Flamboyant and lethal: unveiling the lionfish invasion of the Mediterranean Sea

So-called ‘devil firefish’ are taking over new waters with little resistance from native species.

Research from Wageningen University and Research, the Netherlands, reveals invasive lionfish are rapidly expanding their territory in the Mediterranean sea, causing severe ecological damage.

Published in the open-access journal NeoBiota, the study shows the lionfish species Pterois miles – known as the devil firefish –  has established presence in the eastern Mediterranean, with observations now extending to colder waters previously thought to be unsuitable for the species.

A map of the Mediterranean Sea, with dots showing the first sighting of invasive lionfish. It shows a gradual eastwrd progression of lionfish sightings over time.
Map of years of first sighting of Pterois miles by dive centres. Credit: Bottacini et al.

Originating from the Indo-Pacific region, the lionfish species Pterois miles and Pterois volitans  are regarded as the most successful and lethal invasive fishes in marine ecosystems, with the capacity to drastically affect local fish communities and biodiversity in invaded areas.

The invasion of Pterois miles in the Mediterranean Sea began around ten years ago. Genetic studies reveal the invasive fish originated from the Red Sea and likely entered through the Suez Canal.

The beautiful but deadly devil firefish. Credit: Kora27 via Wikimedia Commons.

Lionfish are generalist predators and impact ecosystems by preying extensively on local fishes, including endemics of high conservation value. As they are unaccustomed to lionfish, native prey species usually do not flee from this new predator.

“After years studying these predators, I find it amazing how they can easily adjust to so many different environments and be successful in areas so different from where they evolve.”

“It is always impressive to see how such a flamboyant and–to us–conspicuous predator can approach its prey without being noticed”

The study’s lead author, Davide Bottacini.

The fin spines of Pterois miles are highly venomous. A sting can cause extreme pain, sickness, convulsions, minor paralysis, and breathing difficulties in humans. Immediate emergency medical attention is recommended for anyone stung by the species.

By reviewing existing scientific data, researchers identified gaps in current understanding of the lionfish’s interactions with Mediterranean ecosystems.

They suggest that, while they consider the eradication of invasive lionfish impossible, tackling questions such as the community-level impact of them in the Mediterranean, and the evolutionary and learned responses in prey, will add to the body of knowledge on the best documented invasion in marine ecosystems.

Three maps of dive centre respondents and lionfish sightings on the Meditteranean Sea coat showing a gradual eastwrd progression of sightings.
Maps of dive centre respondents and lionfish sightings. Credit: Bottacini et al.

Such information provides insights vital for biodiversity conservation, with practical implications for policy makers aiming to devise efficient mitigation plans.

Citizen science initiatives for tracking and reporting lionfish sightings are encouraged to provide valuable data that supports ongoing research efforts. Such community involvement is essential for enhancing understanding of the invasion dynamics and devising effective control measures.

Original source

Bottacini D, Pollux BJA, Nijland R, Jansen PA, Naguib M, Kotrschal A (2024) Lionfish (Pterois miles) in the Mediterranean Sea: a review of the available knowledge with an update on the invasion front. NeoBiota 92: 233–257. https://doi.org/10.3897/neobiota.92.110442

Follow NeoBiota on X and Facebook.

Pensoft took a BiCIKL ride to Naturalis to report on a 3-year endeavour towards FAIR data

Three years ago, the BiCIKL consortium took to traverse obstacles to wider use and adoption of FAIR and linked biodiversity data.

Leiden – also known as the ‘City of Keys’ and the ‘City of Discoveries’ – was aptly chosen to host the third Empowering Biodiversity Research (EBR III) conference. The two-day conference – this time focusing on the utilisation of biodiversity data as a vehicle for biodiversity research to reach to Policy – was held in a no less fitting locality: the Naturalis Biodiversity Center

On 25th and 26th March 2024, the delegates got the chance to learn more about the latest discoveries, trends and innovations from scientists, as well as various stakeholders, including representatives of policy-making bodies, research institutions and infrastructures. The conference also ran a poster session and a Biodiversity Informatics market, where scientists, research teams, project consortia, and providers of biodiversity research-related services and tools could showcase their work and meet like-minded professionals.

BiCIKL stops at the Naturalis Biodiversity Center

The main outcome of the BiCIKL project: the Biodiversity Knowledge Hub, a one-stop knowledge portal to interlinked and machine-readable FAIR data.

