Elephant instead of wild boar? What could have been in Europe

Even under today’s climatic conditions, the long-extinct straight-tusked elephant could still live in Europe.

Elephants are among the largest land mammals on Earth and are often referred to as “ecosystem engineers” because they sustainably alter their surroundings through grazing, trampling, and digging. Europe, too, had an elephant: the straight-tusked elephant (Palaeoloxodon antiquus) lived on our continent for around 700,000 years. The species survived multiple ice ages before becoming extinct during the last one due to additional hunting pressure from humans. Throughout its existence, the straight-tusked elephant helped shape Europe’s landscape, maintaining open spaces and light woodlands. Many native plant species are still adapted to these conditions today. 

A photo of a towering elephant statue standing on grassy terrain under a blue sky with fluffy clouds, its trunk raised and tusks visible.
A sculpture of Palaeoloxodon antiquus next to the paleontological museum of Ambrona (Soria, Spain). Photo credit: PePeEfe under a CC BY-SA 3.0 license.

“The German name Waldelefant (forest elephant) originates from the assumption that this species primarily lived in the wooded regions of Europe. However, fossil evidence shows that P. antiquus often inhabited open or semi-open habitats with mosaic-like vegetation, similar to modern elephants,” explains Prof. Dr. Manuel Steinbauer, Chair of Sport Ecology at the University of Bayreuth. 

What for?

Our perception of nature is shaped by what we experience in our surroundings. Ecosystems without direct human influence are often perceived as “natural.” However, when considering insights gained from fossils, it becomes clear that today’s ecosystems— even without direct human intervention—differ significantly from those in which the species of our landscapes evolved thousands of years ago. Studies like the one carried out by the Bayreuth research team highlight the importance of studying past ecosystems for conservation. Understanding how climate and environmental changes have historically affected large mammals can provide valuable insights for modern conservation strategies.

To reconstruct the way of life of P. antiquus and, in particular, its actual habitat—known as the realised niche—the research team examined scientific literature and palaeontological databases for fossil finds of P. antiquus that could be assigned to specific Marine Isotope Stages. Marine Isotope Stages are periods in the earth’s history that reflect climate history, representing warm and cold stages. The Bayreuth research team assigned fossil finds from across Europe to either a warm or cold stage and used climate models from these periods to reconstruct the realised niche of the straight-tusked elephant. A comparison with modern climate data suggests that straight-tusked elephants would still be able to live in Europe today. The climate in Western and Central Europe would be particularly suitable, except for mountainous regions such as the Alps and the Caucasus. 

Map of Europe showing occurrence probability with black points indicating data locations, overlaid on a gradient green background.
Current potential distribution of the straight-tusked elephant (Palaeoloxodon antiquus) in Europe. The colouring represents the probability of occurrence, with grey indicating “very unlikely” and dark green “very likely”. The black dots mark the fossil finds on which the prediction is based.

“In the past, megafauna like the straight-tusked elephant and their regulatory mechanisms—such as grazing—were omnipresent. Many European species, particularly plants that thrive in open habitats, likely established in their diversity in Europe because they benefited from these ecological influences. Traditional conservation strategies in Europe primarily aim to protect biodiversity by shielding habitats from human activities. However, this strategy alone is unlikely to restore the lost ecological functions of megafauna,” says Franka Gaiser, a doctoral student in the Sport Ecology research team and lead author of the study. 

Modern conservation projects actively reintroduce large herbivores to Europe. However, this comes with challenges, as the ecological processes that have shaped modern ecosystems are not yet fully understood. Additionally, today’s large herbivores cannot entirely replace the role of extinct megafauna, as both the animals themselves and the landscape structures, as well as species interactions, have changed significantly.

Original publication:

Gaiser F, Müller C, Phan P, Mathes G, Steinbauer MJ (2025) Europe’s lost landscape sculptors: Today’s potential range of the extinct elephant Palaeoloxodon antiquus. Frontiers of Biogeography 18: e135081. https://doi.org/10.21425/fob.18.135081

New light on the controversial question of species abundance and population density

Inspired by the negative results in the recently published largest-scale analysis of the relation between population density and positions in geographic ranges and environmental niches, Drs Jorge Soberon and Andrew Townsend Peterson of the University of Kansas, USA, teamed up with Luis Osorio-Olvera, National University of Mexico (UNAM), and identified several issues in the methodology used, able to turn the tables in the ongoing debate. Their findings are published in the innovative open access journal Rethinking Ecology.

Both empirical work and theoretical arguments published and cited over the last several years suggest that if someone was to take the distributional range of a species – be it animal or plant – and draw lines starting at the edges of the space inwards, they would find the species’ populations densest at the intersection of those lines. However, when the team of Tad Dallas, University of Helsinki, Finland, analysed a large dataset of 118,000 populations, equating to over 1,400 species of birds, mammals, and trees, they found no such relationship.

Having analysed the analysis, the American-Mexican team concluded that despite being based on an unprecedented volume of data, the earlier study was missing out some important points.

Firstly, the largest dataset used by Tad and his team comprises observational data which had not required a certain sampling protocol or a plan. Without any standard in use, it is easy to imagine that the observations would be predominantly coming from people around and near cities, hence strongly biased.

Additionally, the scientists note that the analysis largely disregards parts of species’ geographic distributions for which there were no abundant data. As a result, the range of a species could be narrowed down significantly and its centroid – misplaced. Meanwhile, the population would appear denser on what appears to be the periphery of the area.

Similar issue is identified in the localisation of populations in the environmental space, where once again their range turned out to have been represented as significantly smaller, when compared to data available from the International Union for Conservation of Nature (IUCN) and the Global Biodiversity Information Facility (GBIF).

Further, a closer look into the supplementary materials provided revealed that the precision of the population-density data was not scalable with the climate data. As a result, it is likely that multiple abundance data falls within a single climate pixel.

In conclusion, the authors note that in order to comprehensively study the abundance of a species’ populations, one needs to take into consideration a number of factors lying beyond the scope of either of the papers, including human impact.

“We suggest that this important question remains far from settled,” they say.

###

Original source:

Soberón J, Peterson TA, Osorio-Olvera L (2018) A comment on “Species are not most abundant in the centre of their geographic range or climatic niche”. Rethinking Ecology 3: 13-18. https://doi.org/10.3897/rethinkingecology.3.24827