Trigonopterus corona, the new species of tiny beetle named after the coronavirus

… and 27 other new species of beetles discovered on Sulawesi Island

Many curious animals can be found on the Indonesian Island of Sulawesi – such as the deer-hog and the midget buffalo. But the island’s tropical forests hide a diversity of tiny insects that still remains largely unexplored. Museum scientists from Indonesia and Germany have just discovered 28 new species of beetles, all belonging to the weevil genus Trigonopterus.

Twenty-four newly discovered species of the genus Trigonopterus from Sulawesi. Image by Alexander Riedel

Most of the new species were collected by Raden Pramesa Narakusumo, curator of beetles at the Museum Zoologicum Bogoriense, from two localities of Central Sulawesi Province: Mt. Dako and Mt. Pompangeo. In fact, the forests on their slopes had never been searched for small weevils before.

A view from a ridge over the cloudy slopes of Mt. Pompangeo. Photo by Raden Pramesa Narakusumo

His research partner, Alexander Riedel of the Natural History Museum Karlsruhe, had been studying this genus for the past 15 years and was planning for a research trip to Papua New Guinea, when the COVID-19 pandemic hit. Finding himself grounded, he decided to work on the specimens from Sulawesi together with Narakusumo instead.

After diagnosing the new species, it was a challenge to find suitable names for them. One obvious choice was Trigonopterus corona, which reflects the large impact of the COVID-19 pandemic on this project. However, T. corona is by far not the first insect species with a pandemic-inspired name. In the last year, we’ve seen the species descriptions of the caddisfly Potamophylax coronavirus and the wasps Stethantyx covida and Allorhogas quarentenus.

Trigonopterus corona.
Trigonopterus ewok.

While some of the newly described species go by rather ‘standard’ names that derive from either the localities they have been collected from or their distinct characters, others were given a free pass to the Hall of Fame. Two of them were named after Indonesian movie characters (T. gundala and T. unyil), while T. ewok is another addition based on the Star Wars universe – perfectly in line with T. chewbacca, T. yoda and T.porg, all described between 2016 and 2019 by teams involving Riedel. The two-millimeter-long, rust-coloured Trigonopterus ewok was found at 1900–2000 m on Mt Pompangeo, hiding among the leaf litter in the forest.

But how come the critters have remained overlooked for so long? Almost all of these beetles measure only 2-3 millimeters, while most entomologists have a preference for the larger and strikingly looking stag beetles or jewel beetles. 

A second factor is the superficial resemblance of many species: they are most easily diagnosed by their DNA sequences. Besides the publication in the open-access journal ZooKeys, high-resolution photographs of each species were uploaded to the Species ID website, along with a short scientific description. This provides a face to the species name, an important prerequisite for future studies.

R.P. Narakusumo during fieldwork at the top of Mt. Dako. Photo by Raden Pramesa Narakusumo

This is the duo’s second published paper on Trigonopterus weevils from Sulawesi – the first one describing the whopping 103 new species from the area. Currently, the known Trigonopterus species on the island amount to 132, which is likely a mere fraction of the real diversity. The numerous mountains of Sulawesi have a distinct fauna of endemics that have evolved over the past millions of years, and these wingless, flightless weevils, highly isolated in their habitats, are a good example of this diversification. Their evolution is interwoven with the island´s geological history. Riedel wants to increase the number of sampled localities: 

“Once we have enough locality coverage and understand the weevils’ evolution, we can draw conclusions on the geological processes that formed the island of Sulawesi. This is a fascinating subject, because this island was formed by the fusion of different fragments millions of years ago.” The new species thus fill an important gap required for solving the island´s geological puzzle.

For the Indonesian side, it is equally important to obtain an inventory of species: “A large percentage of Indonesian biodiversity is yet unknown and we need names and diagnoses of species, so we can use these in further studies on conservation and bioprospecting,” says R. Pramesa Narakusumo. “Two of the newly described species came from our museum collection, and this underlines the importance of museums as a source for biological discoveries,” he added.

With many more new species of this genus to be expected, it is a lucky coincidence that the number of Star Wars characters is equally long. May the Force be with these researchers!

Research article:

Narakusumo RP, Riedel A (2021) Twenty-eight new species of Trigonopterus Fauvel (Coleoptera, Curculionidae) from Central Sulawesi. ZooKeys 1065: 29-79. https://doi.org/10.3897/zookeys.1065.71680

Beetles, biodiversity and ‘Battlestar Galactica’

Michigan State entomologists have discovered dozens of new beetle species — and named some after iconic sci-fi heroines

The original Star Trek television series took place in a future when space is the final frontier, but humanity hasn’t reached that point quite yet. As researchers like Michigan State University entomologists Sarah Smith and Anthony Cognato are reminding us, there’s still plenty to discover right here on Earth.

Working in Central and South America, the duo discovered more than three dozen species of ambrosia beetles — beetles that eat ambrosia fungus — previously unknown to science. Smith and Cognato described these new species on June 16  in the journal ZooKeys.

The Spartans also selected an unusual naming theme named in deference to the female beetles who have helped their species survive and thrive by boldly going where they hadn’t before.

Many of the new species are named for iconic female science fiction characters, including Nyota Uhura of “Star Trek”; Kara “Starbuck” Thrace from the 2000s “Battlestar Galactica” TV series; and Katniss Everdeen from “The Hunger Games” books and movies.

The wing coverings of the C. katniss come to an arrowhead-like point, which reminded the researchers of Katniss Everdeen from “The Hunger Games,” shown below. “The Hunger Games” image courtesy of Lions Gate Entertainment Inc.

“One of our colleagues from London asked if it’s good to name a species after popular characters, if the popularity would backfire and make people think this is frivolous,” said Cognato, director of the Albert. J. Cook Arthropod Research Collection. He’s also an entomology professor with appointments in the College of Agriculture and Natural Resources and the College of Natural Science.

“But overall, our colleagues think it’s a good thing,” Cognato said. “It gives us a chance to talk about taxonomy — the science of classifying organisms — and about diversity.”

Understanding the world’s biodiversity is one of the major drivers of this and related research. Scientists estimate that there are 10 million nonbacterial species in the world and that humans have classified only about 20% of those.

“And some are lost before they’re ever discovered,” said Smith, who is the curator of the A. J. Cook Arthropod Research Collection. When people disrupt native ecosystems with farming and mining, for example, undiscovered species can face extinction before researchers know about them.

For this project, the team did some of its field work in Peru, where illegal gold miners can be particularly devastating to forests. “They’re turning the forest into a wasteland” Smith said. “It may never recover.”

Working in such threatened areas, Smith and Cognato are helping identify beetle species before it’s too late, as well as characterizing a rich variety of physical traits and behaviors.

To be clear, they did this field work long before the pandemic struck, starting around 2008. But it takes time to perform the thorough investigations required to ensure that a species is indeed distinct from its closely related cousins.

“With South America, it can be really hard to know whether a species is new or not, just because the fauna is so poorly studied,” Smith said.

With the stay-at-home orders in effect, she and Cognato had time to focus on projects that had been simmering on the backburner, such as this one that details ambrosia beetles they had collected belonging to the genus Coptoborus.

These tiny beetles make their homes by boring into trees. Once inside, they sustain their nests by cultivating fungus that serves as food. There, a mother produces many female offspring and one or two dwarfed males. The main job of those males is to mate with their sisters, creating a new generation of females prepared to disperse and produce a new brood. This all leads to another reason for studying these beetles: they can become pests.

These females arrive at trees ready to bore inside, start a fungus farm and reproduce. Though most prefer to nest in dead or dying parts of trees, some can attack fully healthy trees that are ecologically and economically important. For example, there are species within the genus known to attack balsa trees in Ecuador, the world’s leading exporter of balsa wood.

And if tree-dwelling beetles find their way into nonnative habitats, they can pose large threats to trees that have no natural defenses against the insects. Michiganders are all too familiar with the emerald ash borer, which has claimed millions of ash trees in the state. Another nonnative species of fungus-farming beetle devastated redbay laurels and avocado trees in the Southern U.S.

By identifying species abroad, in their native habitats, researchers including Smith and Cognato are helping the U.S. better prepare for if and when a new pest shows up here. And, historically speaking, Coptoborus beetles are hardy travelers.

The researchers thought the C. starbuck‘s appearance gave it a tough persona, leading them to name it for Kara “Starbuck” Thrace from “Battlestar Galactica,” shown on the right. “Battlestar Galactica” image courtesy of NBC Universal.

Their ancestors originated about 20 million years ago, likely in Southeast Asia, before emigrating and making homes across much of the tropics.

“That’s one of the reasons we chose to name them after female sci-fi characters. Not to anthropomorphize too much, but you have these adventurous females that were blown off their log or had their wood-encased home thrown into the ocean by a mudslide,” Cognato said. If these mated females made it to a new land, they could start a new population, allowing the species to proliferate.

“Along the way, there were so many ways to die, but they ended up colonizing an entire continent.”

Fast forward to now and there are thousands of ambrosia beetle species, including more than 70 of the Coptoborus genus — and counting. In christening the new beetles, Smith and Cognato got some inspiration by finding similarities between the beetle and its namesake.

For instance, the C. uhura was given its name because its reddish color, reminiscent of the uniform worn by Nichelle Nichols’s Uhura character in the original “Star Trek” TV series.

The C. uhura’s reddish hue reminded the researchers of the uniform worn by Lt. Uhura in the original “Star Trek” television series, shown below. “Star Trek” image courtesy of CBS Studios Inc.

And Sigourney Weaver’s Ellen Ripley character in the “Alien” film franchise had a shaved head in the movie “Alien 3.” One of the beetles, now named C. ripley, was also glabrous, or without hair.

The C. ripley is glabrous, which means hairless, reminding the researchers of Ellen Ripley and her shaved head in “Alien 3,” shown on the right. “Alien 3” image courtesy of Twentieth Century Fox.

Other names were selected because the duo just liked the characters and found them inspiring. For example, the C. scully beetle was named after Dana Scully, Gillian Anderson’s character on “The X-Files.”

The character is also behind what’s known as the “Scully Effect.” By showing a successful female scientist on TV, the show helped raise awareness of science, technology, engineering and mathematics — or STEM — professions among young women.

In their paper, Smith and Cognato wrote, “We believe in the ‘Scully Effect’ and hope future female scientists, real and fictional, continue to inspire children and young adults to pursue STEM careers.”

Smith and Cognato also took the opportunity to name some beetles in honor of real-life people who have made an impact on their work and their lives.

For example, the C. erwini, is named after a renowned entomologist and friend Terry Erwin, who passed away in 2020. Erwin helped popularize a technique called canopy fogging to collect beetle specimens living in treetops.

Coptoborus erwini

“Without his dedication to canopy fogging, this species and most of those described in this publication may never have been discovered,” Smith and Cognato wrote in their study, which is part of a special issue in memory of Erwin, who was also editor-in-chief of ZooKeys.

Also, the C. bettysmithae is named after Smith’s grandmother, Catherine “Betty” Smith. Sarah remembers Betty’s incredible strength in battling cancer and her help fostering her granddaughter’s scientific interest.

Some of the beetles were named for real-life inspirations, like the C. bettysmithae, named for Sarah Smith’s grandmother, Catherine “Betty” Smith.

“My grandmother supported me a lot with entomology,” Smith said. “I used to spend many weekends with her, and she’d take me out to catch dragonflies.”

Now, she and Cognato are out catching and characterizing insects that are new to science. In doing so, they’re helping protect native ecosystems, painting a more complete picture of the planet’s bountiful biodiversity and even drawing some attention to the power of naming and classifying things.

“Taxonomy was probably one of the first sciences of humans. You can find evidence of it throughout history and across cultures,” Cognato said.

This naming likely started so humans could easily share information about which plants were safe to eat and which animals were dangerous. This is still valuable information today, but naming has evolved to help us appreciate even more dimensions of life on Earth.

Think about being a kid in a park or backyard, Cognato said, and the innate desire to know and name the animals there, say, robins or squirrels. Classification builds connection.

“It helps us communicate and it helps us live better,” Cognato said. “It helps us understand the world and biodiversity.”

Original source:

Smith SM, Cognato AI (2021) A revision of the Neotropical genus Coptoborus Hopkins (Coleoptera, Curculionidae, Scolytinae, Xyleborini). In: Spence J, Casale A, Assmann T, Liebherr JК, Penev L (Eds) Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020). ZooKeys 1044: 609-720. https://doi.org/10.3897/zookeys.144.62246

Citizen scientists help expose presence of invasive Asian bamboo longhorn beetle in Europe

A worryingly high number of Asian bamboo longhorn beetles turn out to have been emerging across Europe for about a century already, finds an international research team. Curiously, the records of the invasive, non-native to the Old Continent species are mostly sourced from citizen scientists and online platforms, which proves the power of involving the public in species monitoring. The study is published in the open-access, peer-reviewed scientific journal BioRisk.

A worryingly high number of Asian bamboo longhorn beetles (Chlorophorus annularis) turn out to have been emerging across Europe for about a century already, finds an international research team, headed by researchers from the Center of Natural History, University of Hamburg, Germany. Curiously, the recent records of the invasive, non-native to the Old Continent species are mostly sourced from citizen scientists and online platforms, which proves the power of involving the public in species monitoring. The study is published in the open-access, peer-reviewed scientific journal BioRisk.

In our globalised world, which has already become victim to climate change and biodiversity loss, non-native species present a further threat to our ecosystems. Thus, the rising accounts of newly recorded alien species are of serious concern to both scientists and (inter)national institutions. However, surveying non-native species remains limited to a small fraction of species: those known to be particularly invasive and harmful.

One of the multitude of non-native species that are currently lacking efficient and coordinated surveying efforts is the Asian bamboo longhorn beetle (Chlorophorus annularis). Naturally occurring in temperate and tropical Southeast Asia, the insect feeds on a variety of plants, but prefers bamboo. Thus, due to the international trade of bamboo and the insects ‘travelling’ with the wood, the species has continuously been expanding its distribution around the world. Its first appearance in Europe was recorded back in 1924, when it was identified in England.

Bamboo longhorn beetle captured in Braintree, United Kingdom
Photo by Stephen Rolls

Back to our days, during a fieldwork practice for students at the University of Hamburg, held within the city because of the COVID-19 travelling restrictions, the team stumbled across a longhorn beetle, later identified by scientists as the Asian bamboo borer. Furthermore, it became clear that there were even more recent records published across different citizen science platforms, such as iNaturalist, iRecord and Waarneming.nl. Having taken the contacts of the citizen scientists from there, the researchers approached them to ask for additional collection details and images, which were readily provided. As a result, the researchers formally confirmed the presence of the Asian bamboo borer in Belgium and the Netherlands. In total, they reported thirteen new introductions of the species in Europe, which translates to a 42% increase of the records of the species for the continent.

“In light of the warming climate and a growing abundance of ornamental bamboo plants in Europe, the beetle might get permanently established. Not only could it become a garden pest, but it could also incur significant costs to the bamboo-processing industry,”

comments Dr Matthias Seidel, lead author of the study.

Having realised the potential of citizen science for bridging the gaps in invasive species monitoring, the researchers now propose for specialised platforms to be established with the aim to familiarise non-professional scientists with non-native species of interest and provide them with more sophisticated reporting tools. The aim is to speed up the identification of important alien species by collating records of specific species of interest, which are flagged and regularly exported from other citizen science databases and platforms. 

Bamboo longhorn beetle captured in Lincoln, United Kingdom
Photo by Sheena Cotter

Original source: 

Seidel M, Lüttke M, Cocquempot C, Potts K, Heeney WJ, Husemann M (2021) Citizen scientists significantly improve our knowledge on the non-native longhorn beetle Chlorophorus annularis (Fabricius, 1787) (Coleoptera, Cerambycidae) in Europe. BioRisk 16: 1–13. https://doi.org/10.3897/biorisk.16.61099

Special ZooKeys memorial volume open to submissions to commemorate our admirable founding Editor-in-Chief Terry Erwin

In recognition of the love and devotion that Terry expressed for the study of the World’s biodiversity, ZooKeys invites contributions to this memorial issue, covering all subjects falling within the area of systematic zoology. Titled “Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020)”.

In tribute to our beloved friend and founding Editor-in-Chief, Dr Terry Erwin, who passed away on 11th May 2020, we are planning a special memorial volume to be published on 11 May 2021, the date Terry left us. Terry will be remembered by all who knew him for his radiant spirit, charming enthusiasm for carabid beetles and never-ceasing exploration of the world of biodiversity! 

In recognition of the love and devotion that Terry expressed for study of the World’s biodiversity, ZooKeys invites contributions to this memorial issue, titled “Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020)”, to all subjects falling within the area of systematic zoology. Of special interest are papers recognising Terry’s dedication to collection based research, massive biodiversity  surveys and origin of biodiversity hot spot areas. The Special will be edited by John Spence, Achille Casale, Thorsten Assmann, James Liebherr and Lyubomir Penev.

Article processing charges (APCs) will be waived for: (1) Contributions to systematic biology and diversity of carabid beetles, (2) Contributions from Terry’s students and (3) Contributions from his colleagues from the Smithsonian Institution. The APC for articles which do not fall in the above categories will be discounted at 30%.

The submission deadline is 31st December 2020.

Contributors are also invited to send memories and photos which shall be published in a special addendum to the volume.

The memorial volume will also include a joint project of Plazi, Pensoft and the Biodiversity Literature Repository aimed at extracting of taxonomic data from Terry Erwin’s publications and making it easily accessible to the scientific community.

Rare South American ground beetles sport unusual, likely multi-purpose antennal cleaners

The newly described Ball’s stange-combed beetle (Nototylus balli)
Photo by Terry L. Erwin

For 157 years, scientists have wished they could understand the evolutionary relationships of a curious South American ground beetle that was missing a distinctive feature of the huge family of ground beetles (Carabidae). Could it be that this rare species was indeed lacking a characteristic trait known in over 40,000 species worldwide and how could that be? Was that species assigned to the wrong family from the very beginning?

The species, Nototylus fryi, or Fry’s strange-combed beetle, is known so far only from a single, damaged specimen found in 1863 in the Brazilian State of Espíritu Santo, which today is kept in the Natural History Museum of London. So rare and unusual, due to its lack of “antennal cleaners” – specialised “combing” structures located on the forelegs and used by carabids to keep their antennae clean, it also prompted the description of its own genus: Nototylus, now colloquially called strange-combed beetles. 

Left foreleg showing antennal grooming organs in the newly described Ball’s stange-combed beetle (Nototylus balli)
Photo by Terry L. Erwin

No mention of the structure was made in the original description of the species, so, at one point, scientists even started to wonder whether the beetle they were looking at was in fact a carabid at all. 

Because the area where Fry’s strange-combed beetle had been found was once Southern Atlantic Forest, but today is mostly sugar cane fields, cacao plantations, and cattle ranches, scientists have feared that additional specimens of strange-combed beetles might never be collected again and that the group was already extinct. Recently, however, a US team of entomologists have reported the discovery of a second specimen, one also representing a second species of strange-combed beetles new to science.

Following a careful study of this second, poorly preserved specimen, collected in French Guiana in 2014, the team of Dr Terry Erwin (Smithsonian Institution), Dr David Kavanaugh (California Academy of Sciences) and Dr David Maddison (Oregon State University) described the species, Nototylus balli, or Ball’s strange-combed beetle, in a paper that they published in the open-access scholarly journal ZooKeys. The entomologists named the species in honour of their academic leader and renowned carabidologist George E. Ball, after presenting it to him in September 2016 around the time of his 90th birthday.

Despite its poor, yet relatively better condition, the new specimen shows that probable antennal grooming organs are indeed present in strange-combed beetles. However, they looked nothing like those seen in other genera of ground beetles and they are located on a different part of the front legs. Rather than stout and barely movable, the setae (hair-like structures) in the grooming organs of strange-combed beetles are slender, flexible and very differently shaped, which led the researchers to suggest that the structure had a different role in strange-combed beetles. 

Judging from the shapes of the setae in the grooming organs, the scientists point out that they are best suited for painting or coating the antennae, rather than scraping or cleaning them. Their hypothesis is that these rare carabids use these grooming structures to cohabitate with ants or termites, where they use them to apply specific substances to their antennae, so that the host colony recognises them as a friendly species, a kind of behaviour already known in some beetles. 

However, the mystery around the strange-combed beetle remains, as the scientists found no evidence of special secretory structures in the specimen studied. It turns out that the only way to test their hypothesis, as well as to better understand the evolutionary relationships of these beetles with other carabids is finding and observing additional, preferably live, specimens in their natural habitat. Fortunately, this new discovery shows that the continued search for these beetles may yield good results because strange-combed beetles are not extinct.

***

Original source:

Erwin TL, Kavanaugh DH, Maddison DR (2020) After 157 years, a second specimen and species of the phylogenetically enigmatic and previously monobasic genus Nototylus Gemminger & Harold, 1868 (Coleoptera, Carabidae, Nototylini). ZooKeys 927: 65-74. https://doi.org/10.3897/zookeys.927.49584


The first bioluminescent click beetle known from Asia represents a new subfamily

A remarkable bioluminescent click beetle was discovered in the subtropical evergreen broadleaf forests in southwest China. Having prompted the description of a brand new subfamily, the species is the very first bioluminescent click beetle known from the continent.

A remarkable bioluminescent click beetle was discovered in the subtropical evergreen broadleaf forests in southwest China. Scientists Mr. Wen-Xuan Bi, Dr. Jin-Wu He, Dr. Xue-Yan Li, all affiliated with the Chinese Academy of Sciences (Kunming), Mr. Chang-Chin Chen of Tianjin New Wei San Industrial Company, Ltd. (Tianjing, China) and Dr. Robin Kundrata of Palacký University (Olomouc, Czech Republic) published their findings in the open-access journal ZooKeys.

Even though the family of click beetles (Elateridae) contain approximately 10,000 species worldwide, it is only about 200 species able to emit light, and they inhabit Latin America and Oceania. Interestingly, the position of the luminous organs varies amongst the different click beetle lineages. In some, they are found on the foremost of the three thoracic segments of the body (prothorax), in others – on both the prothorax and the abdomen, and in few – only on the abdomen.

Luminescent behavior of Sinopyrophorus schimmeli gen. et sp. nov.
Video by Mr Wen-Xuan Bi.

“In 2017, during an expedition to the western Yunnan in China, we discovered a dusk-active bioluminescent click beetle with a single luminous organ on the abdomen, ” recalls lead scientist Mr. Wen-Xuan Bi.

Since no bioluminescent click beetle had previously been recorded in Asia, the team conducted simultaneous morphological and molecular analyses in order to clarify the identity of the new species and figure out its relationship to other representatives of its group.

Co-author Dr. Xue-Yan Li explains:

“The morphological investigation in combination with the molecular analysis based on 16 genes showed that our taxon is not only a new species in a new genus, but that it also represents a completely new subfamily of click beetles. We chose the name Sinopyrophorus for the new genus, and the new subfamily is called Sinopyrophorinae.”

In conclusion, the discovery of the new species sheds new light on the geographic distribution and evolution of luminescent click beetles. The authors agree that as a representative of a unique lineage, which is only distantly related to the already known bioluminescent click beetles, the new insect group may serve as a new model in the research of bioluminescence within the whole order of beetles.

###

Original source:

Bi W-X, He J-W, Chen C-C, Kundrata R, Li X-Y (2019) Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. ZooKeys 864: 79-97. https://doi.org/10.3897/zookeys.864.26689

Star Wars and Asterix characters amongst 103 beetles new to science from Sulawesi, Indonesia

From left to right: Trigonopterus asterix, T. obelix and T. idefix, three newly described species from Sulawesi (Indonesia). Image by Alexander Riedel.

The Indonesian island of Sulawesi has been long known for its enigmatic fauna, including the deer-pig (babirusa) and the midget buffalo. However, small insects inhabiting the tropical forests have remained largely unexplored.

Such is the case for the tiny weevils of the genus Trigonopterus of which only a single species had been known from the island since 1885. Nevertheless, a recent study conducted by a team of German and Indonesian scientists resulted in the discovery of a total of 103 new to science species, all identified as Trigonopterus. The beetles are described in the open-access journal ZooKeys.

“We had found hundreds of species on the neighboring islands of New Guinea, Borneo and Java – why should Sulawesi with its lush habitats remain an empty space?” asked entomologist and lead author of the study Dr Alexander Riedel, Natural History Museum Karlsruhe (Germany).

In fact, Riedel knew better. Back in 1990, during a survey of the fauna living on rainforest foliage in Central Sulawesi, he encountered the first specimens that would become the subject of the present study. Over the next years, a series of additional fieldwork, carried out in collaboration with the Indonesian Institute of Sciences (LIPI), managed to successfully complete the picture.

“Our survey is not yet complete and possibly we have just scratched the surface. Sulawesi is geologically complex and many areas have never been searched for these small beetles,” said Raden Pramesa Narakusumo, curator of beetles at the Museum Zoologicum Bogoriense (MZB), Indonesian Research Center for Biology.

Dense mountain forest of Central Sulawesi, where some of the new species have been found. Image by Alexander Riedel.

 

Why have all these beetles remained overlooked for so long?

Unlike the all-time favourite stag beetles or jewel beetles, tiny beetles that measure no more than 2-3 millimeters seem to have been attracting little interest from entomologists. Their superficial resemblance does not help identification either.

In fact, the modern taxonomic approach of DNA sequencing seems to be the only efficient method to diagnose these beetles. However, the capacity for this kind of work in Indonesia is very limited. While substantial evidence points to thousands of undescribed species roaming the forests in the region, there is only one full-time position for a beetle researcher at the only Indonesian Zoological Museum near Jakarta. Therefore, international collaboration is crucial.

103 newly discovered species of the genus Trigonopterus from Sulawesi. Image by Alexander Riedel.

103 beetle names

Coming up with as many as 103 novel names for the newly described species was not a particularly easy task for the researchers either. While some of the weevils were best associated with their localities or characteristic morphology, others received quite curious names.

A small greenish and forest-dwelling species was aptly named after the Star Wars character Yoda, while a group of three species were named after Asterix, Obelix and Idefix – the main characters in the French comics series The Adventures of Asterix. Naturally, Trigonopterus obelix is larger and more roundish than his two ‘friends’.

Other curious names include T. artemis and T. satyrus, named after two Greek mythological characters: Artemis, the goddess of hunting and nature and Satyr, a male nature spirit inhabiting remote localities.

Additionally, the names of four of the newly described beetles pay tribute to renowned biologists, including Charles Darwin (father of the Theory of Evolution), Paul D. N. Hebert (implementer of DNA barcoding as a tool in species identification) and Francis H. C. Crick and James D. Watson (discoverers of the structure of DNA).

 

Six-legged déjà vu

Back in 2016, in another weevil discovery, Dr Alexander Riedel and colleagues described four new species from New Britain (Papua New Guinea), which were also placed in the genus Trigonopterus. Similarly, no weevils of the group had been known from the island prior to that study. Interestingly, one of the novel species was given the name of Star Wars’ Chewbacca in reference to the insect’s characteristically dense scales reminiscent of Chewie’s hairiness. Again, T. chewbacca and its three relatives were described in ZooKeys.

The flightless beetle species Trigonopterus chewbacca, described as new to science in 2016. Image by Alexander Riedel.

 

On the origin of Trigonopterus weevils

Sulawesi is at the heart of Wallacea, a biogeographic transition zone between the Australian and Asian regions. The researchers assume that Trigonopterus weevils originated in Australia and New Guinea and later reached Sulawesi. In fact, it was found that only a few populations would one day diversify into more than a hundred species. A more detailed study on the rapid evolution of Sulawesi Trigonopterus is currently in preparation.

 

Future research

To help future taxonomists in their work, in addition to their monograph paper in ZooKeys, the authors have uploaded high-resolution photographs of each species along with a short scientific description to the website Species ID.

“This provides a face to the species name, and this is an important prerequisite for future studies on their evolution,” explained the researchers.

“Studies investigating such evolutionary processes depend on names and clear diagnoses of the species. These are now available, at least for the fauna of Sulawesi.”

###

Original Source:

Riedel A, Narakusumo RP (2019) One hundred and three new species of Trigonopterus weevils from Sulawesi. ZooKeys 828: 1-153. https://doi.org/10.3897/zookeys.828.32200

Citizen scientists discover pinhead-sized beetle in Borneo

The discovery is the latest in a series of newly described species collected as part of the Taxon Expeditions initiative aiming to bring biodiversity and taxonomy closer to the layperson

How many citizen scientists does it take to discover a new species? A recent expedition to the Ulu Temburong forest in Borneo proved that you only need 10 enthusiasts with no professional training, yet fueled with curiosity and passion for the outdoors, to find a new beetle the size of a pinhead in leaf litter.

The newly discovered species of leaf beetle, Clavicornaltica belalongensis Photo by Taxon Expeditions – Pierre Escoubas.

The species, named Clavicornaltica belalongensis, is a tiny, 1.25-mm-long leaf beetle that eats moss on the forest floor. Published in the open-access Biodiversity Data Journal, it is the latest discovery from Taxon Expeditions, an initiative that organises scientific field trips to remote and biodiverse locations for teams of scientists and laypeople.

The Ulu Temburong forest, Borneo. Photo by Taxon Expeditions – Pierre Escoubas.

Unlike other science/adventure trips, Taxon Expeditions gives a unique opportunity for laypeople, or citizen scientists, to describe and publish new species of animals and focus on the thousands of ‘little things that run the world’. Thanks to the initiative, they learn about tropical biology techniques while participating in the process of taxonomy and the study of hidden biodiversity.

The new beetle, for example, is one of hundreds of thousands of tiny beetle species that inhabit the leaf litter of tropical forests and have remained unknown and scientifically unnamed up to our days.

In a YouTube video, Simon Berenyi, who joined the expedition along with his 14-year-old son, says: ‘I had no idea how special this would be; you become a student again – you become a child again.’

Entomologist and founder of Taxon Expeditions, Dr. Iva Njunjić explains: ‘We introduce the general public to all these tiny, beautiful, and completely unknown animals, and show them that there is a whole world still to be discovered.’

Last year, another survey in Borneo organised by Taxon Expeditions ended up with the description of a new water beetle species (Grouvellinus leonardodicaprioi). Named after famous Hollywood actor and environmentalist Leonardo DiCaprio. The discovery raised a real furore on the public scene, culminating in the new insect making an appearance on the profile image of the celebrity’s facebook page.

 

###

Original source:

Schilthuizen M, Berenyi A, Limin A, Brahim A, Cicuzza D, Eales A, Escoubas P, Grafe U, de Groot M, Hayden W, Paterno M, Jambul R, Slik J, Ting Teck Wah D, Tucker A, Njunjić I (2019) A new species of Clavicornaltica (Coleoptera: Chrysomelidae), discovered and described on a field course to Kuala Belalong, Brunei. Biodiversity Data Journal 7: e32555. https://doi.org/10.3897/BDJ.7.e32555

The first case of a Portuguese beetle living exclusively in groundwater

New to science, the species was named after Pluto, the ruler of the underworld in Greek mythology

A diving beetle demonstrating various adaptations to the life underground, including depigmentation and evolutionary loss of eyes, was discovered at the bottom of a clay pound in the cave Soprador do Carvalho, Portugal. The species turned out to be the very first in the whole order of beetles (Coleoptera) to be known exclusively from the underground waters of the country.

The Soprador do Carvalho cave (Portugal) is the type locality of the newly described species Iberoporus pluto. Photo by Ignacio Ribera.

Despite not being able to find any other specimens during their study – save for the single female, the team of Dr Ignacio Ribera, Institute of Evolutionary Biology (Spain) and Prof Ana Sofia P. S. Reboleira, University of Copenhagen (Denmark) identified the beetle as new to science, thanks to its unambiguous morphology in combination with molecular data.

Profile view of the newly described species Iberoporus pluto. Photo by Ignacio Ribera.

Aptly named Iberoporus pluto in reference to the ruler of the underworld in Greek mythology Pluto, the species was recently described in the open-access journal ZooKeys.

With a uniformly pale orange body measuring 2.8 mm in length and 1.1 mm in its widest part, the beetle is larger than the rest species known in its genus, and its appendages are longer and more slender. While blindness and depigmentation are clear adaptation to life away from sunlight, the elongated limbs and antennae reflect poor swimming abilities needed in a subterranean habitat. Going for 4 km in horizontal direction, Soprador do Carvalho is the largest in the Dueça cave system, located in the north-eastern part of the Sicó karst area in central Portugal. In recent years, the cave is being explored for tourism.

“The knowledge of the subterranean fauna from Portugal has significantly increased over the last decade, with the description of a high number of obligate subterranean species (tripling their number) and the establishment of new biogeographic patterns,” explain the authors of the study. “A high number of these species are stygobiont (i.e. confined to groundwater), mostly from wells in the north of the country, where evapotranspiration is higher.”

###

Original source:

Ribera I, Reboleira ASPS (2019) The first stygobiont species of Coleoptera from Portugal, with a molecular phylogeny of the Siettitia group of genera (Dytiscidae, Hydroporinae, Hydroporini, Siettitiina). ZooKeys 813: 21-38. https://doi.org/10.3897/zookeys.813.29765

Beetle named after actress & biologist Isabella Rossellini for her series about animals

A new species of beetle with remarkably long genitalia that hint at a curious evolutionary “sexual arms race” has been described from Malaysian Borneo.

The new insect was named after actress and biologist Isabella Rossellini in honour of her stage shows and Webby Award-winning series of films about animal reproduction, featured on SundanceTV.

The species is described by scientists Menno Schilthuizen and Iva Njunjic of Naturalis Biodiversity Center and Universiti Malaysia Sabah, and Michel Perreau, Sorbonne Université, Paris. Their paper is published in the open access journal ZooKeys.

The new species, Ptomaphaginus isabellarossellini, finds a place among the 30 known species of round fungus beetles (subfamily Cholevinae) recorded by the authors from the island of Borneo. Of these, there are a total of 14 which had remained unknown to science until now.

The reason why the scientists named this particular species after the famous actress is its genitalia. The beetle’s penis carries a long, whip-like thread, called flagellum, whereas the female has a similarly long tube leading up to a sperm storage organ.

Lead author Menno Schilthuizen, who himself has previously released a simultaneously educative and entertaining book about the evolution of genitals, says that such exaggerated male and female genitalia often betray an “evolutionary sexual arms race”.

On the male side, natural selection favours longer genitalia because of the ability to directly reach the female’s sperm storage organ. However, female beetles would rather retain their right to favour the DNA of a certain mate over the rest. The upshot is that, over long periods of evolution, penises get longer and vaginas get deeper. Similar evolutionary genital exaggeration is also known in rove beetles and ducks.

“This is better than winning the Oscar,” says honoured Isabella Rossellini.

The Italian-born actress, filmmaker, author, philanthropist, and model has even featured the new beetle in her new Link Link Circus stage shows. Dealing with animal behaviour, the series will be touring theaters in Europe this fall.

###

Original source:

Schilthuizen M, Perreau M, Njunjic I (2018) A review of the Cholevinae from the island of Borneo (Coleoptera, Leiodidae). ZooKeys 777: 57-108. https://doi.org/10.3897/zookeys.777.23212