The famous for its bicycle friendliness country also made a suitable stop for BiCIKL (an acronym for the Biodiversity Community Integrated Knowledge Library): a project funded under the European Commission’s Horizon 2020 programme that aimed at triggering a culture change in the way users access, (re)use, publish and share biodiversity data. To do this, the BiCIKL consortium set off on a 3-year journey to build on the existing biodiversity data infrastructures, workflows, standards and the linkages between them.

Many of the people who have been involved in the project over the last three years could be seen all around the beautiful venue. Above all, Naturalis is itself one of the partnering institutions at BiCIKL. Then, on Tuesday, on behalf of the BiCIKL consortium and the project’s coordinator: the scientific publisher and technology innovator: Pensoft, Iva Boyadzhieva presented the work done within the project one month ahead of its official conclusion at the end of April.

As she talked about the way the BiCIKL consortium took to traverse obstacles to wider use and adoption of FAIR and linked biodiversity data, she focused on BiCIKL’s main outcome: the Biodiversity Knowledge Hub (BKH).

Key results from the BiCIKL project three years into its existence presented by Pensoft’s Iva Boyadzhieva at the EBR III conference.

Intended to act as a knowledge broker for users who wish to navigate and access sources of open and FAIR biodiversity data, guidelines, tools and services, in practicality, the BKH is a one-stop portal for understanding the complex but increasingly interconnected landscape of biodiversity research infrastructures in Europe and beyond. It collates information, guidelines, recommendations and best practices in usage of FAIR and linked biodiversity data, as well as a continuously expanded catalogue of compliant relevant services and tools.

At the core of the BKH is the FAIR Data Place (FDP), where users can familiarise themselves with each of the participating biodiversity infrastructures and network organisations, and also learn about the specific services they provide. There, anyone can explore various biodiversity data tools and services by browsing by their main data type, e.g. specimens, sequences, taxon names, literature.

While the project might be coming to an end, she pointed out, the BKH is here to stay as a navigation system in a universe of interconnected biodiversity research infrastructures.

To do this, not only will the partners continue to maintain it, but it will also remain open to any research infrastructure that wishes to feature its own tools and services compliant with the linked and FAIR data requirements set by the BiCIKL consortium.

On the event’s website you can access the BiCIKL’s slides presentation as presented at the EBR III conference.

What else was on at the EBR III?

Indisputably, the ‘hot’ topics at the EBR III were the novel technologies for remote and non-invasive, yet efficient biomonitoring; the utilisation of data and other input sourced by citizen scientists; as well as leveraging different types and sources of biodiversity data, in order to better inform decision-makers, but also future-proof the scientific knowledge we have collected and generated to date.

Project’s coordinator Dr Quentin Groom presents the B-Cubed’s approach towards standardised access to biodiversity data for the use of policy-making at the EBR III conference.

Amongst the other Horizon Europe projects presented at the EBR III conference was B-Cubed (Biodiversity Building Blocks for policy). On Monday, the project’s coordinator Dr Quentin Groom (Meise Botanic Garden) familiarised the conference participants with the project, which aims to standardise access to biodiversity data, in order to empower policymakers to proactively address the impacts of biodiversity change.

You can find more about B-Cubed and Pensoft’s role in it in this blog post.

On the event’s website you can access the B-Cubed’s slides presentation as presented at the EBR III conference.

***

Dr France Gerard (UK Centre for Ecology & Hydrology) talks about the challenges in using raw data – including those provided by drones – to derive habitat condition metrics.

MAMBO: another Horizon Europe project where Pensoft has been contributing with expertise in science communication, dissemination and exploitation, was also an active participant at the event. An acronym for Modern Approaches to the Monitoring of BiOdiversity, MAMBO had its own session on Tuesday morning, where Dr Vincent Kalkman (Naturalis Biodiversity Center), Dr France Gerard (UK Centre for Ecology & Hydrology) and Prof. Toke Høye (Aarhus University) each took to the stage to demonstrate how modern technology developed within the project is to improve biodiversity and habitat monitoring. Learn more about MAMBO and Pensoft’s involvement in this blog post.

MAMBO’s project coordinator Prof. Toke T. Høye talked about smarter technologies for biodiversity monitoring, including camera traps able to count insects at a particular site.

On the event’s website you can access the MAMBO’s slides presentations by Kalkman, Gerard and Høye, as presented at the EBR III conference.

