Simplified method to survey amphibians will aid conservation

Researchers developed a method to determine which amphibians inhabit a specific area. The new technique will resolve some of the issues with conventional methods, such as capture and observational surveys.

Ryukyu Sword Tailed Newt, or Firebellied Newt. Photo by Neil Dalphin via Creative Commons CC0.

An international collaborative research group of members from seven institutions has developed a method to determine which amphibians (frogs, newts and salamanders) inhabit a specific area. Their work was published in the open-access, peer-reviewed journal Metabarcoding and Metagenomics (MBMG).

To do so, the scientists amplified and analysed extra-organismal DNA (also known as environmental DNA or eDNA) found in the water. This DNA ends up in the water after being expelled from the amphibian’s body along with mucus and excrement. 

The research group included Postdoctoral Researcher Sakata K. Masayuki and Professor Minamoto Toshifumi (Kobe University), Associate Professor Kurabayashi Atsushi (Nagahama Institute of Bio-Science and Technology), Nakamura Masatoshi (IDEA Consultants, Inc.) and Associate Professor Nishikawa Kanto (Kyoto University). 

The newly developed technique will resolve some of the issues with conventional methods, such as capture and observational surveys, which require a specialist surveyor who can visually identify species. Conventional surveys are also prone to discrepancies due to environmental factors, such as climate and season.

The researchers hope that the new method will revolutionise species monitoring, as it will enable anyone to easily monitor the amphibians that inhabit an area by collecting water samples.  

While monitoring in general is crucial to conserve the natural ecosystems, the importance of surveying amphibians is even more pressing, given the pace of their populations’ decline.

Amongst major obstacles to amphibian monitoring, however, are the facts that they are nocturnal; their young (e.g. tadpoles) and adults live in different habitats; and that specialist knowledge is required to capture individuals and identify their species. These issues make it particularly difficult to accurately survey amphibians in a standardised way, and results of individual efforts often contradict each other.

On the other hand, eDNA analysis techniques have already been established in programmes targeted at monitoring fish species, where they are already commonplace. So, the researchers behind the present study joined forces to contribute towards the development of a similar standardised analysis method for amphibians.

First of all, the researchers designed multiple methods for analysing the eDNA of amphibians and evaluated their performance to identify the most effective method. Next, they conducted parallel monitoring of 122 sites in 10 farmlands across Japan using the developed eDNA analysis along with the conventional methods (i.e. capture surveys using a net and observation surveys). 

As a result, the newly developed method was able to detect all three orders of amphibians: Caudata (the newts and salamanders), Anura (the frogs), and Gymnophiona (the caecilians). 

Furthermore, this novel eDNA analysis method was able to detect more species across all field study sites than the conventional method-based surveys, indicating its effectiveness.

Research Background

Amphibian biodiversity is continuing to decline worldwide and collecting basic information about their habitats and other aspects via monitoring is vital for conservation efforts. Traditional methods of monitoring amphibians include visual and auditory observations, and capture surveys.

However, amphibians tend to be small in size and many are nocturnal. The success of surveys varies greatly depending on the climate and season, and specialist knowledge is required to identify species. Consequently, it is difficult to monitor a wide area and assess habitats. The last decade has seen the significant development of environmental DNA analysis techniques, which can be used to investigate the distribution of a species by analysing external DNA (environmental DNA) that is released into the environment along with an organism’s excrement, mucus and other bodily fluids. 

The fundamentals of this technique involve collecting water from the survey site and analysing the eDNA contained in it to find out which species inhabit the area. In recent years, the technique has gained attention as a supplement for conventional monitoring methods. Standardised methods of analysis have already been established for other species, especially fishes, and diversity monitoring using eDNA is becoming commonplace. 

However, eDNA monitoring of amphibians is still at the development stage. One reason for this is that the proposed eDNA analysis method must be suitable for the target species or taxonomic group, and there are still issues with developing and implementing a comprehensive method for detecting amphibians. If such a method could be developed, this would make it possible for monitoring to be conducted even by people who do not have the specialised knowledge to identify species nor surveying experience.

Hopefully, this would be established as a unified standard for large-scale monitoring surveys, such as those on a national scale. This research group’s efforts to develop and evaluate analysis methods will hopefully lay the foundations for eDNA analysis to become a common tool for monitoring amphibians, as well as fish. 

