Assessment, monitoring, and mitigation of chemical stressors on the health of wild pollinators: Pensoft joins WildPosh

Pensoft is amongst the participants of a new Horizon Europe project aiming to better evaluate the risk to wild pollinators of pesticide exposure, enhancing their health & pollination services.

Wild fauna and flora are facing variable and challenging environmental disturbances. One of the animal groups that is most impacted by these disturbances are pollinators, which face multiple threats, driven to a huge extent by the spread of anthropogenic chemicals, such as pesticides. 

WildPosh (Pan-european assessment, monitoring, and mitigation of chemical stressors on the health of wild pollinators) is a multi-actor, transdisciplinary project whose overarching mission and ambition are to significantly improve the evaluation of the risk to wild pollinators of pesticide exposure, and enhance the sustainable health of pollinators and pollination services in Europe.

On 25 and 26 January 2024, project partners from across Europe met for the first time in Mons, Belgium and marked the beginning of the 4-year endeavour that is WildPosh. During the two days of the meeting, the partners had the chance to discuss objectives and strategies and plan their work ahead. 

This aligns with the objectives of the European Green Deal and EU biodiversity strategy for 2030, emphasising the need to reduce pollution and safeguard pollinators. WildPosh focuses on understanding the routes of chemical exposure, evaluating toxicological effects, and developing preventive measures. By addressing knowledge gaps in pesticide risk assessment for wild pollinators, the project contributes to broader efforts in biodiversity conservation.

During the kick-off meeting in Mons, WildPosh’s project coordinator Prof. Denis Michez (University of Mons, Belgium) gave an introductory presentation.

As a leader of Work Package #7: “Communication, knowledge exchange and impact”, Pensoft is dedicated to maximising the project’s impact by employing a mix of channels in order to inform stakeholders about the results from WildPosh and raise further public awareness of wild and managed bees’ health.

Pensoft is also tasked with creating and maintaining a clear and recognisable project brand, promotional materials, website, social network profiles, internal communication platform, and online libraries. Another key responsibility is the development, implementation and regular updates of the project’s communication, dissemination and exploitation plans, that WildPosh is set to follow for the next four years.

“It is very exciting to build on the recently concluded PoshBee project, which set out to provide a holistic understanding of how chemicals affect health in honey bees, bumble bees, and solitary bees, and reveal how stressors interact to threaten bee health. WildPosh will continue this insightful work by investigating these effects on wild pollinators, such as butterflies, hoverflies and wild bee species, with the ultimate goal of protecting these small heroes who benefit the well-being of our planet,”

says Teodor Metodiev, WildPosh Principal Investigator for Pensoft.

For the next four years, WildPosh will be working towards five core objectives: 

1) Determine the real-world agrochemical exposure profile of wild pollinators at landscape level within and among sites 

2) Characterise causal relationships between pesticides and pollinator health 

3) Build open database on pollinator traits/distribution and chemicals to define exposure and toxicity scenario

4) Propose new tools for risk assessment on wild pollinators

5) Drive policy and practice.


Consortium:

The consortium consists of 17 partners coming from 10 European countries. Together, they bring extensive experience in Research and Innovation projects conducted within the Horizon programmes, as well as excellent scientific knowledge of chemistry, modelling, nutritional ecology, proteomics, environmental chemistry and nutritional biology.

  1. University of Mons
  2. Pensoft Publishers
  3. Eesti Maaülikool (Estonian University of Life Sciences)
  4. BioPark Archamps
  5. French National Agency for Food, Environmental and Occupational Health & Safety
  6. French National Centre for Scientific Research
  7. Martin Luther University Halle-Wittenburg
  8. Albert Ludwigs University Freiburg
  9. UFZ Helmholtz Centre for Environmental Research
  10. University of Turin
  11. Italian National Institute of Health
  12. National Veterinary Research Institute – State Research Institute
  13. University of Novi Sad Faculty of Sciences
  14. University of Novi Sad, BioSense Institute-Research Institute for Information Technologies in Biosystems
  15. University of Murcia
  16. Royal Holloway and Bedford New College
  17. The University of Reading

Visit can follow WildPosh on X/Twitter (@WildPoshProject), Instagram (/wildposhproject) and Linkedin (/wildposh-eu)

Study reveals new records for the Serbian wild bee fauna

This new study not only presents new records of bee species in Serbia and confirms some old ones, but also provides additional information about European distribution.