***

The EBR III conference also saw a presentation – albeit remote – from Prof. Dr. Florian Leese (Dean at the University of Duisburg-Essen, Germany, and Editor-in-Chief at the Metabarcoding and Metagenomics journal), where he talked about the promise, but also the challenges for DNA-based methods to empower biodiversity monitoring. 

Amongst the key tasks here, he pointed out, are the alignment of DNA-based methods with the Global Biodiversity Framework; central push and funding for standards and guidance; publication of data in portals that adhere to the best data practices and rules; and the mobilisation of existing resources such as the meteorological ones. 

Prof. Dr. Florian Leese talked about the promise, but also the challenges for DNA-based methods to empower biodiversity monitoring. He also referred to the 2022 Forum Paper: “Introducing guidelines for publishing DNA-derived occurrence data through biodiversity data platforms” by R. Henrik Nilsson et al.

He also made a reference to the Forum Paper “Introducing guidelines for publishing DNA-derived occurrence data through biodiversity data platforms” by R. Henrik Nilsson et al., where the international team provided a brief rationale and an overview of guidelines targeting the principles and approaches of exposing DNA-derived occurrence data in the context of broader biodiversity data. In the study, published in the Metabarcoding and Metagenomics journal in 2022, they also introduced a living version of these guidelines, which continues to encourage feedback and interaction as new techniques and best practices emerge.

***

You can find the programme on the conference website and see highlights on the conference hashtag: #EBR2024.

Don’t forget to also explore the Biodiversity Knowledge Hub for yourself at: https://biodiversityknowledgehub.eu/ 

Melting glaciers provide new ground for invasive species

A case study on the island of South Georgia.

Invasive species spread through human activities are one of the main causes of the ongoing biodiversity crisis.

Even on South Georgia, a remote island located in the very south of the Atlantic Ocean, exotic species are present. Many of which were inadvertently introduced by whalers and sealers in the 19th and early 20th century.

The invasive carabid ground beetle, Merizodus soledadinus, is present on sites that have been recently exposed by melting glaciers.

In a new study published in the open-access journal Neobiota and funded by Darwin Plus, researchers explored how living organisms colonise new ground provided by melting glaciers.

Like other cold regions of the world, South Georgia is losing its glaciers because of climate change, leaving behind large areas of newly uncovered bare ground.

Invasive annual meadow grass colonising ground only a few years after the glacier disappeared.
Invasive annual meadow grass colonising ground only a few years after the glacier disappeared.

Researchers surveyed the foreland biodiversity of six glaciers, creating an inventory of the flora and fauna that colonise forelands at different stages of glacial retreat.

A survey site near a former whaling station (Grytviken).
A survey site near a former whaling station (Grytviken).

They found that, just a few years after bare ground is exposed by a glacier melting, pioneer plants arrive, progressively covering more ground with time, followed by an increasing number of species.

Rocky terrain by Glacier Col.

Native and exotic plants, as well as invertebrates, take advantage of this opportunity. Surprisingly, two temperate plant species from the Northern Hemisphere, annual meadow grass and mouse-ear chickweed, colonise sites faster than any other species.

The team suggests their results indicate invasive species will likely spread on South Georgia as fast as glaciers are retreating. Whether this has or will have negative consequences on local species needs to be investigated to help protect this unique ecosystem.

Original Source

Tichit P, Brickle P, Newton RJ, Convey P, Dawson W (2024) Introduced species infiltrate recent stages of succession after glacial retreat on sub-Antarctic South Georgia. NeoBiota 92: 85-110. https://doi.org/10.3897/neobiota.92.117226

Follow NeoBiota on X and Facebook.

Harmonising invasion language: a new strategy for Australia’s alien plants

Researchers have outlined a methodology for integrating and standardising data on plant invasions in the federally managed country.

In a leap towards managing the ecological challenge posed by alien plant species, a recent study outlines a methodology for integrating and harmonising data on plant invasions across Australia.

Dr Irene Martín-Forés, from the Terrestrial Ecosystem Research Network and The University of Adelaide, Australia, and collaborators delved into the heart of the linguistic challenge of harmonising different frameworks on the invasion ecology language.

Published in NeoBiota, the researchers created a standardised and unified database at the Australian national level, known as the Alien Flora of Australia, which will help monitoring and early-warning of alien flora, prevent species introduction, streamline decision-making, and bolster biosecurity efforts.

