Scientists pay tribute to Rafael Nadal and Roger Federer with new species named after them

The insects are parasitoid wasps 6 mm long with black, white, and orange colour patterns, and were found in major Thai national parks.

Rafael Nadal and Roger Federer will go down in history as two of the greatest tennis players of our time, but their names have also been immortalized in science, as two new insect species were just named in honor of the athletes.

A team of insect scientists from the Integrative Insect Ecology Research Unit in Thailand’s Chulalongkorn University described two new wasp species named Troporhogas rogerfedereri and Troporhogas rafaelnadali in a tribute to the two tennis legends.

A specimen of Troporhogas rafaelnadali.
Troporhogas rafaelnadali. Photo by Marisa Loncle

T. rogerfedereri and T. rafaelnadali are parasitoid wasps, whose larvae devour their hosts from the inside,” says Buntika Areekul Butcher, who led the study to describe the new insects. “As their names proclaim, they honour the tennis greats Roger Federer and Raphael Nadal, who although competitors on the court have been on the same doubles team too. Also, two of the authors are huge fans of both Roger and Rafa.”

Troporhogas rogerfedereri. Photo by Marisa Loncle

Both of the new wasps are 6 mm long, with black, white and orange colour patterns. They were found in two major Thai national parks, Khao Yai and Khao Sok, both of which are popular attractions for natural history tourists.

The scientists published their discoveries in a research article in the open-access zoology journal ZooKeys.

Research article:

Quicke DLJ, Ranjith AP, Loncle MK, Van Achterberg C, Long KD, Butcher BA (2024) Revision of Troporhogas Cameron (Hymenoptera, Braconidae, Rogadinae) with six new species from India and Thailand. ZooKeys 1206: 99-136.

MAkiNg Technology work for moNitoring polliNAtors: Pensoft joins ANTENNA

Pensoft is to maximise the project’s impact by informing stakeholders about results and raising public awareness about pollinators.

Pensoft joins the newly funded Biodiversa+ project ANTENNA focused on making technology work for monitoring pollinators and is tasked with the communication, dissemination and exploitation activities. 

The overarching goal of ANTENNA is to fill key monitoring gaps through advancing innovative technologies that will underpin and complement EU-wide pollinator monitoring schemes, and to provide tested transnational pipelines from monitoring activities to curated datasets and enhanced indicators that support pollinator-relevant policy and end-users.

The ANTENNA project answers the BiodivMon call, which was launched in September 2022 by Biodiversa+ in collaboration with the European Commission. The BiodivMon call sought proposals for three-year research projects to improve transnational monitoring of biodiversity and ecosystem change, emphasising innovation and harmonisation of biodiversity data collection and management methodologies, addressing knowledge gaps on biodiversity status and trends to combat biodiversity loss, and the effective use of existing biodiversity monitoring data. 

Supporting the work of Work Package #5: “Project coordination, and communication”, Pensoft is dedicated to maximising the project’s impact by employing a mix of channels to inform stakeholders about the results from ANTENNA and raise public awareness about pollinators.

Pensoft is also tasked with creating and maintaining a clear and recognisable project brand, promotional materials, website, social network profiles, internal communication platform, and online libraries. Another key responsibility is the development, implementation and regular updates of the project’s communication, dissemination and exploitation plans, that ANTENNA is set to follow for the next four years.

On 14-15 March 2024, ANTENNA held its official kick off meeting. Project partners came together in Halle, Germany for two days to outline objectives, discuss strategies, and set the groundwork for this venture.

Specifically, the combined expertise of the consortium will address the following objectives:

  1. Advance automated sample sorting and image recognition tools from individual prototypes to systems that can be adopted by practitioners
  2. Expand pollinator monitoring to under-researched pollinator taxa, ecosystems, and pressures
  3. Quantify the added value of novel monitoring systems in comparison and combination with ‘traditional’ methods in terms of cost effectiveness
  4. Provide a framework for integrative monitoring by combining multiple data streams and. The framework will also support the development of near real-time forecasting models as bases for early warning systems;
  5. Upscale local demonstrations into the implementation of large-scale transnational pipelines and provide context-specific guidance to the use of policy-makers and other users who might need to select monitoring methods and indicators.


  1. Helmholtz-Centre for Environmental Research (UFZ), Germany
  2. Naturalis Biodiversity Center, Netherlands
  3. Aarhus University, Denmark
  4. Consejo Superior de Investigaciones Científicas (CSIC), Spain
  5. University of the Aegean, Greece
  6. Universidad Politécnica de Madrid, Spain
  7. Trinity College Dublin, Ireland

*Pensoft Publishers is a subcontractor tasked by the UFZ with multiple communication, dissemination and exploitation activities as part of Work Package 5.

Stay up to date with the ANTENNA project’s progress on X/Twitter (@ANTENNA_project) and LinkedIn (/antenna-project).

Top-lane crab: new species named after League of Legends character

The ‘furry’ crustacean is the latest discovery to be given a video-game-inspired name.

Species of the crab family Xanthidae go by many names: gorilla crabs, mud crabs, pebble crabs, rubble crabs – the list goes on. But when it was time to name a tiny, ‘furry’ new species from China, researchers drew unlikely inspiration from the video game League of Legends.

Gothus teemo was named after the character Teemo from the immensely popular MOBA (Multiplayer Online Battle Arena) thanks to its distinctive appearance.

Two images of a small white-and-brown crab species besides Teemo from League of Legends.
Gothus teemo male holotype (left), Teemo (right).

Loosely resembling a raccoon, Teemo is small and fluffy with a brown and white intermingled fur coat. The new species’ small size, densely covered short setae (bristles), and brown-striped colouration quickly drew comparisons.

Published in the open-access journal Zoosystematics and Evolution, the discovery was made during an expedition to the coral reefs of the South China Sea. There researchers discovered the new species in the Xisha Islands (Paracel Islands) and Nansha Islands (Spratly Islands).

An illustration of the crab species Gothus teemo. It is black with brown patterning.
Illustration of Gothus teemo by by Fei Gao.

The team collected specimens while scuba diving, photographing them and conserving them for further study. The specimens are now housed at the Marine Biological Museum, Chinese Academy of Sciences in Qingdao, China.

This new-to-science crab represents not only a new species, but also an entirely new genus. Sticking to a theme, researchers named the genus after a game – albeit one created 2,500 years before League of Legends!

The boardgame Go. Black and white counters on a a wooden box with a grid pattern.
The ancient Chinese board game, Go.

They chose the name Gothus for the genus, drawing inspiration from the ancient Chinese strategy board game, Go. The name alludes to the intermingled black and white patterns on the carapace of Gothus species, beneath which lie circular granules resembling the pieces of the game.

As part of their study, the researchers suggested the reclassification of the species Actaea consobrina into the genus Gothus. This reclassification was based on both morphological and molecular evidence.

A white crab with balck and orange dots.
Actaea consobrina, proposed as Gothus consobrina.

Gothus teemo is by no means the only new species named after a video game character. Just last week, we shared a story from our Biodiversity Data Journal about a blind spider named after the Monster Hunter character Khezu – check out the story below!

Gothus teemo is yet another reminder that countless unknown creatures are just waiting to be discovered. The coral reefs of the South China Sea continue to be a rich source of new and fascinating species. And, who knows, perhaps there’s a Gothus tristana out there, too.

Original source

Yuan Z-M, Jiang W, Sha Z-L (2024) Morphological and molecular evidence for Gothus teemo gen. et sp. nov., a new xanthid crab (Crustacea, Brachyura, Xanthoidea) from coral reefs in the South China Sea, with a review of the taxonomy of Actaeodes consobrinus (A. Milne-Edwards, 1867). Zoosystematics and Evolution 100(3): 965-987.

Follow Zoosystematics and Evolution on X and Facebook for more!

Mass digitisation of a herbarium collection: ten lessons learned from Meise Botanic Garden

The lessons were published in the open-access journal PhytoKeys.

Herbaria – collections of preserved plant specimens – are crucial in botanical research and biodiversity conservation. Digitising these collections is an important step towards making data available to all, preserving specimens by reducing the need for handling, and creating new research opportunities.

Herbarium specimens on a conveyor belt at Meise Botanic Garden.
Mass digitisation of herbarium specimens on a conveyor belt at Meise Botanic Garden, allowing the imaging of 3,000–5,000 specimens per day.

Meise Botanic Garden recently completed a six-year project to digitise approximately three million specimens of their herbarium collection. While it was a big change for their organisation, it was one they deemed necessary to bring their collection into the digital age. 

The digitisation project contributes to the Distributed System of Scientific Collections (DiSSCo) research infrastructure aiming to unify access to biodiversity and geodiversity specimens under common standards, giving users access to specimens and their data from European institutions. DiSSCo has also created a website with digitisation guides and the DiSSCo Knowledge Base

Several people sitting at tables working on herbarium specimens.
Joint restoration session of the herbarium team at Meise Botanic Garden.

Based on their experience, the team published ten valuable lessons they learned during the process to assist  other institutions embarking on similar digitisation projects. These lessons are available in the open-access journal PhytoKeys.

1. Knowing yourself is the beginning of all wisdom ― Aristotle

Before starting digitisation, it is important to understand the full scope of your collection. This involves detailed inventory checks and assessments of the state of the specimens. Knowing the exact number and condition of the specimens will help in accurate budgeting and planning. A detailed inventory of a representative tenth of your collection can be extrapolated to the entire collection.

2. Prioritise (if lack of money forces you to do so)

If resources are limited, prioritising which parts of the collection to digitise first is key. Consider factors such as the scientific importance of the specimens, their physical state, and stakeholder needs. It is important to note that digitising the entire collection can be more efficient than selecting subcollections, as partial digitisation can complicate management.

3. Learn from other people’s successes – and mistakes

Do not reinvent the wheel. Engage with other institutions that have undertaken similar projects to learn from their successes and mistakes. Follow existing guidelines and adapt them to fit your specific needs. If you think you have a better way of doing things, talk it over with someone with experience. 

4. Decide whether to do it yourself or have it done for you

Deciding whether to conduct the digitisation in-house or to outsource it depends on available resources. Consider the skills and availability of your staff and the costs associated with outsourcing. Some tasks, such as imaging or data transcription, might be more efficiently handled by external specialists.

5. Make a plan

A well-thought-out plan is crucial. Define workflows, procedures, and quality control mechanisms. And be specific about your requirements when outsourcing parts of the project to avoid any misunderstandings.

6. Go shopping

Ensure that all necessary supplies, such as barcodes, storage containers, and IT infrastructure, are in place before starting the digitisation process. Bulk purchasing is often cost-effective, and having everything ready will prevent delays.

7. Make your collection look its best for the photographer

Prepare the specimens for imaging by incorporating pre-digitisation curation steps like repairing damaged specimens and adding barcodes. 

8. Expect problems, particularly ones that you don’t expect

Problems will arise, from equipment malfunctions to human errors. Establish quality control processes to catch issues early. Automate checks where possible and ensure prompt human review for aspects like image focus and lighting.

9. Make your data visible – make a big deal of it

Making digitised data publicly accessible is vital. Use online portals and ensure the data adheres to FAIR principles (Findable, Accessible, Interoperable, Reusable). Publicity will increase the use and impact of your collection.

10. Save your data for the future

Make sure the digitised data is backed up in a secure, offsite archive. Long-term storage solutions should be considered to preserve the data for future use. And factor this ongoing cost into the budget.

To read extended advice from Meise Botanic Garden, as well as four case studies, check out the full research paper below:

Original source

De Smedt S, Bogaerts A, De Meeter N, Dillen M, Engledow H, Van Wambeke P, Leliaert F, Groom Q (2024) Ten lessons learned from the mass digitisation of a herbarium collection. PhytoKeys 244: 23-37. 


Follow PhytoKeys on Facebook and X.

The International Biogeography Society relaunches flagship journal Frontiers of Biogeography on ARPHA platform

“This switch of our journal to a cutting-edge platform, and its committed team of editors, should continue to raise the journal’s visibility and impact,” comments Prof. Dr. Susanne Renner, TIBS President.

The International Biogeography Society (TIBS) has relaunched its flagship open-access scientific journal, Frontiers of Biogeography (FoB), on the ARPHA platform, where it will be co-published with Pensoft Publishers.

This collaboration underscores the society’s commitment to maintaining high-quality, high-visibility and low-cost open-access publishing for the biogeographical community.

“This switch of our journal to a cutting-edge platform, and its committed team of editors, should continue to raise the journal’s visibility and impact,”

comments Prof. Dr. Susanne Renner, TIBS President.

Established by TIBS in 2009, Frontiers of Biogeography serves as an independent forum for research dissemination, and publishes studies on all geographical variations of life at all levels of organisation. The journal adheres to rigorous academic standards, reflecting the mission of TIBS to promote and advance public understanding of biogeographical sciences. 

The journal’s editorial leadership includes Prof. Robert J. Whittaker (University of Oxford, United Kingdom), Dr. Janet Franklin (San Diego State University, USA) and Prof. Mark J. Costello (Nord University, Norway), all esteemed figures in the field.

Frontiers of Biogeography was launched on the ARPHA Platform on the 1st of July 2024. The platform is now open for new submissions and offers a robust review and publication process. Articles and supplementary materials published on ARPHA will be distributed under the Creative Commons Attribution Licence (CC BY 4.0), ensuring wide accessibility and reuse. All previously published issues on the e-Scholarship platform will remain freely accessible, ensuring the continuity of knowledge dissemination.

Frontiers of Biogeography has recently been selected for inclusion in the Web of Science™. Beginning with volume 14(1), articles will be indexed in Emerging Sources Citation Index, Zoological Record, Biological Abstracts, and BIOSIS Previews, significantly enhancing the journal’s visibility.

Furthermore, the journal’s latest Scopus CiteScore of 4.3 places it in the Q1 category for Ecology and Ecology, Evolution, Behaviour and Systematics, and elevates it from Q3 to Q2 in the Global and Planetary Change category.

I am looking forward to working with the new platform and to the start of a new partnership with our colleagues at Pensoft Publishers. This arrangement underlines the commitment of The International Biogeography Society to the growth and success of Frontiers of Biogeography as a service to our members and the broader scientific community,”

stated Prof. Dr. Robert J. Whittaker, Editor-in-Chief.

In these days of sometimes exorbitant costs to pay publication charges by some of the big publishers, TIBS and Pensoft are joining forces to make it possible for all authors to be able to publish their work at reasonable costs while maintaining the high scholarly standards of peer-review and editorial management which are the foundation of good science,”

added Prof. Dr. Mark J. Costello, Co-Editor-in-Chief.

“We are excited to welcome Frontiers of Biogeography to the ARPHA Platform and look forward to a successful, open-access future. This partnership aligns with our mission to support scientific research through innovative publishing solutions,”

said Prof. Dr. Lyubomir Penev, CEO and founder of Pensoft Publishers.


Visit the Frontiers of Biogeography’s new website at Use the Email alert field on the homepage to follow the latest publications, news, and highlights from Frontiers of Biogeography.

You can also follow the journal on X (formerly Twitter) at @newbiogeo.

Keep up to date with the latest from TIBS by following them on X (@Biogeography) and joining the society’s Facebook group.

Monster Hunter in real life: eyeless spider named after video game monstrosity

Discovered in China, the cave-dwelling arachnid was assigned a rather unflattering species name.

Deep within a cave in the Du’an Yao Autonomous County of Guangxi, China, researchers discovered a pale, eyeless spider unknown to science.

This discovery, detailed in the open-access Biodiversity Data Journal adds a remarkable member to the Otacilia genus. And, as is often the case, the scientist behind the revelation turned to popular culture to name the new species.

They settled on Otacilia khezu.

A close-up shot of the face Khezu from Monster Hunter at night. It is a wwyvern with no eyes and many teeth.
Khezu in Monster Hunter.

The Khezu wyvern features in the popular video game series Monster Hunter. It is known for its blindness and unsettling appearance, just like newly discovered species. By naming the spider Otacilia khezu, the researchers highlight its troglobitic – or cave-dwelling – nature, particularly the complete absence of its eyes.

“Its long, elastic neck stretching out while it clings to a wall or the ceiling is a sight straight out of a nightmare. Make sure you do not get overwhelmed by its horrific appearance.”

Khezu description, Monster Hunter Wiki.

Otacilia khezu, like many troglobitic creatures, lacks eyes and pigmentation, has elongated appendages, and has developed heightened sensory adaptations to navigate and thrive in its dark environment.

A pale eyeless spider on a cave floor.
Otacilia khezu juvenile, in life. Photo: Shanmi Zheng.

The research team led by Yejie Li,  Langfang Normal University, note the significance of the discovery, as it marks the first recorded troglobitic Otacilia species in China. Prior to this, only two troglobitic Otacilia species had been identified, both in Laos. 

The species is one of many spiders named after influential fictional characters. In fact, one spider was named after a character and the actor playing him.

The documentation and publication of this new species set the stage for further studies on the ecological roles of troglobitic spiders and their evolutionary adaptations.

Chinese civillians can rest assured that Otacilia khezu is considerably less dangerous than its namesake when they keep an eye out for the eyeless arachnid.

Original source:

Lin Y, Chen H, Wang X, Li S (2024) Otacilia khezu sp. nov., a new troglobitic spider (Araneae, Phrurolithidae) from Guangxi, China. Biodiversity Data Journal 12: e126716.

Follow Biodiversity Data Journal on Facebook and X.

Pensoft at the 7th European Congress of Conservation Biology as a publisher and Horizon project partner

At the Pensoft’s stand, delegates learned about the scientific publisher’s versatile open-access journal portfolio, as well as related publishing services and the Horizon project where Pensoft is a partner.

Between 17th and 22nd June 2024, Pensoft’s scholarly publishing and project teams joined the European Congress of Conservation Biology (ECCB), organised by the Society for Conservation Biology and hosted by the University of Bologna.

Here’s a fun fact: the University of Bologna is the oldest one still in operation in the world. It is also etched in history for being the first institution to award degrees of higher learning.  

This year, the annual event themed “Biodiversity positive by 2030” took place in the stunning Italian city of Bologna famous for its historical and cultural heritage, in a way building a bridge between the past of European civilisation and the future, which is now in our hands.


At the Pensoft’s stand, delegates learned about the scientific publisher’s versatile open-access journal portfolio of over 30 journals covering the fields of ecology and biodiversity, as well as other related services and products offered by Pensoft, including the end-to-end full-featured scholarly publishing platform ARPHA, which hosts and powers all Pensoft journals, in addition to dozens other academic outlets owned by learned societies, natural history museums and other academic institutions.

In addition to its convenient collaborative online environment, user interface and automated export/import workflows, what ARPHA’s clients enjoy perhaps the most, are the various human-provided services that come with the platform, including graphic and web design, assistance in journal indexing, typesetting, copyediting and science communication.

Visitors at the stand could also be heard chatting with Pensoft’s Head of Journal development, Marketing and PR: Iva Boyadzhieva about the publisher’s innovative solutions for permanent preservation and far-reaching dissemination and communication of academic outputs that do not match the traditional research article format.

For example, the Research Ideas and Outcomes (RIO) journal was launched in 2015 by Pensoft as an open-science journal that would publish ‘unconventional’ research outputs, such as Grant proposals, Policy briefs, Project reports, Data management plans, Research ideas etc. Its project-branded open-science collections are in fact one of the Pensoft’s products that enjoys particular attention to participants in scientific projects funded by the likes of the European Commission’s Horizon programme.

Another innovation by Pensoft that easily becomes a talking point at forums like ECCB, is the ARPHA Conference Abstract (ACA) platform, which is basically a journal for conference abstracts, where abstracts are treated and published much like regular journal articles (a.k.a. ‘mini papers’) to enable permanent preservation, but also accessibility, discoverability and citability. Furthermore, ACA has been designed to act as an abstracts submission portal, where the abstracts undergo review and receive feedback before being published and indexed at dozens of relevant scientific databases.


At ECCB 2024, our team was also happy to meet in person many authors and editors, whose work has frequented the pages of journals like Nature Conservation, Biodiversity Data Journal, ZooKeys and NeoBiota, to name a few.

On Wednesday, delegates also got a chance to hear the talk by renowned vegetation ecologist at the ZHAW Zurich University of Applied Sciences and Editor-in-Chief at the Vegetation Classification and Survey journal: Prof. Dr. Jürgen Dengler. He presented findings and conclusions concerning neophytes in Switzerland, while drawing comparisons with other European countries and regions.


At this year’s ECCB, Pensoft took a stand as an active Horizon project participant too. At the publisher’s booth, the delegates could explore various project outputs produced within REST-COAST, SpongeBoost and BioAgora. Each of these initiatives has been selected by the European Commission to work on the mitigation of biodiversity decline, while aiming for sustainable ecosystems throughout the Old continent.

In all three projects, Pensoft is a consortium member, who contributes with expertise in science communication, dissemination, stakeholder engagement and technological development.

Coordinated by the Catalonia University of Technology UPC-BarcelonaTech and involving over 30 European institutions, REST-COAST has been working on developing tools to address key challenges to coastal ecosystems – all consequences of a long history of environmental degradation of our rivers and coasts.

Having started earlier this year, SpongeBoost is to build upon existing solutions and their large-scale implementation by implementing innovative approaches to improve the functional capacity of sponge landscapes. The project is coordinated by the Helmholtz Centre for Environmental Research (UFZ) and will be developed with the active participation of 10 partnering institutions from seven countries across Europe. 

In the meantime, since 2022, the five-year BioAgora project has been working towards setting up the Science Service for Biodiversity platform, which will turn into an efficient forum for dialogue between scientists, policy actors and other knowledge holders. BioAgora is a joint initiative, which brings together 22 partners from 13 European countries led by the Finnish Environment Institute (SYKE).


Still, REST-COAST, SpongeBoost and BioAgora were not the only Horizon projects involving Pensoft that made an appearance at ECCB this year thanks to the Pensoft team. 

On behalf of OBSGESSION – another Horizon-funded project, Nikola Ganchev, Communications officer at Pensoft, presented a poster about the recently started project. Until the end of 2027, the OBSGESSION project, also led by the Finnish Environment Institute (SYKE) and involving a total of 12 partnering organisations, will be tasked with the integration of different biodiversity data sources, including Earth Observation, in-situ research, and ecological models. Eventually, these will all be made into a comprehensive product for biodiversity management in both terrestrial and freshwater ecosystems. 

On Tuesday evening, the CO-OP4CBD (abbreviation for Co-operation for the Convention on Biological Diversity) team: another Horizon Europe project, where Pensoft contributes with expertise in science communication and dissemination, held a workshop dedicated to what needs to be done to promote CBD activities in Central and Eastern Europe.

On the next day, scientists from the EuropaBON consortium: another project involving Pensoft that had concluded only about a month ago, held a session to report on the final conclusions from the project concerning the state and progress in biodiversity monitoring.


You can find the detailed scientific programme of this year’s ECCB on the congress’ website. 

Use the #ECCB2024 hashtag on X (formerly Twitter) to relive highlights from the ECCB congress. 

Cute but deadly: a new velvet worm species from Ecuador

The so-called “living fossil” shoots a sticky substance from a pair of glands to trap its prey.

Researchers have described a remarkable new species of velvet worm from the Ecuadorian Amazon.

Take a look below:

Oroperipatus tiputini.
Credit: Roberto J. León, Archive Universidad San Francisco de Quito USFQ.

While the Tiputini velvet worm (Oroperipatus tiputini) may look friendly, it is an accomplished hunter that shoots a sticky substance from a pair of glands to trap its prey.

However, lead author Jorge Montalvo from the USFQ Museum of Zoology, notes that the species also has a softer side, with the mother taking care of her considerably lighter-coloured young after they are born.

Adult female velvet worm with her offspring on a leaf.
Adult female with her offspring.

Velvet worms, also known as onychophorans or peripatus, are rare and unique invertebrates often referred to as “living fossils” because they evolved over 500 million years ago, long before the appearance of dinosaurs.

Currently, only about 240 velvet worm species are known, inhabiting tropical regions in the Americas, southern Chile, Africa, Southeast Asia, Oceania, and New Zealand.

Adult velvet worm on a leaf.
Oroperipatus tiputini.
Pedro Peñaherrera-R., Archive Universidad San Francisco de Quito USFQ

Published in the open-access journal Zoosystematics and Evolution, the discovery was more than 20 years in the making. It also represented the first study of Ecuadorian velvet worms for over 100 years.

“The research on this new species took several decades. I discovered the first individual of this new species in 2001, and we finally managed to describe it as part of Jorge Montalvo’s graduation thesis, who is now my colleague at the Museum of Zoology at USFQ. To complete the description, we used not only macromorphological descriptions but also high-magnification images obtained with a scanning electron microscope.”

Diego F. Cisneros-Heredia, one of the authors and director of the USFQ Museum of Zoology, Ecuador.

The researchers named the species after the Tiputini Biodiversity Station (TBS), part of the Yasuní Biosphere Reserve. The name recognises the hard work of the station’s management, research, and field team in protecting biodiversity.

Map of Ecuador showing the location of the Tiputini Biodiversity Station.
Map of Ecuador showing the location of the Tiputini Biodiversity Station (white square), type locality of Oroperipatus tiputini sp. nov., in the Amazonian lowlands.

The description of the Tiputini velvet worm raises the total number of described velvet worm species in Ecuador to seven. This species is the first from the Ecuadorian Amazon lowlands and the third in the western Amazon.

Original source

Montalvo-Salazar JL, Bejarano ML, Valarezo A, Cisneros-Heredia DF (2024) A new species of velvet worm of the genus Oroperipatus (Onychophora, Peripatidae) from western Amazonia. Zoosystematics and Evolution 100(3): 779-789.

Follow Zoosystematics and Evolution on X and Facebook for more!

Brand new computer language describes organismal traits to create computable species descriptions

Describing traits with Phenoscript is like programming a computer code for how an organism looks.

The beetle species Grebennikovius basilewskyi. Numbers next to arrows indicate patterns of phenotype statements explained in the section “Phenoscript: main patterns of phenotype statements”. Arrow numbers from T1 to T5 illustrate individual body parts. See more in the research study.

One of the most beautiful aspects of Nature is the endless variety of shapes, colours and behaviours exhibited by organisms. These traits help organisms survive and find mates, like how a male peacock’s colourful tail attracts females or his wings allow him to fly away from danger. Understanding traits is crucial for biologists, who study them to learn how organisms evolve and adapt to different environments.

To do this, scientists first need to describe these traits in words, like saying a peacock’s tail is “vibrant, iridescent, and ornate”. This approach works for small studies, but when looking at hundreds or even millions of different animals or plants, it’s impossible for the human brain to keep track of everything.

Computers could help, but not even the latest AI technology is able to grasp human language to the extent needed by biologists. This hampers research significantly because, although scientists can handle large volumes of DNA data, linking this information to physical traits is still very difficult.

To solve this problem, researchers from the Finnish Museum of Natural History, Giulio Montanaro and Sergei Tarasov, along with collaborators, have created a special language called Phenoscript. This language is designed to describe traits in a way that both humans and computers can understand. Describing traits with Phenoscript is like programming a computer code for how an organism looks.

Phenoscript uses something called semantic technology, which helps computers understand the meaning behind words, much like how modern search engines know the difference between the fruit “apple” and the tech company “Apple” based on the context of your search.

“This language is still being tested, but it shows a lot of promise. As more scientists start using Phenoscript, it will revolutionise biology by making vast amounts of trait data available for large-scale studies, boosting the emerging field of phenomics,”

explains Montanaro.

In their research article, newly published in the open-access, peer-reviewed Biodiversity Data Journal, the researchers make use of the new language for the first time, as they create semantic phenotypes for four species of dung beetles from the genus Grebennikovius. Then, to demonstrate the power of the semantic approach, they apply simple semantic queries to the generated phenotypic descriptions. 

Finally, the team takes a look yet further ahead into modernising the way scientists work with species information. Their next aim is to integrate semantic species descriptions with the concept of nanopublications, “which encapsulates discrete pieces of information into a comprehensive knowledge graph”. As a result, data that has become part of this graph can be queried directly, thereby ensuring that it remains Findable, Accessible, Interoperable and Reusable (FAIR) through a variety of semantic resources.


Research paper:

Montanaro G, Balhoff JP, Girón JC, Söderholm M, Tarasov S (2024) Computable species descriptions and nanopublications: applying ontology-based technologies to dung beetles (Coleoptera, Scarabaeinae). Biodiversity Data Journal 12: e121562.


The hereby study is the latest addition to the special topical collection: “Linking FAIR biodiversity data through publications: The BiCIKL approach”, launched and supported by the recently concluded Horizon 2020 project: Biodiversity Community Integrated Knowledge Library (BiCIKL). The collection aims to bring together scientific publications that demonstrate the advantages and novel approaches in accessing and (re-)using linked biodiversity data.


What expert recommendations did the BiCIKL consortium give to policy makers and research funders to ensure that biodiversity data is FAIR, linked, open and, indeed, future-proof? Find out in the blog post summarising key lessons learnt from the Horizon 2020 project.


Follow Biodiversity Data Journal on Facebook and X.

Lazy predator: A new species of mountain pit viper from China

Ovophis jenkinsi is dark brownish-grey, with trapezoidal patches on its back. It is endemic to China’s Yingjiang County and is not difficult to find in the wild.

Yunnan, China is a biodiversity hotspot, with many new reptile species discovered in the region in recent years. It is also where a research team from China found a new species of medium-sized venomous snake, known as a mountain pit viper.

Ovophis jenkinsi. Photo by Xianchun Qiu

“We checked specimens of the [snake] genus Ovophis collected by Institute of Zoology, Chinese Academy of Sciences and Beijing Forestry University in Yingjiang, Yunnan in 2008, and found that these specimens were different from all known similar species. We collected some new specimens from Yingjiang in 2023 and finally determined that this population represents a new species!” the researchers explained.

The new species was named Ovophis jenkinsi in honour of herpetologist Robert “Hank” William Garfield Jenkins AM (September 1947−September 2023), who had “a passion for snakes, especially pit vipers, and helped China, along with many Asian countries, complete snake census, conservation, and management projects,” the team writes in their study, which was published in the open-access journal ZooKeys.

A specimen of Ovophis jenkinsi from Yingjiang, Yunnan, China. Photo by Xianchun Qiu

Ovophis jenkinsi is generally dark brownish-grey, but some individuals can be deep orange-brown, and has trapezoidal patches on its back. “It is usually slow-moving but shows great aggression when disturbed,” the researchers explain after observing the snake’s behaviour. “When threatened, these snakes inflate their bodies to make themselves appear larger and strike quickly.”

There are no records to date of humans being bitten by this species.

The only known habitat of Ovophis jenkinsi, the tropical montane rainforest in Yingjiang, Yunnan, China. Photo by Xiaojun Gu

Like many other species, this snake is endemic to China’s Yingjiang County, which means it is currently found only there. “It is not difficult to find this species in the wild, they are active mainly in the autumn and prefer cool, humid, and even rainy nights, probably to avoid competition with other snakes,” the researchers say, suggesting it might feed on small mammals.

“We will be collecting more information about O. jenkinsi in the future, including their appearance, distribution, and habits, to improve our understanding of this species,” the researchers say in conclusion.

Research article:

Qiu X-C, Wang J-Z, Xia Z-Y, Jiang Z-W, Zeng Y, Wang N, Li P-P, Shi J-S (2024) A new mountain pitviper of the genus Ovophis Burger in Hoge & Romano-Hoge, 1981 (Serpentes, Viperidae) from Yunnan, China. ZooKeys 1203: 173-187.