LIVE♨️ from the New Species Showdown by Pensoft!

Every Monday and Thursday, Pensoft will be announcing a match between two competing species. Out of the 16 competitors, who’s got the greatest fandom?

Which one is the species that springs to mind when you think about the most awesome discoveries in recent times?

In an age where we more than ever need to appreciate and preserve the magnificent biodiversity inhabiting the Earth, we decided to go for a lighter and fun take on the work of taxonomists that often goes unnoticed by the public. 

From the ocean depths surrounding Indonesia to the foliage of the native forests of Príncipe Island, here come 16 species described as new to science in journals published by Pensoft. 

Out of these most amazing creatures, who’s got the greatest fandom? We shall learn that with the #NewSpeciesShowdown!

Current battle

Vote closes on Monday, 5 December @ 12:00 PM (UTC)

You can simply click on the embedded tweet to access the poll and vote.

In the fourth duel in Round 1, we see a crab from Guam: Harryplax severus (see species description, published in Zookeys in 2017) competing with Salazar’s pit viper Trimeresurus salazar (see species description, published in Zoosystematics and Evolution in 2020).
The rules

Every Monday and Thursday, @Pensoft will be announcing a match between two competing species on Twitter using the hashtag #NewSpeciesShowdown, where you can vote in the poll for the tournament’s champion!

Right before we announce the next tie, we will let you know who won the previous competition and progresses to the next round. The champion will be announced in early January (we might give you some extra days to vote in the grand finale!)

Disclaimer

This competition is for entertainment purposes only. As it was tremendously tough to narrow the list down to only sixteen species, we admit that we left out a lot of spectacular creatures.

To ensure fairness and transparency, we made the selection based on the yearly Altmetric data, which covers articles in our journals published from 2010 onwards and ranks the publications according to their online mentions from across the Web, including news media, blogs and social networks. 

We did our best to diversify the list as much as possible in terms of taxonomic groups. However, due to the visual-centric nature of social media, we gave preference to immediately attractive species.

Winners so far

The first tie of the New Species Showdown was between the olinguito: Bassaricyon neblina (see species description) and the “snow-coated” tussock moth Ivela yini (see species description).
In the second battle, we faced two marine species discovered in the Indian Ocean and described in ZooKeys. The supergiant isopod B. raksasa (see species description) won against the Rose Fariy Wrasse C. finifenmaa (see species description) with strong 75%.
In the second battle, we faced two frog species: the tapir ‘chocolate’ frog described in Evolutionary Systematics (see species description) won against the ‘glass frog’ described in Zookeys (see species description) with 73%.
But why are we holding the tournament right now?

If you have gone to the Pensoft website at any point this year, visited our booth at a conference, or received a newsletter from any of our journals, by this time, you must be well aware that in 2022 – more precisely, towards the end of the year – we are turning 30. And we ain’t afraid to show it!

Pensoft’s team happy to showcase the 30-year story of the company at various events this year.
Left: Maria Kolesnikova at the annual Biodiversity Information Standards (TDWG 2022) conference, hosted by Pensoft in Sofia, Bulgaria. Right: Iva Boyadzhieva at the XXVI International Congress of Entomology (ICE 2022) in Helsinki, Finland.

Indeed, 30 is not that big of a number, as many of us adult humans can confirm. Yet, we take pride in reminiscing about what we’ve done over the last three decades. 

The truth is, 30 years ago, we wouldn’t have been able to picture this day, let alone think that we’d be sharing it with all of you: our journal readers, authors, editors and reviewers, collaborators in innovation, project partners, and advisors. 

Long story short, we wanted to do something special and fun to wrap up our anniversary year. While we have been active in various areas, including development of publishing technology concerning open and FAIR access and linkage for research outcomes and underlying data; and multiple EU-supported scientific projects, we have always been associated with our biodiversity journal portfolio.

Besides, who doesn’t like to learn about the latest curious creature that has evaded scientific discovery throughout human history up until our days? 😉

Now, follow the #NewSpeciesShowdown to join the contest!

A Needle in a Coastal Haystack

A tiny species known only from fossils is found alive in the tidepools of Santa Barbara.

Discovering a new species is always exciting, but so is finding one alive that everyone assumed had been lost to the passage of time. A small clam, previously known only from fossils, has recently been found living at Naples Point, just up the coast from UC Santa Barbara. The discovery appears in the journal ZooKeys.

“It’s not all that common to find alive a species first known from the fossil record, especially in a region as well-studied as Southern California,” said co-author Jeff Goddard, a research associate at UC Santa Barbara’s Marine Science Institute. “Ours doesn’t go back anywhere near as far as the famous Coelacanth or the deep-water mollusk Neopilina galatheae — representing an entire class of animals thought to have disappeared 400 million years ago — but it does go back to the time of all those wondrous animals captured by the La Brea Tar Pits.”

Jeff Goddard with students. Photo Credit: 
Courtesy Image

On an afternoon low tide in November 2018, Goddard was turning over rocks searching for nudibranch sea slugs at Naples Point, when a pair of small, translucent bivalves caught his eye. “Their shells were only 10 millimeters long,” he said. “But when they extended and started waving about a bright white-striped foot longer than their shell, I realized I had never seen this species before.” This surprised Goddard, who has spent decades in California’s intertidal habitats, including many years specifically at Naples Point. He immediately stopped what he was doing to take close-up photos of the intriguing animals.

“I was surprised and intrigued. This was something I’d never seen before.”