Harmonised workflow to unify terminology on biological invasions across Australian data sources. Credit: Dr Irene Martín-Forés.

Focusing on Australia, a federally managed country, they identified mismatches in definitions and records of invasion status for vascular plant taxa across different jurisdictions. They then proposed prioritisation procedures to tackle those mismatches and to integrate information from ten data sources into a harmonised workflow at the national scale.

“The importance of harmonising terminology on biological invasions cannot be overstated. It is not merely an academic pursuit but a practical necessity, essential for realising meaningful advancements in invasion ecology.”

Dr Irene Martín-Forés

The authors recognise that the words used to describe alien species profoundly influence how humans perceive, study, and manage biological invasions. In federally managed countries, the problem is worse, as fragmented terminologies across different jurisdictions create confusion and inconsistencies in species classification and invasion statuses, therefore hindering effective communication among researchers, policymakers, and stakeholders.

Prioritisation procedure to assign the most conservative invasion status for a given species in a given Australian state after comparing the records in the corresponding state census and in the Australian Plant Census (APC). Credit: Dr Irene Martín-Forés.

The benefits of harmonising terminology on invasion ecology and combining contrasting data sources into a unified dataset at the Australian national scale extend far beyond semantic clarity. It enhances the accuracy of available datasets, and subsequently the reliability of scientific research focused on plant invasion. It also streamlines communication across jurisdictional borders and disciplines and empowers evidence-based decision-making in biosecurity management.

The workflow developed and its associated R script can be easily adapted to be used in any federally managed country, saving future efforts into trying to deal with inconsistencies in species’ invasion statuses.

Original source:

Martín-Forés I, Guerin GR, Lewis D, Gallagher RV, Vilà M, Catford JA, Pauchard A, Sparrow B (2024) Towards integrating and harmonising information on plant invasions across Australia. NeoBiota 92: 61-83. https://doi.org/10.3897/neobiota.92.113013

Follow NeoBiota on X and Facebook.

BiCIKL project sums up outcomes and future prospects at a Final GA in Cambridge

On multiple occasions, the participants agreed that the Biodiversity Knowledge Hub must be the flagship outcome of BiCIKL. 

The city of Cambridge and the Wellcome Campus hosted the Final General Assembly of the EU-funded project BiCIKL (acronym for Biodiversity Community Integrated Knowledge Library): a 36-month endeavour that saw 14 member institutions and 15 research infrastructures representing diverse actors from the biodiversity data realm come together to improve bi-directional links between different platforms, standards, formats and scientific fields. Consortium members who could not attend the meeting in Cambridge joined the meeting remotely.

The 3-day meeting was organised by local hosts European Molecular Biology Laboratory (EMBL) and ELIXIR in collaboration with Pensoft Publishers.

After a welcome cocktail reception on Monday evening at Hilton Cambridge City Centre, on Tuesday, the consortium made an early start with a recap of BiCIKL’s key milestones and outputs from the last three years. All Work Package leaders had their own timeslot to discuss the results of their collaborations.  

They all agreed that the Biodiversity Knowledge Hub – the one-stop portal for understanding the complex – yet increasingly interconnected landscape of biodiversity research infrastructures – is likely the flagship outcome of BiCIKL. 

Prof. Lyubomir Penev, project coordinator of BiCIKL and founder/CEO of Pensoft Publishers at the BiCIKL’s third and final General Assembly in Cambridge, United Kingdom.

In the afternoon, the participants focused on the services developed under BiCIKL. Amongst the many services resulting from the project some were not originally planned. Rather those were the ‘natural’ products of the dialogue and collaboration that flourished within the consortium throughout the project. “A symptom of passion,” said Prof. Lyubomir Penev, project coordinator of BiCIKL and founder/CEO of Pensoft Publishers.

An excellent example of one such service is what the partners call the “Biodiversity PMC”, which brings together biodiversity literature from thousands of scholarly journals and over 500,000 taxonomic treatments, in addition to the biomedical content available from NIH’s PubMed Central, into the SIB Literature Services (SIBiLS) database. What’s more, users at SIBiLS – be it human or AI – can now use advanced text- and data-mining tools, including AI-powered factoid question-answering capacities, to query all this full-text indexed content and seek out, for example, species traits and biotic interactions. Read more about the “Biodiversity PMC” in its recent official announcement.