Pollinators play a crucial role in our ecosystems by pollinating flowering plants and crops, contributing to the planetary and human well-being. During the past decade, the decline in insect pollinators has become a more and more disturbing issue that countless scientific and public communities are trying to tackle every day.

Published in the Journal of Hymenoptera Research, a new study aims to contribute to updating the knowledge on wild bee diversity in Serbia, necessary for determining conservation priorities and future endeavours at the national level, but also for improving the understanding of the status of European pollinators. The study is also making an attempt to upgrade the exciting data provided by the recently published checklist of European bees, European bees country records, and, focusing on Serbia, a preliminary list of 706 bee species.

Map of Serbia showing the localities where bee specimens were collected.

To do that, researchers used data from the implementation of the national project SPAS, and within the EU-funded project Safeguard. With the aim of monitoring the diversity and abundance of insect pollinators in Serbia, 54 sites were surveyed three times throughout the 2022 season.

The transect walks and pan traps used for the assessment led to the discovery of 312 bee species. Results show that 25 of these have not been previously recorded for Serbia. Furthermore, the study confirms the presence of 26 species, without any available records from the 21st century.

Graphic view of the number of species detected depending on the sampling methods A at all studied sites B at a subset of sites where both sampling methods were conducted.

The authors also share that 79 of the examined species were known only from literature-based data and six of the recorded species are considered threatened with 67 (10 newly recorded) assessed as Data Deficient in the European Red List of Bees. In addition, the study manages to achieve the goal of updating the current knowledge of bee species occurring in Serbia. By recording 25 new species, the Safeguard study successfully extends the national list with new recordings – from 706 to 731 species.

This new study not only presents new records of bee species in Serbia and confirms some old ones, but also provides additional information about European distribution, required for new assessment at the European level.

Research article:

Mudri-Stojnić S, Andrić A, Józan Z, Likov L, Tot T, Grković A, Vujić A (2023) New records for the wild bee fauna (Hymenoptera, Anthophila) of Serbia. Journal of Hymenoptera Research 96: 761-781. https://doi.org/10.3897/jhr.96.107595

Natural history collections shed light on bumblebees’ modern struggles

Using pollen metabarcoding, researchers analyzed historical and recent bee specimens, revealing significant shifts in foraging patterns.

A new study highlights potential causes for changing foraging habits of bumblebees. Using advanced molecular techniques called pollen metabarcoding, researchers investigated interactions between bumblebees and plants in Cuxhaven, Germany, and how they changed over 60 years. Their findings can help us understand the connections between availability of floral resources and changing landscapes.

The study, led by the Botany Department of the University of Kassel (Germany) in collaboration with the Leibniz Institute for the Analysis of Biodiversity Change (Germany), used bumblebee specimens from historical museum collections dating back to 1968/69 and compared them with bumblebees collected in the field in 2019. By analyzing pollen samples attached to the bodies of the bees, the researchers were able to identify the plant species they had interacted with.

The results revealed significant shifts in the foraging habits of bumblebees between the late 1960s and more recent sampling periods. In particular, there was a noticeable decrease in interactions with Fabaceae plants in 2019 compared to the past. “This suggests that changes in the landscape have led to alterations in the availability of floral resources, which may contribute to the decline of specialized bee species,” the researchers explain.

“The successful application of scalable molecular techniques to analyze historical pollen samples highlights the value of museum collections as a valuable resource for biodiversity research,” they add. “This study, published in the journal Metabarcoding and Metagenomics, serves as a proof of concept for comparative analysis of recent and historical pollination data, providing important insights into the changes in foraging trends of bumblebees over time.”

“In conclusion, this study contributes to our understanding of bumblebee interactions with foraging resources and the impact of landscape changes on their foraging habits,” say the researchers. Their findings underscore the importance of conserving and restoring suitable habitats for pollinators.

“Future research in this field is expected to provide valuable insights for the conservation and management of pollinators and their critical role in maintaining ecosystems,” they conclude.

Original source:

Kolter A, Husemann M, Podsiadlowski L, Gemeinholzer B (2023) Pollen metabarcoding of museum specimens and recently collected bumblebees (Bombus) indicates foraging shifts. Metabarcoding and Metagenomics 7: e86883. https://doi.org/10.3897/mbmg.7.86883

Images by Andreas Kolter

Follow Metabarcoding and Metagenomics on social media:

More and more people are becoming aware of the dangers posed by invasive hornets

A study published in the open access journal NeoBiota reveals that citizens and stakeholders are becoming more and more aware of the Asian yellow-legged hornet

Wasps and hornets have a remarkable capacity of surviving transportation and establishing invasive populations in new areas. In some cases, this can generate massive environmental and socio-economic impacts. Such is the case of the Asian yellow-legged hornet (Vespa velutina), which has been spreading throughout Europe and worldwide, threatening to seriously impact beekeeping.

However, research shows that such invasions do not go unnoticed. A team of researchers working on the Asian yellow-legged hornet in Italy (Dr Jacopo Cerri from the University of Primorska, Slovenia, and Dr Simone Lioy, Prof. Marco Porporato and Prof. Sandro Bertolino, from Turin University, Italy) discovered that citizen awareness about invasive hornets is increasing

Asian yellow-legged hornet (Vespa velutina) attacking a colony of honey bees (Apis mellifera) in Italy. Photo by Prof. Marco Porporato

Moreover, they found that the relevant stakeholders – such as beekeepers – are aware of the hornet’s impacts. They consider the Asian yellow-legged hornet as one of the major causes of honey bee decline in Italy, comparing its effects to those of pesticides, and believing it causes more damage than diseases or other native insects.

To evaluate public awareness of this invasive hornet,the researchers adopted an innovative methodology, which they describe in a paper in the open-access journal NeoBiota. In addition to surveying beekeepers, the authors also analysed Internet searches, focusing on Google queries and visits to relevant Wikipedia pages.

Honey bee. Photo by Andy Murray, CC BY-SA 2.0, via Wikimedia Commons

The team found that beekeepers stayed up to date with information on the Asian yellow-legged hornet thanks to a wide range of different channels, such as the Internet, specialized magazines, and activities with other members of their community. Interestingly, they found that conventional media and mailing lists seemed to be of little contribution to knowledge on this species.

With high reproductive potential and no specialized predators, the Asian yellow-legged hornet predates intensively upon the western honey bee, which could decrease pollination, undermine honey production and inflict consequences for the overwinter survival of colonies. It also limits the foraging activity of honey bees by determining a “foraging paralysis”, a state in which honey bees do not leave the colony, fearing its predation. On top of that, as the species builds its nests mainly in or near urban areas, it poses a risk of stings to people, which in some cases could lead to fatalities.

An increased consciousness in citizens and stakeholders will hopefully lead to a higher number of ‘aware eyes’ able to spot invasive hornets in different environments, the researchers explain. Timely reporting of their presence would allow the speedy activation of more appropriate management measures, containing any possible damages before it’s too late.

Research article:       

Cerri J, Lioy S, Porporato M, Bertolino S (2022) Combining surveys and on-line searching volumes to analyze public awareness about invasive alien species: a case study with the invasive Asian yellow-legged hornet (Vespa velutina) in Italy. NeoBiota 73: 177-192. https://doi.org/10.3897/neobiota.73.80359

The ants, bees and wasps of Canada, Alaska and Greenland – a checklist of 9250 species

Knowing what species live in which parts of the world is critical to many fields of study, such as conservation biology and environmental monitoring. This is also how we can identify present or potential invasive and non-native pest species. Furthermore, summarizing what species are known to inhabit a given area is essential for the discovery of new species that have not yet been known to science.

American Pelecinid Wasp (Pelecinus polyturator) from Driftwood Provincial Park, Ontario, Canada. Photo by Henri Goulet

For less well-studied groups and regions, distributional species checklists are often not  available. Therefore, a series of such checklists is being published in the open-access, peer-reviewed Journal of Hymenoptera Research, in order to address the issue for a group of organisms that, despite its size and diversity, is still poorly known: the insect order Hymenoptera, which includes ants, bees and wasps. The surveyed area spreads across northern North America, which comprises Canada, Alaska (U.S.) and Greenland (Denmark), and occupies about 9.3% of the world’s total land mass.

The last distributional survey of Hymenoptera in North America was published in 1979, where about 6000 described species were recorded from Canada and 600 from Alaska. The current survey lists 8933 species in Canada and 1513 in Alaska, marking an increase of 49% and 152%, respectively. A total of 9250 described species are recorded from northern North America. Considering that there are approximately 154,000 described species of Hymenoptera, northern North America has about 6% of the current world total. 

A cuckoo wasp of the genus Hedychridium from Manitoulin Island, Ontario, Canada. Photo by Henri Goulet

Highlights of the series will include updated distributions of over 900 species of bees, which will provide valuable insight into native pollinators at a time when honey bees are in decline. Nearly 230 species of ants and over 100 species of vespid wasps (hornets and yellow jackets) are recorded, including pest species such as the widespread pharaoh ant and the newly invasive Asian giant hornet in British Columbia.

Pigeon tremex (Tremex columba) from Manitou Lake, Manitoulin Island, Ontario, Canada. Photo by Henri Goulet

By far, the majority of species of Hymenoptera found in northern North America and the world are parasitoids, which develop on or in other invertebrate hosts and are therefore of great interest to the biological control of pests. Of the 9250 species recorded, more than three-quarters (over 7150 species) are parasitoids. These distributional lists provide essential baseline information required prior to undertaking studies to introduce biological control agents of invasive pests that may have escaped their native, natural enemies when they arrived in North America.

Megarhyssa macrura from Ottawa, Ontario, Canada. Photo by Henri Goulet

The topical collection “Checklists of the Hymenoptera of Canada, Alaska and Greenland” is to contain a total of eleven papers, where the introduction and the first two checklists: of sawflies (758 species) and one of the groups of “microhymenoptera” (the chalcidoid parasitic wasps) (1246 species) have just been published.The other checklists are to follow over the next several years. The associated data are also being uploaded to the Global Biodiversity Information Facility (GBIF), allowing for periodic updates over time.

When complete, this will be the largest species checklist for any group of organisms in northern North America. Considering that it is estimated that we currently have documented less than half of the species of Hymenoptera present in northern North America, there is still a great amount of work to do on this fascinating group of insects.

###

Original sources:

Bennett AMR (2021a) Checklists of the Hymenoptera of Canada, Alaska and Greenland – Introduction. Journal of Hymenoptera Research 82: 1-19. https://doi.org/10.3897/jhr.82.60054

Bennett AMR (2021b) Checklist of the Hymenoptera of Canada, Alaska and Greenland. Agriculture and Agri-Food Canada. Checklist dataset https://doi.org/10.5886/4piso5 [accessed via GBIF.org: 12 March 2021].

Goulet H, Bennett AMR (2021) Checklist of the sawflies (Hymenoptera) of Canada, Alaska and Greenland. Journal of Hymenoptera Research 82: 21-67. https://doi.org/10.3897/jhr.82.60057

Huber JT, Bennett AMR, Gibson GAP, Zhang YM, Darling DC (2021) Checklist of Chalcidoidea and Mymarommatoidea (Hymenoptera) of Canada, Alaska and Greenland. Journal of Hymenoptera Research 82: 69-138. https://doi.org/10.3897/jhr.82.60058

Bees thrive where it’s hot and dry: a unique biodiversity hotspot located in North America

The United States-Mexico border traverses through large expanses of unspoiled land in North America, including a newly discovered worldwide hotspot of bee diversity. Concentrated in 16 km2 of protected Chihuahuan Desert are more than 470 bee species, a remarkable 14% of the known United States bee fauna.

One of the late-summer desert bees, female Svastra sp. on flower of Verbesina enceliodes. Photo by Bruce D. Taubert

This globally unmatched concentration of bee species is reported by Dr. Robert Minckley of the University of Rochester and William Radke of the United States Fish and Wildlife Service in the open-access, peer-reviewed Journal of Hymenoptera Research.

Scientists studying native U.S. bees have long recognized that the Sonoran and Chihuahuan deserts of North America, home to species with interesting life histories, have high bee biodiversity. Exactly how many species has largely remained speculation. Together with students from Mexico, Guatemala and the United States, the authors made repeated collections over multiple years, identifying more than 70,000 specimens. 

Without such intensive collecting, a full picture of the bee diversity would not have been possible. Most of these bee species are solitary, without a queen or workers, which visit flowers over a 2-4 week lifespan and specialize on pollen and nectar from one to a few plants. Furthermore, these desert species experience periodic drought, which the immature stages survive by going into dormancy for years, much like the seeds of the desert plants they pollinate. 

One of the spring-active desert bees, female Centris caesalpiniae on flower of Krameria. Photo by Bruce D. Taubert

Additionally, bee diversity is notoriously difficult to estimate and compare among studies, because of differences in the collecting techniques and the size of the studied area. An unexpected benefit of the regular and intensive sampling for this study was the opportunity to test if the observed bee diversity approached the true bee diversity in this region, or if many more species were yet to be found. In this case, the larger San Bernardino Valley area is home to 500 bee species, only slightly above the number of species recovered along the border – an unusually robust confirmation of the researchers’ estimate. 

One of the spring-active desert bees, male Centris caesalpiniae on flower of Acacia. Photo by Bruce D. Taubert

What we know about the decline of bees due to human activity, along with that of other pollinators, is based primarily on diversity data from human-modified habitats. Needed is baseline information on native bees from pristine areas to help us assess the magnitude and understand the ways in which humans impact bee faunas. This study from the Chihuahuan Desert is therefore an important contribution towards filling that knowledge gap from one of the bee biodiversity hotspots in the world. 

Original source

Minckley RL, Radke WR (2021) Extreme species density of bees (Apiformes, Hymenoptera) in the warm deserts of North America. Journal of Hymenoptera Research 82: 317-345. https://doi.org/10.3897/jhr.82.60895

Under Extinction Pressure: Rare Australian bee found after 100 years

A widespread field search for a rare Australian native bee (Pharohylaeus lactiferus) that had not been recorded for almost a century found the species has been there all along – but is probably under increasing pressure to survive. Prior to this study, only six individuals had been found, with the last published record of this Australian endemic bee species, from 1923 in Queensland.

Male Pharohylaeus lactiferus bee. Photo by James Dorey.

A widespread field search for a rare Australian native bee (Pharohylaeus lactiferus) that had not been recorded for almost a century found the species has been there all along – but is probably under increasing pressure to survive. Prior to this study, only six individuals had been found, with the last published record of this Australian endemic bee species, from 1923 in Queensland.

“This is concerning because it is the only Australian species in the Pharohylaeus genus and nothing was known of its biology,”

Flinders University researcher and biological sciences PhD candidate James Dorey says in the new scientific paper in the peer-reviewed, open-access Journal of Hymenoptera Research.

The ‘hunt’ began after bee experts Olivia Davies and Dr Tobias Smith raised the possibility of the species’ extinction based on the lack of any recent sightings. The ‘rediscovery’ followed an extensive sampling of 225 general and 20 targeted sampling sites across New South Wales and Queensland.

Along with extra bee and vegetation recordings from the Atlas of Living Australia, which lists 500 bee species in New South Wales and 657 in Queensland, the Flinders researchers sought to assess the latest levels of true diversity, warning that habitat loss and fragmentation of Australia’s rainforests, along with wildfires and climate change, are likely to put extinction pressure on this and other invertebrate species.  

“Three populations of P. lactiferous were found by sampling bees visiting their favoured plant species along much of the Australian east coast, suggesting population isolation,”

Mr Dorey reports.

Highly fragmented habitat and potential host specialisation might explain the rarity of P. lactiferus.

Additionally, the scientists remind of previous findings that Australia has already cleared more than 40% of its forests and woodlands since European colonisation, leaving much of the remainder fragmented and degraded.

“My geographical analyses used to explore habitat destruction in the Wet Tropics and Central Mackay Coast bioregions indicate susceptibility of Queensland rainforests and P. lactiferus populations to bushfires, particularly in the context of a fragmented landscape,”

Mr Dorey says.

The study also warns the species is even more vulnerable as they appear to favour specific floral specimens and were only found near tropical or sub-tropical rainforest – a single vegetation type.

“Collections indicate possible floral and habitat specialisation with specimens only visiting firewheel trees (Stenocarpus sinuatu), and Illawarra flame trees (Brachychiton acerifolius), to the exclusion of other available floral resources.”

Known populations of P. lactiferus remain rare and susceptible to habitat destruction (e.g. caused by changed land use or events such as fires), the paper concludes.

“Future research should aim to increase our understanding of the biology, ecology and population genetics of P. lactiferus.”

Female Pharohylaeus lactiferus bee. Photo by James Dorey.

“If we are to understand and protect these wonderful Australian species, we really need to increase biomonitoring and conservation efforts, along with funding for the museum curation and digitisation of their collections and other initiatives,”  

Mr Dorey says.

Research paper:

Dorey JB (2021) Missing for almost 100 years: the rare and potentially threatened bee, Pharohylaeus lactiferus (Hymenoptera, Colletidae). Journal of Hymenoptera Research 81: 165-180. https://doi.org/10.3897/jhr.81.59365

***

Follow Journal of Hymenoptera Research on Twitter and Facebook.

First Australian night bees recorded foraging under the cover of darkness

Original post by Flinders University, Australia

Australian bees are known for pollinating plants on beautiful sunny days, but a new study has identified two species that have adapted their vision for night-time conditions for the first time.

The study by a team of ecology researchers has observed night time foraging behaviour by a nomiine (Reepenia bituberculata) and masked (Meroglossa gemmata) bee species, with both developing enlarged compound and simple eyes which allow more light to be gathered when compared to their daytime kin.

Published in the Journal of Hymenoptera Research, the researchers explain that this improved low-light ability could potentially also exist in other Australian species secretly active at night, with their image processing ability best observed through high-resolution close-up images. 

Lead author PhD Candidate James Dorey, in the College of Science & Engineering at Flinders University, says the two Australian bee species active at night and during twilight hours are mostly found in Australia’s tropical north, but there could potentially more in arid, subtropical and maybe even temperate conditions across the continent.

“We have confirmed the existence of at least two crepuscular bee species in Australia and there are likely to be many more that can forage both during the day and into the early morning or evening under low light conditions. It’s true that bees aren’t generally known to be very capable when it comes to using their eyes at night, but it turns out that low-light foraging is more common than currently thought,”

says Mr Dorey.

“Before this study, the only way to show that a bee had adapted to low-light was by using difficult-to-obtain behavioural observations, but we have found that you should be able to figure this out by using high-quality images of a specific bee.”

Mr Dorey says bees that forage during dim-light conditions aren’t studied enough with no previously reliable published records for any Australian species.  

“Our study provides a framework to help identify low-light-adapted bees and the data that is needed to determine the behavioural traits of other species. This is important as we need to increase efforts to collect bee species outside of normal hours and publish new observations to better understand the role that they play in maintaining ecosystems.”

The researchers outline why more needs to be understood about the behaviour of bee species to help protect them from the potential impacts of climate change. 

“Global weather patterns are changing and temperatures in many parts of Australia are rising along with the risk of prolonged droughts and fires. So, we have to improve our understanding about insects pollinating at night or in milder parts of the day to avoid potential extinction risks or to mitigate loss of pollination services.” 

“This also means we have to highlight the species that operate in a narrow window of time and could be sensitive to climatic changes, so conservation becomes an important concern. Because quite frankly, we have ignored these species up until now.”

Publication:

Dorey JB, Fagan-Jeffries EP, Stevens MI, Schwarz MP (2020) Morphometric comparisons and novel observations of diurnal and low-light-foraging bees. Journal of Hymenoptera Research 79: 117–144. https://doi.org/10.3897/jhr.79.57308

How quickly do flower strips in cities help the local bees?

Insects rely on a mix of floral resources for survival. Populations of bees, butterflies, and flies are currently rapidly decreasing due to the loss of flower-rich meadows. In order to deal with the widespread loss of fauna, the European Union supports “greening” measures, for example, the creation of flower strips.

A group of scientists from the University of Munich, led by Prof. Susanne S. Renner, has conducted the first quantitative assessment of the speed and distance over which urban flower strips attract wild bees, and published the results of the study in the open-access Journal of Hymenoptera Research.

Flower strips are human-made patches of flowering plants that provide resources for flower-visiting insects and insect- and seed-feeding birds. Previous experiments have proved their conservation value for enhancing biodiversity in agricultural landscapes.

The success of flower strips in maintaining populations of solitary bees depends on the floristic composition, distance from suitable nesting sites, and distance from other habitats maintaining stable populations of bees. To study the attractiveness of the flower strips in urban landscapes, the scientists used an experimental set-up of nine 1,000 sq. meters flower strips recently established in Munich by a local bird conservation agency.

“We identified and counted the bees visiting flowers on each strip and then related these numbers to the total diversity of Munich’s bee fauna and to the diversity at different distances from the strips. Our expectation was that newly planted flower strips would attract a small subset of mostly generalist, non-threatened species and that oligolectic species (species using pollen from a taxonomically restricted set of plants) would be underrepresented compared to the city’s overall species pool,”

shared Prof. Susanne S. Renner.

Bees need time to discover new habitats, but the analysis showed that the city’s wild bees managed to do that in just one year so that the one-year-old flower strips attracted one-third of the 232 species recorded in Munich between 1997 and 2017.

Surprisingly, the flower strips attracted a random subset of Munich’s bee species in terms of pollen specialization. At the same time, as expected, the first-year flower-strip visitors mostly belonged to common, non-threatened species.

The results of the study support that flower strip plantings in cities provide extra support for pollinators and act as an effective conservation measure. The authors therefore strongly recommend the flower strip networks implemented in the upcoming Common Agricultural Policy (CAP) reform in the European Union.

###

Original source:

Hofmann MM, Renner SS (2020) One-year-old flower strips already support a quarter of a city’s bee species. Journal of Hymenoptera Research 75: 87-95. https://doi.org/10.3897/jhr.75.47507

19th-century bee cells in a Panamanian cathedral shed light on human impact on ecosystems

About 120 clusters of 19th-century orchid bee nests were found during restoration work on the altarpiece of Basilica Cathedral in Casco Viejo (Panamá). Having conducted the first pollen analysis for these extremely secretive insects, the researchers identified the presence of 48 plant species, representing 23 families.

Casco Viejo, Panamá in 1875, as seen from the summit of Cerro Ancón.
A white tower of the Cathedral where bees were nesting is visible in the distant background in the centre of the peninsula.
Photo by Eadweard Muybridge, courtesy of the Smithsonian American Art Museum; gift of Mitchell and Nancy Steir.

Despite being “neotropical-forest-loving creatures,” some orchid bees are known to tolerate habitats disturbed by human activity. However, little did the research team of Paola Galgani-Barraza (Smithsonian Tropical Research Institute) expect to find as many as 120 clusters of nearly two-centuries-old orchid bee nests built on the altarpiece of the Basilica Cathedral in Casco Viejo (Panamá). Their findings are published in the open-access Journal of Hymenoptera Research.

Locations of nest cell aggregations of Eufriesea surinamensis within the Cathedral in Casco Viejo, Panamá
Photo by Paola Galgani-Barraza

This happened after restoration work, completed in 2018 in preparation for the consecration of a new altar by Pope Francis, revealed the nests. Interestingly, many cells were covered with gold leaf and other golden material applied during an earlier restoration following an 1870 fire, thus aiding the reliable determination of the age of the clusters. The cells were dated to the years prior to 1871-1876.

The bee species, that had once constructed the nests, was identified as the extremely secretive Eufriesea surinamensis. Females are known to build their nests distant from each other, making them very difficult to locate in the field. As a result, there is not much known about them: neither about the floral resources they collect for food, nor about the materials they use to build their nests, nor about the plants they pollinate.

However, by analysing the preserved pollen for the first time for this species, the researchers successfully detected the presence of 48 plant species, representing 43 genera and 23 families. Hence, they concluded that late-nineteenth century Panama City was surrounded by a patchwork of tropical forests, sufficient to sustain nesting populations of what today is a forest-dwelling species of bee.

Not only did the scientists unveil important knowledge about the biology of orchid bees and the local floral diversity in the 19th century, but they also began to uncover key information about the functions of natural ecosystems and their component species, where bees play a crucial role as primary pollinators. Thus, the researchers hope to reveal how these environments are being modified by collective human behaviour, which is especially crucial with the rapidly changing environment that we witness today.

The orchid bee Eufriesea surinamensis
Photo by Paola Galgani-Barraza

Original source:

Galgani-Barraza P, Moreno JE, Lobo S, Tribaldos W, Roubik DW, Wcislo WT (2019) Flower use by late nineteenth-century orchid bees (Eufriesea surinamensis, Hymenoptera, Apidae) nesting in the Catedral Basílica Santa María la Antigua de Panamá. Journal of Hymenoptera Research 74: 65-81. https://doi.org/10.3897/jhr.74.39191