptera Research 82: 21-67. https://doi.org/10.3897/jhr.82.60057

Huber JT, Bennett AMR, Gibson GAP, Zhang YM, Darling DC (2021) Checklist of Chalcidoidea and Mymarommatoidea (Hymenoptera) of Canada, Alaska and Greenland. Journal of Hymenoptera Research 82: 69-138. https://doi.org/10.3897/jhr.82.60058