Far from being the only one, the “Biodiversity PMC” is in good company: from the blockchain-based technology of LifeBlock to the curation of the DNA sequences by PlutoF, the BiCIKL project consortium takes pride in having developed twelve services dedicated to FAIR and linked ready-to-use biodiversity data. 

All those services are already listed in the FAIR Data Place within the Biodiversity Knowledge Hub, where each is presented with its own video. For many services, from the same page, visitors can also download factsheets meant to serve as user guidelines. All will also be featured in the EOSC catalogue.

All services developed under BiCIKL with links to their explanatory videos:

On Wednesday, the consortium focused on BiCIKL’s activities from the Transnational and Virtual Access Pillar, which included both presentations by each open call leader and VA leader, as well as open discussions and a recap of what the teams have learnt from these experiences. 

A panel discussion took place on Thursday as part of an open event, where BiCIKL partners and ELIXIR Biodiversity and Plant Communities came together to discuss the Future of Biodiversity and Genomics data integration at the EMBL Wellcome Genome Campus.

Thursday was dedicated to an open event where BiCIKL partners and ELIXIR Biodiversity and Plant Communities came together to discuss the Future of Biodiversity and Genomics data integration at the EMBL Wellcome Genome Campus. You can find the agenda on BiCIKL’s website.

After 36 months of action, the BiCIKL project will officially end in April 2024, but does it mean that all will be done and dusted come May 2024? Certainly not, point out the partners. 

To ensure that the Biodiversity Knowledge Hub will not only continue to exist but will not cease to grow in both use and participation, the one-stop portal will remain under the maintenance of LifeWatch ERIC. 

In conclusion, we could say that an appropriate payoff for the project is “Stick together!” as put by BiCIKL’s Joint Research Activity Leader Dr. Quentin Groom.

Final words at the third and last General Assembly of the BiCIKL project.

You can find highlights from the BiCIKL General Assembly meeting on X via the #BiCIKL_H2020 hashtag (in association with #Cambridge and #finalGA)

All research outputs, including the approved grant proposal, policy briefs, guidelines papers and research articles associated with the project, remain openly accessible from the BiCIKL project outcomes collection in RIO Journal: https://doi.org/10.3897/rio.coll.105.

***

All BiCIKL project partners:

Gardeners on the front line: the key to early invasive plant detection?

A study from the United Kingdom suggests gardeners could partner with researchers to play a crucial role in preventing plant invasions.

The critical role of gardeners in identifying ‘future invaders’ – ornamental plants that could become invasive species – has been revealed by researchers from the University of Reading and the Royal Horticultural Society.

Looking to draw from the experience of Britain’s millions of gardeners, the team created an online survey where gardeners reported ornamentals that showed ‘invasive behaviour’ in their gardens.

Based on reports from 558 gardeners, 251 different plants were identified as potential invaders, reflecting the extensive variety and potential risks in domestic gardens. The team analysed the results, considering both domestic and global invasive status, and prioritised ornamental plants of concern. The result was a shortlist of plants which need their invasive potential in Britain and Ireland assessed.

The shortlisted plants include, for example: Mexican fleabane (Erigeron karvinskianus); cypress spurge (Euphorbia cyparissias); chameleon plant (Houttuynia cordata); Himalayan honeysuckle (Leycesteria formosa); and purple top (Verbena bonariensis).

The results, published in the open-access journal NeoBiota, highlight the role of gardeners in the early detection of invasive species, a key factor in the global nature crisis. Such proactive identification could prove invaluable for future risk assessments and prevention strategies.

“The simple yet structured scheme we developed was used to prioritise which of the around 70,000 ornamental plants available to buy in the UK could be future invaders. This is crucial for focusing research efforts and resources, such as conducting formal risk assessments to explore the invasive potential of those shortlisted.”

Tomos Jones, lead author

John David, RHS Head of Horticultural Taxonomy, said: “It’s important to remember that these shortlisted plants are not yet officially invasive, and that many non-native plants that occur in the wild present no threat to our native biodiversity.”

The research team encourages gardeners to get involved in helping identify future invaders. They can report ornamental plants showing ‘invasive behaviour’ through an ongoing project called Plant Alert, run by the Botanical Society of Britain and Ireland and Coventry University.

Original source:

Jones TS, Culham A, Pickles BJ, David J (2024) Can gardeners identify ‘future invaders’? NeoBiota 91: 125–144. https://doi.org/10.3897/neobiota.91.110560

Follow NeoBiota on X and Facebook.