***

Follow Metabarcoding and Metagenomics (MBMG) journal on Twitter and Facebook.

***

Research article: 

Sakata MK, Kawata MU, Kurabayashi A, Kurita T, Nakamura M, Shirako T, Kakehashi R, Nishikawa K, Hossman MY, Nishijima T, Kabamoto J, Miya M, Minamoto T (2022) Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia. Metabarcoding and Metagenomics 6: e76534. https://doi.org/10.3897/mbmg.6.76534

Shining like a diamond: a new species of diamond frog from northern Madagascar

Despite the active ongoing taxonomic progress on the Madagascar frogs, the amphibian inventory of this hyper-diverse island is still very far from being complete. More new species are constantly being discovered, often within already well-studied areas. So, in one of the relatively well-studied parks in northern Madagascar, a new species of diamond frog, Rhombophryne ellae, was found in 2017. Now, the discovery is published in the open-access journal Zoosystematics and Evolution.

Despite the active ongoing taxonomic progress on Madagascar’s frogs, the amphibian inventory of this hyper-diverse island is still very far from being complete. The known diversity of the diamond frog genus Rhombophryne in Madagascar has increased significantly (more than doubled!) over the last 10 years, but still there are several undescribed candidate species awaiting description. New species are constantly being discovered in Madagascar, often even within already well-studied areas. One such place is the Montagne d’Ambre National Park in northern Madagascar.

Montagne d’Ambre National Park is widely known for its endemic flora and fauna, waterfalls and crater lakes, and considered to be a relatively well-studied area. Yet, only two studies have been published so far on the reptiles and amphibians of the Park.

Rhombophryne ellae was captured just as Cyclone Ava began to make itself felt across Madagascar with high winds and heavy rain. The camp where Dr. Scherz and his team were based became flooded, with rivers running through the kitchen and sleeping area. Miserable weather for humans, but a time of increased activity for some of the more elusive amphibians of the forest.
Credit: Mark D. Scherz
License: CC-BY 4.0

Serving the pursuit of knowledge of the herpetofauna in the region, Germany-based herpetologist Dr. Mark D. Scherz (Bavarian State Collection of Zoology, Technical University of Braunschweig, University of Konstanz) published a description of a new diamond frog species: Rhombophryne ellae, in the open-access journal Zoosystematics and Evolution.

Rhomobphryne ellae
Credit: Mark D. Scherz
License: CC-BY 4.0

“As soon as I saw this frog, I knew it was a new species. The orange flash-markings on the legs and the large black spots on the hip made it immediately obvious to me. During my Master’s and PhD research, I studied this genus and described several species, and there are no described species with such orange legs, and only few species have these black markings on the hip. It’s rare that we find a frog and are immediately able to recognise that it is a new species without having to wait for the DNA sequence results to come back, so this was elating”,

shares Dr. Scherz.

The new species is most closely related to a poorly-known and still undescribed species from Tsaratanana in northern Madagascar, but is otherwise quite different from all other diamond frogs. With the orange colouration on its legs, Rhombophryne ellae joins the growing list of frogs that have red to orange flash-markings. The function of this striking colouration remains unknown, despite having evolved repeatedly in frogs, including numerous times in Madagascar’s narrow-mouthed frogs alone.

The new species, Rhombophryne ellae, is well camouflaged among the rainforest leaflitter
Credit: Mark D. Scherz
License: CC-BY 4.0

“The discovery of such a distinctive species within a comparatively well-studied park points towards the gaps in our knowledge of the amphibians of the tropics. It also highlights the role that bad weather, especially cyclones, can play in bringing otherwise hidden frogs out of hiding—Rhombophryne ellae was caught just as Cyclone Ava was moving in on Madagascar, and several other species my colleagues and I have recently described were also caught under similar cyclonic conditions”,

says Dr. Scherz.
Rhombophryne ellae is a small, probably semi-fossorial (sub-terranean-dwelling) species of diamond frog, at home amongst the leaf litter of Montagne d’Ambre National Park, north Madagascar
Credit: Mark D. Scherz
License: CC-BY 4.0

The species is known so far only from a single specimen, making it difficult to estimate its conservation status. Yet, based on the status of other, related frogs from the same area, it will probably be Red-listed as Near Threatened due to its presumably small range and micro-endemicity.

Original source:

Scherz MD (2020) Diamond frogs forever: a new species of Rhombophryne Boettger, 1880 (Microhylidae, Cophylinae) from Montagne d’Ambre National Park, northern Madagascar. Zoosystematics and Evolution 96(2): 313-323. https://doi.org/10.3897/zse.96.51372


‘Social distancing’ saves frogs: New approach to identify individual frogs noninvasively

aitik Patel and Dr Abhijit Das of the Wildlife Institute of India came up with one of the very first non-invasive approaches to identify individual frogs using photos from their natural habitats, which are then processed with the animal recognition software HotSpotter. Their unique method is described in the open-access, peer-reviewed scientific journal Herpetozoa.

A Beautiful stream frog (Amolops formosus) in a Himalayan torrent stream
Photo by Naitik Patel

Globally, 41% amphibian species are regarded as threatened with extinction. However, when it comes to the case of India, the majority of the species falls in the Data Deficient group, according to the criteria of the International Union for Conservation of Nature‘s (IUCN) Red List of Threatened Species.

This means that we hardly have any population data for Indian amphibians, which leads to a serious conservation bottleneck, especially when you are dealing with elusive herpiles. Therefore, there is the pressing priority to obtain demographic trends to prompt and support conservation actions for endemic and habitat-dependent species.

While demographics of natural populations is best estimated with the mark-recapture technique, used in animals, where individuals have distinct body markings, such as the stripes in a tiger, the dots in a whale shark and the fingerprints in a human. In the meantime, while frogs are well known for their individual-specific markings and colour patterns, this kind of technique has never been used in amphibians, even though they have long been recognised as some of the most vulnerable animals on Earth.

On the other hand, it is hardly possible to capture and mark individual frogs in the wild. So, Naitik Patel and Dr Abhijit Das of the Wildlife Institute of India came up with one of the very first non-invasive approaches to identify individual frogs using photos from their natural habitats, which are then processed with the animal recognition software HotSpotter. Their unique method is described in the open-access, peer-reviewed scientific journal Herpetozoa.

“Capturing each frog is not possible in the field, so to address this problem, we conducted a short study on Beautiful stream frogs (Amolops formosus), a species that, just like many other amphibians, has variable body markings amongst individuals. As this species inhabits the Himalayan torrent stream, which is difficult to access, we tried our best to photograph each frog from a distance to avoid any kind of physical contact,”

explains Naitik Patel, a PhD student at the Wildlife Institute of India.

A Beautiful stream frog (Amolops formosus)
Photo by Abhijit Das

Having concluded their study with a success rate of 94.3%, the research team is hopeful that their protocol could be effectively implemented in rapid population estimation for many endangered species of frogs.

“We conducted photographic documentation to capture the unique markings of each frog, and then compared them, using computer-assisted individual identification. With this method, the number of individuals can be counted to estimate the population structure. This study is exceptional, owing to the minimal disturbance it causes to the frogs. Such a technique has rarely been tried on amphibians and is a promising method to estimate their numbers. It can also be used in citizen science projects,”

comments senior scientist Dr Abhijit Das.

###

Original source:

Patel NG, Das A (2020) Shot the spots: A reliable field method for individual identification of Amolops formosus (Anura, Ranidae). Herpetozoa 33: 7-15. https://doi.org/10.3897/herpetozoa.33.e47279

A new Critically Endangered frog named after “the man from the floodplain full of frogs”

A new species of a Critically Endangered miniaturised stump-toed frog of the genus Stumpffia found in Madagascar is named Stumpffia froschaueri after “the man from the floodplain full of frogs”, Christoph Froschauer. The namesake of the new frog is famous for being the first, and European-wide renowned, printer from Zürich, famous for printing “Historia animalium” and the “Zürich Bible”. The finding is published in the peer-reviewed open-access journal Zookeys.

A new species proposed to be classified as Critically Endangered of miniaturised stump-toed frog of the genus Stumpffia, found in Madagascar, is named Stumpffia froschaueri after “the man from the floodplain full of frogs”, Christoph Froschauer. The namesake of the new frog is famous for being the first, and European wide renowned, printer from Zürich, famous for printing Historia animalium and the “Zürich Bible”

Christoph Froschauer’s (ca. 1490 – April 1564) family name means “the man from the floodplain full of frogs”, and the printer used to sign his books with a woodcut, showing frogs under a tree in a landscape. Amongst his publications are works by Zwingli, Bullinger, Gessner, Erasmus von Rotterdam and Luther, and as a gift for his art, the printer was given citizenship in Zürich in 1519. Now, scientists have also honoured Froschauer’s great contributions by naming a new frog species after him.