Paul Valentich-Scott

With quality images in hand, Goddard decided not to collect the animals, which appeared to be rare. After pinning down their taxonomic family, he sent the images to Paul Valentich-Scott, curator emeritus of malacology at the Santa Barbara Museum of Natural History. “I was surprised and intrigued,” Valentich-Scott recalled. “I know this family of bivalves (Galeommatidae) very well along the coast of the Americas. This was something I’d never seen before.”

He mentioned a few possibilities to Goddard, but said he’d need to see the animal in-person to make a proper assessment. So, Goddard returned to Naples Point to claim his clam. But after two hours combing just a few square meters, he still hadn’t caught sight of his prize. The species would continue to elude him many more times.

Nine trips later, in March 2019, and nearly ready to give up for good, Goddard turned over yet another rock and saw the needle in the haystack. A single specimen, next to a couple of small white nudibranchs and a large chiton. Valentich-Scott would get his specimen at last, and the pair could finally set to work on identification.

A dazzling play of colors highlights Southern California’s long lost clam. Photo Credit: 
Jeff Goddard

Valentich-Scott was even more surprised once he got his hands on the shell. He knew it belonged to a genus with one member in the Santa Barbara region, but this shell didn’t match any of them. It raised the exciting possibility that they had found a new species.

“This really started ‘the hunt’ for me,” Valentich-Scott said. “When I suspect something is a new species, I need to track back through all of the scientific literature from 1758 to the present. It can be a daunting task, but with experience it can go pretty quickly.”

The two researchers decided to check out an intriguing reference to a fossil species. They tracked down illustrations of the bivalve Bornia cooki from the paper describing the species in 1937. It appeared to match the modern specimen. If confirmed, this would mean that Goddard had found not a new species, but a sort of living fossil.

It is worth noting that the scientist who described the species, George Willett, estimated he had excavated and examined perhaps 1 million fossil specimens from the same location, the Baldwin Hills in Los Angeles. That said, he never found B. cooki himself. Rather, he named it after Edna Cook, a Baldwin Hills collector who had found the only two specimens known.

Valentich-Scott requested Willett’s original specimen (now classified as Cymatioa cooki) from the Natural History Museum of Los Angeles County. This object, called the “type specimen,” serves to define the species, so it’s the ultimate arbiter of the clam’s identification.

The type specimen that George Willett used to originally describe the species. Photo credit: VALENTICH-SCOTT ET AL.

Meanwhile, Goddard found another specimen at Naples Point — a single empty shell in the sand underneath a boulder. After carefully comparing the specimens from Naples Point with Willett’s fossil, Valentich-Scott concluded they were the same species. “It was pretty remarkable,” he recalled.

Small size and cryptic habitat notwithstanding, all of this begs the question of how the clam eluded detection for so long. “There is such a long history of shell-collecting and malacology in Southern California — including folks interested in the harder to find micro-mollusks — that it’s hard to believe no one found even the shells of our little cutie,” Goddard said.

He suspects the clams may have arrived here on currents as planktonic larvae, carried up from the south during marine heatwaves from 2014 through 2016. These enabled many marine species to extend their distributions northward, including several documented specifically at Naples Point. Depending on the animal’s growth rate and longevity, this could explain why no one had noticed C. cooki at the site prior to 2018, including Goddard, who has worked on nudibranchs at Naples Point since 2002.

“The Pacific coast of Baja California has broad intertidal boulder fields that stretch literally for miles,” Goddard said, “and I suspect that down there Cymatioa cooki is probably living in close association with animals burrowing beneath those boulders.”

Research article:

Valentich-Scott P, Goddard JHR (2022) A fossil species found living off southern California, with notes on the genus Cymatioa (Mollusca, Bivalvia, Galeommatoidea). ZooKeys 1128: 53-62. https://doi.org/10.3897/zookeys.1128.95139

Press release originally published by UC Santa Barbara. Republished with permission.

Follow ZooKeys on Facebook and Twitter.

Leaves and Spines: A new spiny-tailed leaf-toed gecko from the unexplored coastal savanna of Angola

A random survey in a poorly explored region of the southern Benguela Province of Angola, led to the discovery of a unique new spiny-tailed leaf-toed gecko.

Guest blog post by Javier Lobon-Rovira

After the long, hard days of fieldwork in the arid coastal region of southern Angola, Angolan researcher Pedro Vaz Pinto and his enthusiastic son Afonso, found the best spot to spend the night before heading back home. In the area of Carivo, every night was different: after four visits to this unique place, a different gecko species always showed up to add to the growing species list.

On a random night in August 2021, they went for a routine night walks and came across this unique gecko. In shock, Pedro immediately started sharing photos with the coauthors, Werner and Javier. “Guys, I think I found a new Kolekanos” he said.

Kolekanos is a unique and iconic gecko genus in Africa and more specifically only known from southwestern Angola. Kolekanos plumicaudus was described by one of the most recognized herpetologists in Africa, the late Wulf Haacke (1936– 2021).

Feather-tailed Kolekanos was at that point a monotypic genus (only one species in the genus), known only from ~200km south of the new discovery. Immediately, we all knew that what we were looking in that photo was something different from the known K. plumicaudus. “It is a Kolekanos… but, those are spines in the tail, not feathers…” was one of the most common reactions that night. So, we started planning our next trip to the area.

Three months later we were back at Carivo, now focusing on finding more specimens of that unique gecko. After only one hour, we spotted at least six specimens among the semi-dessert vegetations and rocks. At that moment, all doubt went away. The behavior and habitat of the new gecko was completely distinctive in comparison with K. plumicaudus.

Then, with our goal achieved and based on the big success of the first night, we planned to go back through different areas to explore some of the most remote regions in Northern Namibe and southern Benguela provinces. After two days driving on impossible roads, the team reached Ekongo. That night we were tired, so we decided to have a short walk around the camp. And… there it was…! Like a ghost, this small, cryptic, and elusive gecko started  showing up in every big rock boulder. 

This study, now published in the journal ZooKeys, also highlights how poorly explored and understood some regions of Angola remain, even as it has been considered as an important source of diversification and endemism in West Africa.

New unusual bee species discovered with dog-like snout

Published in the Journal of Hymenoptera Research, author Dr Kit Prendergast named the new species after her pet dog Zephyr.

A new native bee species with a dog-like “snout” has been discovered in Perth bushland though Curtin-led research that sheds new light on our most important pollinators.

Published in the Journal of Hymenoptera Research, author Dr Kit Prendergast, from the Curtin School of Molecular and Life Sciences, has named the new species after her pet dog Zephyr after noticing a protruding part of the insect’s face looked similar to a dog’s snout, and to acknowledge the role her dog played in providing emotional support during her PhD.

Dr Prendergast said the rare and remarkable finding would add to existing knowledge about our evolving biodiversity and ensure the bees, named Leioproctus zephyr, were protected by conservation efforts.

“When I first examined the specimens that I collected during my PhD surveys discovering the biodiversity of native bees in urbanised regions of the southwest WA biodiversity hotspot, I was instantly intrigued by the bee’s very unusual face,” Dr Prendergast said.

Insects in general are so diverse and so important, yet we don’t have scientific descriptions or names for so many of them.

Dr Kit Prendergast

“When I went to identify it, I found it matched no described species, and I was sure that if it was a known species, it would be quite easy to identify given how unusual it was in appearance.

“You can only confirm a particular species once you look at them under a microscope and go through the long process of trying to match their characteristics against other identified species, then going through museum collections.

“When perusing the WA Museum’s Entomology collection, I discovered that a few specimens of Leioproctus zephyrus had first been collected in 1979, but it had never been scientifically described.”

Dr Prendergast said she was excited to play a role in making this species known and officially naming them.

“Insects in general are so diverse and so important, yet we don’t have scientific descriptions or names for so many of them,” Dr Prendergast said.

“The Leioproctus zephyr has a highly restricted distribution, only occurring in seven locations across the southwest WA to date, and have not been collected from their original location. They were entirely absent from residential gardens and only present at five urban bushland remnants that I surveyed, where they foraged on two plant species of Jacksonia.

“Not only is this species fussy, they also have a clypeus that looks like a snout. Hence, I named them after my dog Zephyr. She has been so important to my mental health and wellbeing during the challenging period of doing a PhD and beyond.”

Through DNA barcoding, Dr Prendergast was able to confirm that the new species was most closely related to other species of unidentified Leioproctus.

Originally published by Curtin University. Republished with permission.

Follow the Journal of Hymenoptera Research on Facebook and Twitter.

New species of owl discovered in the rainforests of Príncipe Island, Central Africa 

The Principe Scops-Owl, the eighth known bird species endemic to the island, has a unique call and lives in a restricted range in the Príncipe Obô Natural Park.

A new species of owl has just been described from Príncipe Island, part of the Democratic Republic of São Tomé and Príncipe in Central Africa. Scientists were first able to confirm its presence in 2016, although suspicions of its occurrence gained traction from 1998, and testimonies from local people suggesting its existence could be traced back as far as 1928. 

Otus bikegila. Photo by Martim Melo

The new owl species was described in the open-access journal ZooKeys based on multiple lines of evidence such as morphology, plumage colour and pattern, vocalisations, and genetics. Data was gathered and processed by an international team led by Martim Melo (CIBIO and Natural History and Science Museum of the University of Porto), Bárbara Freitas (CIBIO and the Spanish National Museum of Natural Sciences) and Angelica Crottini (CIBIO).

Bárbara Freitas, Bikegila and Martim Melo pose with an owl. Photo by Martim Melo

The bird is now officially known as the Principe Scops-Owl, or Otus bikegila.

Otus” is the generic name given to a group of small owls sharing a common history, commonly called scops-owls. They are found across Eurasia and Africa and include such widespread species as the Eurasian Scops-Owl (Otus scops) and the African Scops-Owl (Otus senegalensis). 

Bikegila. Photo by Martim Melo

The scientists behind the discovery further explain that the species epithet “bikegila” was chosen in homage of Ceciliano do Bom Jesus, nicknamed Bikegila – a former parrot harvester from Príncipe Island and now a ranger of its natural park. 

“The discovery of the Principe Scops-Owl was only possible thanks to the local knowledge shared by Bikegila and by his unflinching efforts to solve this long-time mystery,” the researchers say. “As such, the name is also meant as an acknowledgment to all locally-based field assistants who are crucial in advancing the knowledge on the biodiversity of the world.”

Martim Melo and Bikegila. Photo by Alexandre Vaz

In the wild, the easiest way to recognise one would be its unique call – in fact, it was one of the main clues leading to its discovery. 

Otus bikegila‘s unique call is a short “tuu” note repeated at a fast rate of about one note per second, reminiscent of insect calls. It is often emitted in duets, almost as soon as the night has fallen,” Martim Melo explains.

Otus bikegila’s call. Recording by Martim Melo

The entire Principe Island was extensively surveyed to determine the distribution and population size of the new species. Results, published in the journal Bird Conservation International, show that the Principe Scops-Owl is found only in the remaining old-growth native forest of Príncipe in the uninhabited southern part of the island. There, it occupies an area of about 15 km2, apparently due to a preference for lower elevations. In this small area (about four times the size of Central Park), the densities of the owl are relatively high, with the population estimated at around 1000-1500 individuals.

The difficult terrain of the uninhabited southern forests of Príncipe Island, home to the Príncipe Scops-Owl, was somewhat immortalised by José Correia, Portuguese collector for the American Museum of Natural History, when collecting there in 1928. He wrote in his diary: “I have been in very bad fields ready, but this is bad among the bad or worse among the worse”. Photo by Alexandre Vaz

Nevertheless, because all individuals of the species occur in this single and very small location (of which a part will be affected in the near future by the construction of a small hydro-electric dam), researchers have proposed that the species should be classified as ‘Critically Endangered’, the highest threat level on the IUCN Red List. This recommendation must still be evaluated by the International Union for Conservation of Nature.

Otus Bikegila. Photo by Martim Melo

Monitoring the population will be essential to get more precise estimates of its size and follow its trends. For this purpose, a survey protocol relying on the deployment of automatic recording units and AI to retrieve the data from these has been designed and successfully tested.

“The discovery of a new species that is immediately evaluated as highly threatened illustrates well the current biodiversity predicament”, the researchers say. “On a positive note, the area of occurrence of the Principe Scops-Owl is fully included within the Príncipe Obô Natural Park, which will hopefully help secure its protection.”

A view of the owl’s habitat. Photo by Martim Melo

This is the eighth known species of bird endemic to Príncipe, further highlighting the unusually high level of bird endemism for this island of only 139 km2.

Otus Bikegila. Photo by Paul van Giersbergen

Even though a new species of scops-owl was just described from Príncipe, genetic data indicated that the island was, surprisingly, likely the first in the Gulf of Guinea to be colonised by a species of scops-owl.

“Although it may seem odd for a bird species to remain undiscovered for science for so long on such a small island, this is by no means an isolated case when it comes to owls,” the researchers state. “For example, the Anjouan Scops-Owl was rediscovered in 1992, 106 years after its last observation, on Anjouan Island (also known as Ndzuani) in the Comoro Archipelago, and the Flores Scops-Owl was rediscovered in 1994, 98 years after the previous report.”

 “The discovery of a new bird species is always an occasion to celebrate and an opportunity to reach out to the general public on the subject of biodiversity,” says Martim Melo. “In this age of human-driven extinction, a major global effort should be undertaken to document what may soon not be anymore,” he and his team state in their paper.

Otus bikegila. Photo by Philippe Verbelen

“Birds are likely the best studied animal group. As such, the discovery of a new bird species in the 21st century underscores both the actuality of field-based explorations aiming at describing biodiversity, and how such curiosity-driven endeavour is more likely to succeed when coupled with local ecological knowledge, the participation of keen amateur naturalists, and persistence,” they add.

They believe that this “new wave of exploration, carried out by professionals and amateurs alike”, will help rekindle the link to the natural world, which will be essential to help revert the global biodiversity crisis.

Research article:

Melo M, Freitas B, Verbelen P, da Costa SR, Pereira H, Fuchs J, Sangster G, Correia MN, de Lima RF, Crottini A (2022) A new species of scops-owl (Aves, Strigiformes, Strigidae, Otus) from Príncipe Island (Gulf of Guinea, Africa) and novel insights into the systematic affinities within Otus. ZooKeys 1126: 1-54. https://doi.org/10.3897/zookeys.1126.87635

Interview: description of two African shovel-snout snakes from Angola

The small number of collected samples, coupled with the animals’ curious skull structure and anomalous ecology, has puzzled scientists for decades.

Recently, our journal ZooKeys published a paper describing two new species of African Shovel-snout snakes: Prosymna confusa, endemic to dry habitats in southwestern Angola, and P. lisima, associated with the Kalahari sands.

We interviewed the authors of the study to find out how they made this discovery and what it means for biodiversity. Werner Conradie (South Africa), the leader of the project, collected most of the specimens and did all the morphological examinations and taxonomy work. Chad Keates (South Africa) conducted the molecular analysis, Javier Lobon-Roviara (Spain) did the CT-scanning skull reconstruction, and Ninda Baptista (Angola) performed fieldwork.

Interview with Werner Conradie, Chad Keates, Ninda L. Baptista, and Javier Lobón-Rovira

Why has the taxonomy of African Shovel-snout snakes been so complicated?

While widespread, the group is infrequently encountered, resulting in a relatively low number of samples being collected through time. This, coupled with the animals’ curious skull structure and anomalous ecology, has puzzled scientists for decades. While we finally seem to have a grip on the higher-level taxonomy (their relatedness to other snakes), their relations among each other remain incomplete. One thing is for sure, the next few years will likely result in the discovery and description of many more.

Live P. confusa. Photo by Bill Branch

Please walk us through your research process.

Similar to solving a puzzle, the process starts off by acquiring the pieces. The pieces come in the form of samples, collected by us and by scientists, accessioned in museums all over the world. Once all the pieces are in one place, it becomes our job to piece them all together and build a picture of the taxonomy of the group. We start in the corners, ironing out our hypotheses. Once we have the outline, a theory of the species composition of the group, we get to work building the puzzle using evidence from multiple different species concepts.

We use genetics, morphology, ecology, and skull osteology and through fitting these concepts together we start to see our species and the boundaries between them. Large chunks of the puzzle begin to take shape, revealing our picture with ever-increasing clarity. As we find, orientate, and fit the last pieces of our puzzle through the creation and completion of the manuscript, we finish the puzzle and in doing so provide you with the complete picture: the updated taxonomy of Angolan shovel-snout snakes.

When did you realize you were dealing with new-to-science species?

It’s hard to pinpoint exactly, but the idea grew from the moment Werner Conradie picked up the first snake whilst on the first expedition with the Okavango Wilderness Project, back in 2016. Funded by National Geographic and managed by the Wild Bird Trust, this paper would not be possible without them, because without the transport and logistical support, most of our dataset would never have been found.

What makes these new species unique?

With the aid of modern nano computerised tomography scanning technology, we observed that one of the new species has a well-developed postorbital bone. We still don’t know the purpose of this postorbital bone and why it is absent in the others. We believe it might serve as additional muscle attachment points that aids them on feeding on different kinds of lizard eggs than the others.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

This is also the first new species of Shovel-snouted snake described in nearly 30 years.

In the late 1980’s Zimbabwean herpetologist, Donald Broadley noted that eastern populations of the Angolan Shovel-snouted snake may be a different species. It took nearly 50 years before more material was collected and with the aid of modern technology, like genetic analysis and CT-scanning, we could show he was correct and described it as a new species.  

What can you tell us about their appearance and behavior?

The Shovel-snouted snakes are unique snakes with a beak-like snout that allow them to dig into sandier soils. Thus most of the time they are below the surface and only come out after heavy rains. They also possess unique backward pointed lancet-shaped teeth that they use for cutting open lizard eggs. These snakes specialize in feeding mostly on soft-shell lizard eggs. They find a freshly laid clutch of eggs and one by one, they swallow them whole. They cut them laterally so that the yolk can be released.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

Do they interact with people?

These snakes may be encountered by people tending to their lands or crossing the road, but, for the most part, they are incredibly secretive. Because of their ability to burrow in soft soils, these animals are infrequently encountered, only forced to the surface during heavy rain and by the urge to breed and to feed. If encountered, however, these snakes pose absolutely no harm, as they possess no venom. When threatened, these animals may wind themselves into a tight coil to protect their heads.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

What is the ecological role of these snakes?

Much like most small vertebrates, these animals form an important component of the food web. They consume lizard eggs, exerting a regulatory force on newborn lizards, and serve as food for larger snakes, rodents, and birds. Animals like these form the bedrock of any healthy ecosystem as they contribute to energy exchanges and the flow of nutrients down and up and down again.

Bonus question: how did you get involved in herpetology?

Everyone in the group has a soft spot for reptiles and amphibians’. Irrespective of our contrasting upbringing and our nation of origin, we all came to herpetology independently. While it is hard to unpack the moment that we all fell in love with these weird and wonderful creatures, one thing is for sure, it’s a lifetime commitment.

About the Authors

Werner Conradie holds a Masters in Environmental Science (M. Env. Sc.) and has 17 years of experience with southern African herpetofauna, with his main research interests focusing on the taxonomy, conservation, and ecology of amphibians and reptiles. Werner has published numerous principal and collaborative scientific papers, and has served on a number of conservation and scientific panels, including the Southern African Reptile and Amphibian Relisting Committees. He has undertaken research expeditions to many African countries including Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa, Zambia, and Zimbabwe. Werner is currently the Curator of Herpetology at the Port Elizabeth Museum (Bayworld), South Africa.

Chad Keates is a post-doctoral fellow at the African herpetology lab at Port Elizabeth museum (Nelson Mandela University, based in the SAIAB Genetics Platform). Having recently completed his PhD in Zoology, Chad’s research focusses are African herpetofauna and their evolutionary and ecological structuring. In Chad’s short professional career, he has published several principal and collaborative peer-reviewed scientific papers and book chapters. Chad is also a strong advocate for reptile and amphibian awareness and regularly conducts walks, talks and presentations as well as produces numerous popular scientific outputs on the subject. He has undertaken numerous expeditions to many African countries such as Angola, Zambia and South Africa with a variety of both professional and scientific organisations.

Ninda Baptista is an Angolan biologist, holds an MSc degree in Conservation Biology from the University of Lisbon, and is currently enrolled for a PhD in Biodiversity, Genetics and Evolution in the University of Porto, addressing the diversity of Angolan amphibians. Over the last 12 years she has worked on environmental consulting, research and in-situ conservation projects in Angola, including priority areas for conservation such as Kumbira, Mount Moco and the Humpata plateau. She conducted herpetological surveys throughout the country and created a herpetological collection (Colecção Herpetológica do Lubango), currently deposited in Instituto Superior de Ciências da Educação da Huíla (ISCED – Huíla). Ninda is an author of scientific papers and book chapters on Angolan herpetology and ornithology. She also works on scientific outreach, producing magazine articles, books for children and posters about the country’s biodiversity in collaboration with Fundação Kissama.

Javier Lobón-Rovira is PhD student at Cibio, Portugal, working to unveil evolutionary pattern in southern Africa gekkonids. As Biologist he has worked in different conservation projects and groups around the globe, including reptiles and amphibians at Veragua Rainforest Foundation, Costa Rica or big mammals in Utah, USA. However, as photographer, he has collaborated with different Conservation NGOs in Africa, America and Europe and manage to publish on International Journals as National Geographic, Africa Geographic or Nature’s Best Magazine. 

Read the study:

Conradie W, Keates C, Baptista NL, Lobón-Rovira J (2022) Taxonomical review of Prosymna angolensis Boulenger, 1915 (Elapoidea, Prosymnidae) with the description of two new species. ZooKeys 1121: 97-143. https://doi.org/10.3897/zookeys.1121.85693

Follow ZooKeys on Facebook and Twitter.

Unraveling the diversity of Caquetá-Colombia, where the Andes and Amazon meet: Four new species of the genus Piper

Two of the species bear names inspired by the indigenous tribes that live in Caquetá, while the other two species honor Amazonian naturalists.

Recent botanical expeditions in Caquetá department (southeastern Colombia) have uncovered the enormous richness of plant species in this region. Research led by W. Trujillo in the Andean foothills has allowed the unveiling of at least 90 species of Piper in the region, highlighting northwestern Amazonia as one of the richest regions for the genus. Here, four new species of Piper new to science are described.

Andean foothills in Caquetá, Colombia. Photo by William Trujillo

This publication is the result of a collaboration between three institutions and five researchers, each contributing their experience and strengths: main author William Trujillo (Fundación La Palmita), with M. Alejandra Jaramillo (Universidad Militar Nueva Granada), Edwin Trujillo Trujillo, Fausto Ortiz and Diego Toro (Centro de Investigaciones Amazónicas Cesar Augusto Estrada Gonzalez, Universidad de la Amazonia). W. Trujillo, a native of Caquetá, has dedicated the last ten years to the study of Piper species in his department. M. A. Jaramillo has been studying the phylogenetics, ecology and evolution of the genus for more than 20 years. Edwin Trujillo is a local botanist well versed in the flora of Caquetá and the Colombian Amazon. Fausto Ortiz and Diego Toro are trained in plant molecular biology methods and lead this area at Universidad de la Amazonia.

Amazonian slopes of the Andes, Caquetá with Iriartea deltoidea palms. Photo by William Trujillo

Caquetá is situated where the Andes and the Amazon meet in southern Colombia, in the northwestern Amazon. Several researchers have highlighted the importance of the northwest Amazon for high biodiversity and our lack of knowledge of the region. Fortunately, ongoing studies led by W. Trujillo and E. Trujillo are unveiling the immense diversity of plants in Caquetá, showing the importance of local institutions in the knowledge of Amazonian flora. There are many species in the region yet to be described and discovered. Leadership from local institutions and collaboration with experts are vital to appreciating the great relevance of plants from Caquetá.

Piper indiwasii, branch with leaves and spikes. Photo by William Trujillo

Two of the species in this manuscript (Piper indiwasii and Piper nokaidoyitau) bear names inspired by the indigenous tribes that live in Caquetá. The name indiwasii comes from a Quechua word meaning “house of the sun” and is also the name of one of the National Parks where the species lives in southern Colombia. In its turn, nokaidoyitau comes from the Murui language and means “tongue of the toucan,” the way the Murui Indians of the Colombian Amazon call the species of Piper. In fact, local communities rely on these plants for medicinal purposes, using them against inflammations or parasites, or to relieve various ailments.

Furthermore, the other two new species (Piper hoyoscardozii and Piper velae) honor two Amazonian naturalists, the authors’ dear friend Fernando Hoyos Cardozo, and Dr. Vela. Fernando, who was a devoted botanist and companion in W. Trujillo’s botanical expeditions. Dr. Vela, a naturalist and conservation enthusiast who sponsored Trujillo’s trips, was killed in 2020. We miss him immensely. His death is a significant loss for the environment in Caquetá. 

The team’s joint effort will continue to describe new species, explore unexplored regions, and inspire new and seasoned researchers to dive into the magnificent diversity of the Colombian Amazon.

Piper hoyoscadozii, branch with leaves and fruiting spikes. Photo by Fernando Hoyos

Research article:

Trujillo W, Trujillo ET, Ortiz-Morea FA, Toro DA, Jaramillo MA (2022) New Piper species from the eastern slopes of the Andes in northern South America. PhytoKeys 206: 25–48. https://doi.org/10.3897/phytokeys.206.75971

Follow PhytoKeys on Facebook and Twitter.

Three new species of ground snakes discovered under graveyards and churches in Ecuador

The new snakes, which are small and cylindrical, were named in honor of institutions or people supporting the exploration of remote cloud forests in the tropics.

A group of scientists led by Alejandro Arteaga, grantee of The Explorers Club Discovery Expeditions and researcher at Khamai Foundation, discovered three new cryptozoic (living underground) snakes hidden under graveyards and churches in remote towns in the Andes of Ecuador. The discovery was made official in a study published in the journal ZooKeys. The new snakes, which are small, cylindrical, and rather archaic-looking, were named in honor of institutions or people supporting the exploration and conservation of remote cloud forests in the tropics.

Atractus michaelsabini was found hidden besides a church in the Andean town Guanazán, El Oro province, Ecuador. Photo by Amanda Quezada

Believe or not, graveyards are also land of the living. In the Andes of Ecuador, they are inhabited by a fossorial group of snakes belonging to the genus Atractus. These ground snakes are the most species-rich snake genus in the world (there are now 150 species known globally), but few people have seen one or even heard about their existence. This is probably because these serpents are shy and generally rare, and they remain hidden throughout most of their lives. Additionally, most of them inhabit remote cloud forests and live buried underground or in deep crevices. In this particular case, however, the new ground snakes where found living among crypts.

General view of a graveyard in Amaluza, Azuay province, Ecuador. Photo by Alejandro Arteaga

The discovery of the three new species took place rather fortuitously and in places where one would probably not expect to find these animals. The Discovery Ground Snake (Atractus discovery) was found hidden underground in a small graveyard in a remote cloud forest town in southeastern Ecuador, whereas the two other new species were found besides an old church and in a small school. All of this seems to suggest that, at least in the Andes, new species of snakes might be lurking just around the corner.

Unfortunately, the coexistence of ground snakes and villagers in the same town is generally bad news for the snakes. The study by Arteaga reports that the majority of the native habitat of the new snakes has already been destroyed. As a result of the retreating forest line, the ground snakes find themselves in the need to take refuge in spaces used by humans (both dead and alive), where they are usually killed on sight.

Atractus zgap. Photo by Alejandro Artaga.

Diego Piñán, a teacher of the town where one of the new reptiles was found, says: “when I first arrived at El Chaco in 2013, I used to see many dead snakes on the road; others where hit by machetes or with stones. Now, after years of talking about the importance of snakes, both kids and their parents, while still wary of snakes, now appreciate them and protect them.” Fortunately, Diego never threw away the dead snakes he found: he preserved them in alcohol-filled jars and these were later used by Arteaga to describe the species as new to science.

A jar full of Atractus snakes. Photo by Alejandro Arteaga

In addition to teaching about the importance of snakes, the process of naming species is important to create awareness about the existence of a new animal and its risk of extinction. In this particular case, two of the new snakes are considered to be facing a high risk of extinction in the near future.

The discovery process also provides an opportunity to recognize and honor the work of the people and institutions fighting to protect wildlife.

Alejandro Arteaga examines the holotype of Atractus discovery. He had to examine hundreds museum specimens before confirming the new species as such. Photo by David Jácome

Atractus discovery was named to honor The Explorers Club Discovery Expedition Grants initiative, a program seeking to foster scientific understanding for the betterment of humanity and all life on Earth and beyond. The grant program supports researchers and explorers from around the world in their quest to mitigate climate change, prevent the extinction of species and cultures, and ensure the health of the Earth and its inhabitants.

Atractus zgap. Photo by Alejandro Arteaga

Atractus zgap was named in honor of the Zoological Society for the Conservation of Species and Populations (ZGAP), a program seeking to conserve unknown but highly endangered species and their natural habitats throughout the world. The ZGAP grant program supports the fieldwork of young scientists who are eager to implement and start conservation projects in their home countries.

Atractus discovery. Photo by Alejandro Arteaga

Atractus michaelsabini was named in honor of a young nature lover, Michael Sabin, grandson of American philanthropist and conservationist Andrew “Andy” Sabin. Through the conservation organization Re:wild, the Sabin family has supported field research of threatened reptiles and has protected thousands of acres of critical habitat throughout the world.

“Naming species is at the core of biology”, says Dr. Juan M. Guayasamin, co-author of the study and a professor at Universidad San Francisco de Quito. “Not a single study is really complete if it is not attached to the name of the species, and most species that share the planet with us are not described.”

“The discovery of these new snakes is only the first step towards a much larger conservation project,” says Arteaga. “Now, thanks to the encouragement of ZGAP, we have already started the process of establishing a nature reserve to protect the ground snakes. This action would not have been possible without first unveiling the existence of these unique and cryptic reptiles, even if it meant momentarily disturbing the peace of the dead in the graveyard where the lived.”

Research article:

Arteaga A, Quezada A, Vieira J, Guayasamin JM (2022) Leaving no stone unturned: three additional new species of Atractus ground snakes (Serpentes, Colubridae) from Ecuador discovered using a biogeographical approach. ZooKeys 1121: 175-210. https://doi.org/10.3897/zookeys.1121.89539

Follow ZooKeys on Twitter and Facebook.

Scientists reveal the true identity of a Chinese octopus

Locals and fishermen had long been familiar with the species, but they kept mistaking it for a different species.

As they were collecting cephalopod samples in Dongshan island in China’s Fujian Province, a team of researchers came across an interesting finding: a new-to-science species of octopus.

A live individual of Callistoctopus xiaohongxu.

Actually, locals and fishermen have long been familiar with the species -but they kept mistaking it for a juvenile form of the common long-arm octopus (‘Octopus minor), whose trade is widespread throughout the country.

Only when a team of scientists from the Ocean University of China collected a batch of specimens misidentified by locals from Dongshan Seafood Market Pier as ‘O’. minor to study them, did it become apparent that this was in fact a separate, new species. That’s how it got its own name, Callistoctopus xiaohongxu, and a scientific description published in the open-access journal ZooKeys.

A live individual of Callistoctopus xiaohongxu.

The scientific name xiaohongxu is a phonetic translation of the local Chinese name of this species in Zhangzhou, where it was collected. It is a reference to its smooth skin and reddish-brown colour, which are among its most distinctive features. At less than 40 g in its adult stage, C. xiaohongxu is considered a small to moderate-sized octopus.

A net-like web structure on Callistoctopus xiaohongxu.

The researchers also note that this is the first new species of the genus Callistoctopus to be found in the China Seas.

More than 130 different cephalopod species are recorded in Chinese waters. Тhe southeast waters of China, due to the influence of strong warm currents, provide ideal environmental conditions to generate abundant marine biodiversity, and the finding of C. xiaohongxu further confirms the high diversity of species in the southeast China sea, the researchers said.

Research article:

Zheng X, Xu C, Li J (2022) Morphological description and mitochondrial DNA-based phylogenetic placement of a new species of Callistoctopus Taki, 1964 (Cephalopoda, Octopodidae) from the southeast waters of China. ZooKeys 1121: 1-15. https://doi.org/10.3897/zookeys.1121.86264

Follow ZooKeys on Twitter and Facebook.

Bay Area high school students describe two new species of scorpions with California Academy of Sciences

Identified on the community science platform iNaturalist, the species add to California’s rich biodiversity.

California now has two new scorpions on its list of species, thanks to the efforts of two keen-eyed high school students from the Bay Area and the California Academy of Sciences. Harper Forbes and Prakrit Jain, avid users on the community science platform iNaturalist, discovered the new-to-science scorpions while trawling the thousands of observations uploaded by other users in the state.

New species Paruroctonus soda and Paruroctonus conclusus are playa scorpions, meaning they can only be found around dry lake beds, or playas, from the deserts of Central and Southern California. For scientists, conservation managers, and the growing communities of wildlife observers on platforms like iNaturalist, these newly described species provide a better understanding of California’s biodiversity and the places most in need of protection—a cornerstone of the Academy’s Thriving California initiative.

The budding naturalists collaborated with Curator of Arachnology  Lauren Esposito, PhD, to formally describe the species in a study published today in ZooKeys

This female scorpion is one of the newly described species (Paruroctonus soda) and is seen carrying 51 juveniles. (© Prakrit Jain)

In 2019, Forbes and Jain came across an unknown scorpion species on iNaturalist observed near Koehn Lake—an ephemeral lake in the Mojave Desert—that had remained unidentified since it was uploaded six years earlier. 

“We weren’t entirely sure what we were looking at,” Jain says. “Over the next couple years, we studied scorpions in the genus Paruroctonus and learned they frequently evolve to live in alkali playas like Koehn Lake. When we returned to that initial observation, we realized we were looking at an undescribed Paruroctonus species.” 

Harper Forbes (left), Prakrit Jain (right), and Academy Curator of Arachnology Lauren Esposito, PhD, (center) search for scorpions. (Gayle Laird 2022 © California Academy of Sciences)

Serendipitously, another unknown scorpion observed in San Luis Obispo County was uploaded to iNaturalist shortly after their discovery in May of 2021. With a few years of arachnid research under their belts, Forbes and Jain knew right away that it was a new species in the same genus. They immediately contacted Esposito to assist, resulting in two new-to-science scorpions—P. soda and P. conclusus—and a published paper in which Forbes and Jain are first authors. 

“Harper and Prakrit went through all the steps to formally describe a species, sampling the populations and comparing them with existing specimens in our collection,” Esposito says. “There’s a lot of work involved, but they are incredibly passionate about this research. It’s inspiring to see that their hobby is one that advances biodiversity science.”

The new scorpions species were discovered on community science platform iNaturalist. (Gayle Laird 2022 © California Academy of Sciences)

P. soda and P. conclusus are both alkali sink specialists, meaning they have adapted to the alkaline basins—dry, salty playas with high pH soils—in which they evolved. Each species has a very limited range and can only be found in the playas where they were discovered: Soda Lake (the former’s namesake) and Koehn Lake. During their summer break, Forbes and Jain visited the lakes to collect specimens of each new species. After scouting the alkali flats during the daytime for habitats most suited for playa scorpions, they set out with their vials and forceps at dusk, as these desert dwellers are primarily active at night. Luckily, most scorpions fluoresce under ultraviolet light, so the researchers used blacklights to scour the open playas while keeping an eye out for their glowing subjects. They also searched the scorpions’ typical hiding places, peering into cracks in the hard clay soil and combing through common alkali sink plants like iodine bush (Allenrolfea occidentalis) and bush seepweed (Suaeda nigra). At the end of each trip, they successfully collected a sample size of both males and females sufficient for the study.

While the species range for P. soda is small (just a few square miles), it is entirely located within Carrizo Plain National Monument—federally protected land that renders this species safe from human-driven threats. Unfortunately, this is not the case for P. conclusus.

“While no official assessment has been carried out for either species, P. conclusus can only be found on a narrow strip of unprotected land, less than two kilometers long and only a few meters wide in some places,” Forbes says. “The entire species could be wiped out with the construction of a single solar farm, mine, or housing development.” 

Habitat of Paruroctonus conclusus at the type locality, taken in July 2021.

Though P. soda seems to be relatively safe compared to P. conclusus, the constant threat of climate change endangers all wildlife, particularly in delicate desert environments. As part of the Thriving California initiative, Academy scientists hope to collaborate with schools and communities throughout the state to conduct further biodiversity research. By harnessing scientific data—including crowd-sourced data from iNaturalist—and providing access to environmental and science learning, the initiative hopes to halt biodiversity loss in the Golden State. 

Harper and Prakrit will continue their research with the Academy and are currently working on a holistic book of California’s scorpions. (Gayle Laird 2022 © California Academy of Sciences)

Now high school graduates, this fall Forbes will study evolutionary biology at the University of Arizona and Jain will study integrative biology at the University of California, Berkeley. They will continue their work with Esposito and are currently collaborating on their next major project: a holistic book of California’s scorpions. In addition to their research and academic endeavors, they are excited to get back out in the field to find, collect, and identify more scorpions. 

“I will never get tired of going out at night to find a certain scorpion for the first time,” Jain says. “Whether it be solving the mystery of a long-lost scorpion or discovering something new in an unexpected place, a trip to the desert is always a challenge and an adventure.”

***

Research article:

Jain P, Forbes H, Esposito LA (2022) Two new alkali-sink specialist species of Paruroctonus Werner 1934 (Scorpiones, Vaejovidae) from central California. ZooKeys 1117: 139-188. https://doi.org/10.3897/zookeys.1117.76872

***

Follow ZooKeys on Facebook and Twitter.

***

This press release was originally published by the California Academy of Sciences.