Pensoft collaborates with R Discovery to elevate research discoverability

Pensoft and R Discovery’s innovative connection aims to change the way researchers find academic articles.

Leading scholarly publisher Pensoft has announced a strategic collaboration with R Discovery, the AI-powered research discovery platform by Cactus Communications, a renowned science communications and technology company. This partnership aims to revolutionize the accessibility and discoverability of research articles published by Pensoft, making them more readily available on R Discovery to its over three million researchers across the globe.

R Discovery, acclaimed for its advanced algorithms and an extensive database boasting over 120 million scholarly articles, empowers researchers with intelligent search capabilities and personalized recommendations. Through its innovative Reading Feed feature, R Discovery delivers tailored suggestions in a format reminiscent of social media, identifying articles based on individual research interests. This not only saves time but also keeps researchers updated with the latest and most relevant studies in their field.

Open Science is much more than cost-free access to research output.

Lyubomir Penev

One of R Discovery’s standout features is its ability to provide paper summaries, audio readings, and language translation, enabling users to quickly assess a paper’s relevance and enhance their research reading experience significantly.

With over 2.5 million app downloads and upwards of 80 million journal articles featured, the R Discovery database is one of the largest scholarly content repositories.

At Pensoft, we do realise that Open Science is much more than cost-free access to research outputs. It is also about easier discoverability and reusability, or, in other words, how likely it is for the reader to come across a particular scientific publication and, as a result, cite and build on those findings in his/her own studies. By feeding the content of our journals into R Discovery, we’re further facilitating the discoverability of the research done and shared by the authors who trust us with their work,” said ARPHA’s and Pensoft’s founder and CEO Prof. Lyubomir Penev.

Abhishek Goel, Co-Founder and CEO of Cactus Communications, commented on the collaboration, “We are delighted to work with Pensoft and offer researchers easy access to the publisher’s high-quality research articles on R Discovery. This is a milestone in our quest to support academia in advancing open science that can help researchers improve the world.

So far, R Discovery has successfully established partnership with over 20 publishers, enhancing the platform’s extensive repository of scholarly content. By joining forces with R Discovery, Pensoft solidifies its dedication to making scholarly publications from its open-access, peer-reviewed journal portfolio easily discoverable and accessible.

First database of the impacts of invasive plants in Europe

Freely accessible, the database provides useful contextual information and identifies key gaps in European invasive-plant research.

A team of experts has created the first database of field studies on the impacts of invasive plants on native species, communities and ecosystems in Europe.

The dataset comprises 266 peer-reviewed publications reporting 4,259 field studies on 104 invasive species across 29 European countries. It is the first harmonised database of its kind at continental scale, and is freely accessible to the scientific community for future studies. Notably, one third of the studies focused on just five species that invade several central European countries.

Japanese knotweed (Reynoutria japonica) in a garden in Brastad, Lysekil Municipality, Sweden.

Published in NeoBiota, the project was mainly funded through the European Regional Development Fund (SUMHAL, LIFEWATCH, POPE). It was executed by researchers from the Spanish institutes, Estación Biológica de Doñana, Universidad de Sevilla, Instituto Pirenaico de Ecología and Universidad de Alcalá, as well as the University of Fribourg, Switzerland.

The comprehensive database indicates that invasive plants impact other plants, animals and microbes, all trophic levels (herbivores, parasites, plants, pollinators, predators, omnivores, decomposers and symbionts) and numerous ecosystem processes.

Map of locations (red dots) of field studies on the ecological impacts of invasive plant species in Europe.
Map of locations (red dots) of field studies on the ecological impacts of invasive plant species in Europe. Credit: Vilà et al.

More than half of the studies were conducted in temperate and boreal forests and woodlands and temperate grasslands. Major knowledge gaps are found in Baltic and Balkan countries, in desert and semi-arid shrublands, subtropical forests and high mountains.

Prof. Montserrat Vilà, coordinator of this task, highlights that the database provides information on whether the invasive species increase, decrease or have a neutral effect on the ecological variable of study. This allows investigation into the circumstances in which the invader has contrasting effects.

Himalayan balsam (Impatiens glandulifera). Credit: Guptaele via Wikimedia Commons, CC BY-SA 4.0.

The database will be updated as new field studies on the ecological impacts of invasive species are published. “We hope for more studies on species that are still locally rare and with restricted distribution,” Prof. Montserrat Vilà says, “this database is of interest for academic, management and policy-related purposes.”