The discovery, made by an international team of scientists from CIBIO (Research Centre in Biodiversity and Genetic Resources) of the University of Porto, Zoological Society of London, University of Lisbon, University of Brighton, University of Bristol, University of Antananarivo and Museo Regionale di Scienze Naturali, is published in the open-access peer-reviewed journal Zookeys.

The new species is reliably known only from a few specimens collected in three forest patches of the Sahamalaza region, an area severely threatened by fire, drought and high levels of forest clearance.

“In Anketsakely and Ankarafa this species has been found only in areas with relatively undisturbed forest, and active individuals were found during the day within the leaf-litter on the forest floor, where discreet calling males were also detected”,

shares lead author Dr. Angelica Crottini from CIBIO.

Even though two out of the three forest patches where Stumpffia froschaueri occurs are now part of a UNESCO Biosphere Reserve, there is a lack in forest border patrols and the area remains under strong pressure from slash-and-burn activities and timber harvesting. Habitat loss and fragmentation are likely to represent a huge threat to the species’ survival and cause population declines, unless remedial actions to enforce the protection of these habitats are taken. The scientists suggest to classify Stumpffia froschaueri as a Critically Endangered species according to criteria of the IUCN Red List.

Life colouration of Stumpffia froschaueri sp. nov., dorsolateral view of paratype ZSM 167/2019 (ACZCV 0968) from Ankarafa Forest
Credit: Gonçalo M. Rosa
License: CC-BY 4.0

“We here reiterate the need to continue with field survey activities, giving particular attention to small and marginal areas, where several microendemic candidate species are likely waiting to be discovered and formally described. This description confirms the Sahamalaza Peninsula as an important hotspot of amphibian diversity, with several threatened species relying almost entirely on the persistence of these residual forest fragments”,

concludes Dr. Crottini.
Life colouration of Stumpffia froschaueri sp. nov., dorsolateral view of paratype ZSM 166/2019 (ACZCV 0939) from Ankarafa Forest
Credit: Gonçalo M. Rosa
License: CC-BY 4.0

Contact:
Dr. Angelica Crottini 
Email: tiliquait@yahoo.it 

Original source:
Crottini A, Rosa GM, Penny SG, Cocca W, Holderied MW, Rakotozafy LMS, Andreone F (2020) A new stump-toed frog from the transitional forests of NW Madagascar (Anura, Microhylidae, Cophylinae, Stumpffia). ZooKeys 933: 139-164. https://doi.org/10.3897/zookeys.933.47619

New to science newts from Vietnam with an important message for Biodiversity Day 2020

A new study, published in the peer-reviewed open-access journal ZooKeys, describes two new to science species and one subspecies of crocodile newts from northern Vietnam. However, this manifestation of the incredible diversity of life hosted on our planet comes as an essential reminder of how fragile Earth’s biodiversity really is.

One of the newly discovered crocodile newt species, Tylototriton pasmansi
Photo by Cuong The Pham

In time for the International Day for Biological Diversity 2020, the date (22 May) set by the United Nations to recognise biodiversity as “the pillars upon which we build civilizations”, a new study, published in the peer-reviewed open-access journal ZooKeys, describes two new to science species and one subspecies of crocodile newts from northern Vietnam. However, this manifestation of the incredible diversity of life hosted on our planet comes as an essential reminder of how fragile Earth’s biodiversity really is.

Until recently, the Black knobby newt (Tylototriton asperrimus) was known to be a common species inhabiting a large area stretching all the way from central and southern China to Vietnam. Much like most of the other members of the genus Tylototriton, colloquially referred to as crocodile newts or knobby newts, it has been increasingly popular amongst exotic pet owners and traditional Chinese medicine practitioners. Meanwhile, authorities would not show much concern about the long-term survival of the Black knobby newt, exactly because it was found at so many diverse localities. In fact, it is still regarded as Near Threatened, according to the International Union for Conservation of Nature‘s Red List.

However, over the past decade, the increasing amount of research conducted in the region revealed that there are, in fact, many previously unknown to science species, most of which would have been assumed to be yet another population of Black knobby newts. As a result, today, the crocodile newts represent the most species-rich genus within the whole family of salamanders and newts (Salamandridae).

One of the newly discovered crocodile newt species, Tylototriton sparreboomi
Photo by Anh Van Pham

Even though this might sound like great news for Earth’s biodiversity, unfortunately, it also means that each of those newly discovered species has a much narrower distributional range, making them particularly vulnerable to habitat loss and overcollection. In fact, the actual Black knobby newt turns out to only exist within a small area in China. Coupled with the high demand of crocodile newts for the traditional Chinese medicine markets and the exotic pet trade, this knowledge spells a worrying threat of extinction for the charming 12 to 15-centimetre amphibians.

In order to help with the answer of the question of exactly how many Vietnamese species are still being mistakenly called Black knobby newt, the German-Vietnamese research team of the Cologne Zoo (Germany), the universities of Hanoi (Vietnam), Cologne and Bonn (Germany), and the Vietnam Academy of Science and Technology analysed a combination of molecular and detailed morphological characters from specimens collected from northern Vietnam. Then, they compared them with the Black knobby newt specimen from China used to originally describe the species back in 1930.

Thus, the scientists identified two species (Tylototriton pasmansi and Tylototriton sparreboomi) and one subspecies (Tylototriton pasmansi obsti) previously unknown to science, bringing the total of crocodile newt taxa known from Vietnam to seven. According to the team, their discovery also confirms northern Vietnam to be one of the regions with the highest diversity of crocodile newts.

“The taxonomic separation of a single widespread species into multiple small-ranged taxa (…) has important implications for the conservation status of the original species,”

comment the researchers.

The newly discovered crocodile newts were named in honour of the specialist on salamander chytrid fungi and co-discoverer Prof. Dr. Frank Pasmans and, sadly, the recently deceased salamander enthusiasts and experts Prof. Fritz-Jurgen Obst and Prof. Dr. Max Sparreboom.

The newly discovered crocodile newt subspecies, Tylototriton pasmansi obsti
Photo by Anh Van Pham

In light of their findings, the authors conclude that the current and “outdated” Near Threatened status of the Black knobby newt needs to be reassessed to reflect the continuous emergence of new species in recent years, as well as the “severe threats from international trade and habitat loss, which have taken place over the last decade.”

Meanwhile, thanks to the commitment to biodiversity conservation of Marta Bernardes, lead author of the study and a PhD Candidate at the University of Cologne under the supervision of senior author Prof Dr Thomas Ziegler, all crocodile newts were included in the list of internationally protected species by the Convention on International Trade in Endangered Species (CITES) last year.

Today, some of the threatened crocodile newt species from Vietnam are already kept at the Cologne Zoo as part of conservation breeding projects. Such is the case for the Ziegler’s crocodile newt (Tylototriton ziegleri), currently listed as Vulnerable on the IUCN Red List and the Vietnamese crocodile newt (Tylototriton vietnamensis), currently considered as Endangered. Fortunately, the latter has been successfully bred at Cologne Zoo and an offspring from Cologne was recently repatriated.

###

Original source:

Bernardes M, Le MD, Nguyen TQ, Pham CT, Pham AV, Nguyen TT, Rödder D, Bonkowski M, Ziegler T (2020) Integrative taxonomy reveals three new taxa within the Tylototriton asperrimus complex (Caudata, Salamandridae) from Vietnam. ZooKeys 935: 121-164. https://doi.org/10.3897/zookeys.935.37138

Eleven new species of rain frogs discovered in the tropical Andes

One of the newly described species: Pristimantis chomskyi.
Its name honors Noam Chomsky, a renowned linguist from ASU.
Image by David Velalcázar, BIOWEB-PUCE.

Eleven new to science species of rain frogs are described by two scientists from the Museum of Zoology of the Pontifical Catholic University of Ecuador in the open-access journal ZooKeys. Discovered in the Ecuadorian Andes, the species are characterized in detail on the basis of genetic, morphological, bioacoustic, and ecological features.

On the one hand, the publication is remarkable because of the large number of new species of frogs. Regarding vertebrate animals, most studies only list between one and five new to science species, because of the difficulty of their collection and the copious amount of work involved in the description of each. To put it into perspective, the last time a single article dealt with a similar number of newly discovered frogs from the western hemisphere was in 2007, when Spanish scientist Ignacio de la Riva described twelve species from Bolivia.

The Rain frogs comprise a unique group lacking a tadpole stage of development. Their eggs are laid on land and hatch as tiny froglets.
Image by BIOWEB-PUCE.

On the other hand, the new paper by Nadia Paez and Dr Santiago Ron is astounding due to the fact that it comes as part of the undergraduate thesis of Nadia Paez, a former Biology student at the Pontifical Catholic University, where she was supervised by Professor Santiago Ron. Normally, such a publication would be the result of the efforts of a large team of senior scientists. Currently, Nadia Paez is a PhD student in the Department of Zoology at the University of British Columbia in Canada.

Unfortunately, amongst the findings of concern is that most of the newly described frog species are listed as either Data Deficient or Threatened with extinction, according to the criteria of the International Union for Conservation of Nature (IUCN). All of the studied amphibians appear to have very restricted geographic ranges, spanning less than 2,500 km2. To make matters worse, their habitats are being destroyed by human activities, especially cattle raising, agriculture, and mining.

Amongst the newly described species, there is the peculiar Multicolored Rain Frog, where the name refers to its outstanding color variation. Individuals vary from bright yellow to dark brown. Initially, the studied specimens were assumed to belong to at least two separate species. However, genetic data demonstrated that they represented a single, even if highly variable, species.

Variations of the Multicolored Rain Frog. Its name makes reference to the outstandingly varied colorations within the species.
Image by BIOWEB-PUCE.

The rest of the previously unknown frogs were either named after scientists, who have made significant contributions in their fields, or given the names of the places they were discovered, in order to highlight places of conservation priority.

###

Original source:

Paez NB, Ron SR (2019) Systematics of Huicundomantis, a new subgenus of Pristimantis (Anura, Strabomantidae) with extraordinary cryptic diversity and eleven new species. ZooKeys868: 1-112. https://doi.org/10.3897/zookeys.868.26766.

New puddle frog species leaps into the spotlight from an unexplored mountain, Ethiopia

Two females and eggs of the newly described species (Phrynobatrachus bibita). Photo by S. Goutte and J. Reyes-Velasco.

A new species of puddle frog has just been discovered by NYU Abu Dhabi researchers at the unexplored and isolated Bibita Mountain in southwestern Ethiopia. The research team named the new species Phrynobatrachus bibita sp. nov., or Bibita Mountain dwarf puddle frog, inspired by its home.

In summer 2018, NYU Abu Dhabi Postdoctoral Associates Sandra Goutte and Jacobo Reyes-Velasco explored an isolated mountain in southwestern Ethiopia where some of the last primary forest of the country remains. Bibita Mountain was under the radars of the team for several years due to its isolation and because no other zoologist had ever explored it before.

“Untouched, isolated, and unexplored: it had all the elements to spike our interest,” says Dr. Reyes-Velasco, who initiated the exploration of the mountain. “We tried to reach Bibita in a previous expedition in 2016 without success. Last summer, we used a different route that brought us to higher elevation,” he added.

Female (Phrynobatrachus bibita) next to egg clutches. Photo by S. Goutte and J. Reyes-Velasco.

Their paper, published in ZooKeys journal, reports that the new, tiny frog (17 mm for males and 20 mm for females) is unique among Ethiopian puddle frogs. Among other morphological features, a slender body with long legs, elongated fingers and toes, and a golden coloration, set this frog apart from its closest relatives.

“When we looked at the frogs, it was obvious that we had found a new species, they look so different from any Ethiopian species we had ever seen before!” explains Dr. Goutte.

Back in NYU Abu Dhabi, the research team sequenced tissue samples from the new species and discovered that Phrynobatrachus bibita sp. nov. is genetically different from any frog species in the region.

“The discovery of such a genetically distinct species in only a couple of days in this mountain is the perfect demonstration of how important it is to assess the biodiversity of this type of places. The Bibita Mountain probably has many more unknown species that await our discovery; it is essential for biologists to discover them in order to protect them and their habitat properly,” explains NYU Abu Dhabi Program Head of Biology and the paper’s lead researcher Stéphane Boissinot, who has been working on Ethiopian frogs since 2010.

/Original text by New York University Abu Dhabi, UAE./

###

Original source:

Goutte S, Reyes-Velasco J, Boissinot S (2018) A new species of puddle frog from an unexplored mountain in southwestern Ethiopia (Anura, Phrynobatrachidae, Phrynobatrachus). ZooKeys 824: 53–70. https://doi.org/10.3897/zookeys.824.31570

Extraordinary treefrog discovered in the Andes of Ecuador

An adult of the newly described species, Hyloscirtus hillisi. Photo by Gustavo Pazmiño, BIOWEB Ecuador.

A new treefrog species was discovered during a two-week expedition to a remote tabletop mountain at Cordillera del Cóndor, a largely unexplored range in the eastern Andes.

“To reach the tabletop, we walked two days along a steep terrain. Then, between sweat and exhaustion, we arrived to the tabletop where we found a dwarf forest. The rivers had blackwater and the frogs were sitting along them, on branches of brown shrubs similar in color to the frogs’ own. The frogs were difficult to find, because they blended with their background,” Alex Achig, one of the field biologists who discovered the new species comments on the hardships of the expedition.

Curiously, the frog has an extraordinary, enlarged claw-like structure located at the base of the thumb. Its function is unknown, but it could be that it is used either as a defence against predators or as a weapon in fights between competing males.

Having conducted analyses of genetic and morphologic data, scientists Santiago R. Ron, Marcel Caminer, Andrea Varela, and Diego Almeida from the Catholic University of Ecuador concluded that the frog represented a previously unknown species. It was recently described in the open-access journal ZooKeys.

Unlike other frogs, the new species has a claw at the base of the thumb. Photo by Gustavo Pazmiño, BIOWEB Ecuador.

The species name, Hyloscirtus hillisi, honors Dr. David Hillis, a member of the National Academy of Sciences of the United States of America, who discovered three closely related frog species in the same genus in the 1980s, while conducting a series of field trips to the Andes of southern Ecuador. Throughout his career, Dr. Hillis has made significant contributions to the knowledge of Andean amphibians and reptiles.

Despite being newly described, Hyloscirtus hillisi is already at risk of extinction. It has a small distribution range near a large-scale mining operation carried out by a Chinese company. Habitat destruction in the region has been recently documented by the NGO Amazon Conservation.

###

Original source:

Ron SR, Caminer MA, Varela-Jaramillo A, Almeida-Reinoso D (2018) A new treefrog from Cordillera del Cóndor with comments on the biogeographic affinity between Cordillera del Cóndor and the Guianan Tepuis (Anura, Hylidae, Hyloscirtus). ZooKeys 809: 97-124. https://doi.org/10.3897/zookeys.809.25207

A metamorph of the new species, Hyloscirtus hillisi. Photo by Darwin Núñez, BIOWEB Ecuador.

Life in the fast flow: Tadpoles of new species rely on ‘suction cups’ to keep up

The frogs living in the rainforest of Sumatra also represent a new genus

Indonesia, a megadiverse country spanning over 17,000 islands located between Australia and mainland Asia, is home to more than 16% of the world’s known amphibian and reptile species, with almost half of the amphibians found nowhere else in the world. Unsurprisingly, biodiversity scientists have been feverishly discovering and describing fascinating new animals from the exotic island in recent years.

Sumatran forest

Such is the case of an international team from the University of Hamburg, Germany, University of Texas at Arlington, USA, University of Bern, Switzerland and Bandung Institute of Technology, Indonesia, who came across a curious tadpole while collecting amphibian larvae from fast-flowing streams as part of an arduous expedition in the remote forests on the island of Sumatra.

To the amazement of the scientists, it turned out that the tadpoles possess a peculiar cup-like structure on their bellies, in addition to the regular oral disk found in typical tadpoles. As a result, the team described two new species and a genus in the open access journal Zoosystematics and Evolution. A previously known, but misplaced in an unsuitable genus, frog was also added to the group, after it was proved that it takes advantage of the same modification.

This phenomenon where tadpoles display ‘belly suckers’ is known as gastromyzophory and, albeit not unheard of, is a rare adaptation that is only found in certain toads in the Americas and frogs in Asia,” explains lead author Umilaela Arifin.

The abdominal sucker, it is hypothesized, helps these tadpoles to exploit a very special niche – fast-flowing streams – where the water would otherwise be too turbulent and rapid to hang around. Gastromyzophorous species, however, rely on the suction provided by their modified bellies to secure an exclusive access to plentiful food, such as algae, while the less adapted are simply washed away.

When the scientists took a closer look at the peculiar tadpoles and their adult forms, using a powerful combination of molecular and morphological data, they realized that they had not only stumbled upon a rare amphibian trait, but had also discovered two brand new species of frogs in the process.

Sumaterana crassiovis

Moreover, the animals turned out so distinct in their evolutionary makeup, compared to all other frogs, that the scientists had to create a whole new genus to accommodate them. Formally named Sumaterana, the genus is to be commonly referred to as Sumatran Cascade Frogs.

We decided to call the new genus Sumaterana after Sumatra, to reflect the fact that these new species, with their rare evolutionary adaptation are endemic to Sumatra’s rainforests and, in a sense, are emblematic of the exceptional diversity of animals and plants on the island,” says co-author Dr. Utpal Smart. “Tragically, all of them are in peril today, given the current rate of deforestation.

The authors agree that much more taxonomic work is still needed to determine and describe Sumatra’s herpetofaunal diversity, some of which they fear, could be irreversibly lost well before biologists have the chance to discover it.

###

Original source:

Arifin U, Smart U, Hertwig ST, Smith EN, Iskandar DT, Haas A (2018) Molecular phylogenetic analysis of a taxonomically unstable ranid from Sumatra, Indonesia, reveals a new genus with gastromyzophorous tadpoles and two new species. Zoosystematics and Evolution 94(1): 163-193. https://doi.org/10.3897/zse.94.22120

Named after Stanley Kubrick, a new species of frog is a ‘clockwork orange’ of nature

Two new treefrog species were discovered in the Amazon Basin of Bolivia, Peru, and Brazil. Both had been previously misidentified as another superficially identical species.

Curiously, one of them received a name translating to ‘demon’ or ‘devil’. The second one was named in honor of famous American filmmaker Stanley Kubrick, because of his masterpiece A Clockwork Orange.

Having conducted analyses of genetic, morphologic, and bioacoustic data, scientists C. Daniel Rivadeneira, Dr. Pablo J. Venegas, and Dr. Santiago R. Ron concluded that the amphibians represented two previously unknown species that used to go by the name of the Sarayacu treefrog (Dendropsophus parviceps).

As a result of this research collaboration between Ecuador’s Catholic University (PUCE) and Peru’s Centro de Ornitología y Biodiversidad (CORBIDI), the treefrogs were recently described as new to science in the open access journal ZooKeys.

DSC06331The scientists remind that, back in 1972, when Anthony Burgess explained the title of his famous novel A Clockwork Orange, he said: “I’ve implied the junction of the organic, the lively, the sweet – in other words, life, the orange – and the mechanical, the cold, the disciplined (…)”

“Without knowing, he was also giving a good metaphor to describe ecosystems,” comment the researchers. “Nature works as the interplay between life and its cold, mechanical, and disciplined physical matrix.”

Furthermore, both new frogs, scientifically listed as D. kubricki and D. kamagarini, are characterized by having a bright orange blotch on the shanks, reminiscent of the ‘orange pieces of nature’.

On the other hand, the species name kamagarini refers to ‘demon’ or ‘devil’, as per its translation from the Matsigenka language spoken in southeastern Peru. One of the characteristic features of the new species D. kamagarini are namely its horn-like protuberances on the upper eyelids.Bolivia

Amphibians are important pieces in ecosystems as secondary consumers in food chains. They also play a significant role in decomposition and nutrient cycling.

Stanley Kubrick – arguably one of the most brilliant and influential film directors of all time – left an immemorial legacy in cinema. His masterpiece, A Clockwork Orange (1971), was based on Anthony Burgess’s 1962 novel of the same name.

###

Original source:

Rivadeneira CD, Venegas PJ, Ron SR (2018) Species limits within the widespread Amazonian treefrog Dendropsophus parviceps with descriptions of two new species (Anura, Hylidae). ZooKeys 726: 25-77. https://doi.org/10.3897/zookeys.726.13864