The PLANTIMPACTSEUROPE database can be accessed at: https://figshare.com/s/0a890d22bf5632fe5cb5

Research article:

Vilà M, Trillo A, Castro-Díez P, Gallardo B, Bacher S (2024) Field studies of the ecological impacts of invasive plants in Europe. NeoBiota 90: 139-159. https://doi.org/10.3897/neobiota.90.112368

Follow NeoBiota on X and Facebook.

Did European insects invade the world because settlers carried plants?

Researchers suggest European insect invaders may be so abundant due to colonial introductions of non-native plants.

Insects are among the most prolific and successful invaders of new habitats, but not all regions are equal in the numbers of insects that have spread beyond their borders.


Flows of non-native insects between N. America, Europe, and Australasia. Numbers are the total count of species established from donor to recipient.

European insects, in particular, stand out as highly successful invaders into other world regions. Why? Biologists have long understood that species are spread through international trade: insects are frequent stowaways in trade goods, and the value of international trade between world regions can be a good predictor of how many non-native species are exchanged.

However, recent research led by Dr. Rylee Isitt of the University of New Brunswick, and published in the journal NeoBiota, shows that after accounting for patterns of international trade, the number of insects that have spread from Europe into North America, Australia, and New Zealand far exceeds expectations.

Since patterns in international trade can’t explain these insect invasions, the researchers looked for other potential explanations. It’s possible that European insects are simply more numerous or better invaders than their North American or Australasian counterparts. However, Dr. Isitt and his collaborators didn’t find evidence for that – at most, there are only slightly more European species with the capacity to invade compared to North American and Australasian species.

Another possibility is North American and Australasian habitats are easier to invade than European ones. But prior research has shown that Europe has been heavily invaded by Asian insects, suggesting that it is no more resistant to invasion than North America or Australasia.

Instead, Dr. Isitt and collaborators have proposed that the abundance of European insect invaders may be a result of deliberate introductions of non-native plants into Europe’s colonies. Plants introduced into European colonies could have promoted the spread of European insects into North America and Australia by two different means.

First, insects may have been introduced along with the plants. Second, introduced plants may have provided suitable food and habitat for subsequent arrivals of non-native insects, who might have otherwise found the native flora to be unpalatable or unsuitable as a habitat.

Cumulative discoveries (observed and modelled) and establishments (modelled) of non-native insects exchanged between Europe (EU), North America (NA), and Australasia (AU) versus cumulative import value (inflation-corrected to 2020 British pounds sterling, billions), 1827–2014. Alternating background shading indicates decadal increments, with shading omitted prior to the 1940s for clarity.

Although the researchers haven’t completely resolved the mystery of the overabundance of European insects, they have ruled out several possibilities, leaving the connection to introduced plants as the prime suspect. The next steps? Determining to what extent European insects spread through introduced plants compared to insects from other world regions.

Because invasive species are reshaping our world, we need to understand how they move and establish. Evidence is mounting that trade in plants and plant products is responsible for a large proportion of insect invasions. If the researchers’ hypothesis is correct, the spread of European insects may be a remarkable example of the unintended consequences of deliberate plant introductions.

Research article:

Isitt R, Liebhold AM, Turner RM, Battisti A, Bertelsmeier C, Blake R, Brockerhoff EG, Heard SB, Krokene P, Økland B, Nahrung HF, Rassati D, Roques A, Yamanaka T, Pureswaran DS (2024) Asymmetrical insect invasions between three world regions. NeoBiota 90: 35-51. https://doi.org/10.3897/neobiota.90.110942

Follow NeoBiota on X and Facebook.

Pensoft 2023 review: A year of pioneering research

To celebrate a successful year, Pensoft gives thanks and reflects on the achievements of key journals in 2023.

As the new year approaches, we take a moment to look back on a great year for several of Pensoft‘s key journals.

The following videos were created as part of the #Pensoft2023Review campaign and present the journals’ achievements this year.

ZooKeys

PhytoKeys

MycoKeys

Biodiversity Data Journal

NeoBiota

Nature Conservation

One Ecosystem

Metabarcoding and Metagenomics

Evolutionary Systematics

Looking forward to 2024

Despite the success of 2023, the Pensoft team is keener than ever to improve in every aspect in the coming year. A massive thank you to every author, editor, reviewer and reader of Pensoft’s journals, and a very happy New Year!

***

Follow Pensoft on social media: