Study on mysterious Amazon porcupine can help its protection

After 22 years of relative obscurity, this research uncovers vital information about its distribution, phylogenetics, and potential conservation threats.

Porcupines of the genus Coendou are arboreal, herbivorous, nocturnal rodents distributed in tropical and subtropical regions of the Americas. Most of what we currently know on them is restricted to species that occur near urban areas, and we still have a lot to learn about these fascinating animals.

Recently, a new study shed light on a very unknown neotropical porcupine species. Roosmalens’ dwarf porcupine (Coendou roosmalenorum) is the smallest porcupine species we know, with blackish monocolored bristles on the tail which confers a blackish color to it, but apart from its appearance, we didn’t know much about it until recently.

A preserved specimen of Coendou roosmalenorum.

“This species was described in 2001 and our paper is the first scientific report after this date, which means nothing was discovered about Roosmalen’s porcupine in a 22-year period,” says Fernando Heberson Menezes, the lead author of a study that was just published in the open-access journal ZooKeys.

“Before our research, we had only a morphological description of the species, with a little information about its distribution and natural history, and nothing about population ecology or conservation threats.”

Using DNA sequencing and exploring data on its occurrences, Fernando and his team were able to uncover new facts about the enigmatic animal.

Thanks to their study, we now know more about its distribution in the Madeira biogeographical province in the Amazon Forest. “With this information, we raised the hypothesis this species is endemic to Madeira Province, which is important for predicting where we can find this species and the possible threats affecting its population or its distribution,” says Fernando.

Distribution of Caaporamys roosmalenorum in Brazilian Amazonia. The new record (locality 1) is the southeastern most record for the species, from Mato Grosso state, Brazil. The darker gray area represents the Madeira Province sensu Morrone et al. (2022).

At the same time, they found Roosmalens’ dwarf porcupine at new locations in the Amazon rainforest, which suggests that its distribution in southern Amazonia is wider than suspected.

Their phylogenetic analysis – the study of the species’ evolutionary history and relationships with other species – confirmed that the species is a member of the subgenus Caaporamys . This is important, the researchers say, because the classification of the genus Coendou had been “historically chaotic” until the last few years.

The information in this study opens up numerous opportunities for further researching this species. “We can think of ways to answer very basic scientific questions such as ‘how does Roosmalen’s porcupine use space?’ or ‘what does it eat?’, some more advanced questions such as ‘how did it evolve?,’ or applied questions such as ‘what are the major threats for its conservation?,’ or ‘how can we use it as a model to know more about the health of the Amazon forest?’, says Fernando in conclusion.

Original source:

Menezes FH, Semedo TBF, Saldanha J, Garbino GST, Fernandes-Ferreira H, Cordeiro-Estrela P, da Costa IR (2023) Phylogenetic relationships, distribution, and conservation of Roosmalens’ dwarf porcupine, Coendou roosmalenorum Voss & da Silva, 2001 (Rodentia, Erethizontidae). ZooKeys 1179: 139-155. https://doi.org/10.3897/zookeys.1179.108766

Follow ZooKeys on Facebook and X.

Europe’s very own dinosaurs – the enigmatic Late Cretaceous rhabdodontids

Despite being widespread and abundant, these gregarious herbivores vanished in Western Europe around 69 million years ago due to environmental changes, while surviving longer in Eastern Europe.

When you think of dinosaurs, you might automatically imagine iconic dinosaurs as Tyrannosaurus and Triceratops. But at the same time when these were stomping on the ancient coastal plains of North America, some of their very distant cousins were reigning over Europe’s lands.

Life reconstructions and size comparison of three rhabdodontids. From left to right: Mochlodon suessi from eastern Austria (the smallest member of the group), Rhabdodon priscus from southern France (the largest member of the group), and Transylvanosaurus platycephalus from western Romania (the most recently named member of the group). Also shown is the silhoutte of a human (1.8 m tall) for scale. Reconstruction by Peter Nickolaus

During the Late Cretaceous (between 100 and 66 million years ago), Europe was an extensive archipelago with numerous small and large islands situated in a shallow tropical sea, the so-called Late Cretaceous European Archipelago. The dinosaur groups that lived on these islands were very different from those of other continents, often being much smaller than their mainland relatives. These European dinosaurs include small and medium-sized carnivorous theropods, armoured ankylosaurs, long-necked sauropods, duck-billed hadrosaurs, and rhabdodontids.

Skeletal reconstruction of Zalmoxes robustus. Scale bar: 20 cm

Arguably one of the most important of these European dinosaur groups is the family Rhabdodontidae, which groups together the most common medium-sized herbivores of the Late Cretaceous European Archipelago. A joint research team from the Universities of Tübingen (Germany), Budapest (Hungary) and Bucharest (Romania) recently reviewed what we know about these peculiar dinosaurs in a new paper published in the journal Fossil Record.

Generally, rhabdodontid dinosaurs were small to medium-sized animals with an overall body length of approximately 2–6 m. “They were probably habitually bipedal herbivores, characterised by a rather stocky build, with strong hind limbs, short forelimbs, a long tail, and a comparatively large, triangular skull that tapers anteriorly and ends in a narrow snout,” explains Felix Augustin, lead author of the study in Fossil Record.

“They had a relatively robust skull with strong jaws, large teeth and a pointy beak that was covered in keratin, demonstrating that these dinosaurs were well-adapted to eating tough plants.”

In some instances, fossil remains of several individuals of different ages have been found together, indicating that they were gregarious.

Although they died out well before the mass extinction in Western Europe (about 69 million years ago), potentially due to environmental changes that affected the plants they fed on, they survived much longer in Eastern Europe and were among the last non-avian dinosaurs still present before the end of the Cretaceous (66 million years ago).

Interestingly, fossils of rhabdodontids have only been found in Europe and only in rocks ranging in age from 86–66 million years ago, so they were endemic to the Late Cretaceous European Archipelago.

The group currently comprises nine different species from five European countries (France, Spain, Austria, Hungary, and Romania).

Palaeogeographic map of Europe during the latest Cretaceous (late Campanian), with the location of the most important rhabdodontid-bearing assemblages. 1 Transylvania, western Romania. 2 Iharkút, western Hungary. 3 Muthmannsdorf, eastern Austria. 4 Eastern southern France. 5 Western southern France. 6 Northern Spain. 7 Central Spain.

“The first rhabdodontid species was scientifically named more than 150 years ago and the last one as recently as November 2022, so, although the group looks back to a long research history, we still have much to learn about it,” says Felix Augustin.

“Generally, our portraying of the world of dinosaurs is heavily biased towards the well-known North-American and Asian dinosaur faunas,” he adds.

Type specimens of some rhabdodontid species. A. The original drawing of the lectotype of Rhabdodon priscus, MPLM 30, a partial left dentary. The specimen has since deteriorated (Pincemaille-Quillevere 2002). Modified after Matheron (1869). B. Holotype of Rhabdodon septimanicus, MDE D-30, an incomplete right dentary. Photo kindly provided by Eric Buffetaut. C. Lectotype of Mochlodon suessi, PIUW 2349/2, a right dentary. D. Holotype of Mochlodon vorosi, MTM V 2010.105.1, a left dentary. E. Holotype of Zalmoxes robustus, NHMUK R.3392, a right dentary. Photo kindly provided by János Magyar. F. Holotype right dentary of Zalmoxes shqiperorum, NHMUK R.4900. Note that the holotype of Z. shqiperorum also comprises several postcranial elements that presumably belong to the same individual as the dentary. Photo kindly provided by János Magyar.

Dinosaur fossils from the Late Cretaceous are much rarer in Europe than in North America or Asia, and thus far no complete skeleton of a rhabdodontid has been described. Even though they were so abundant and common in the Upper Cretaceous of Europe, several key aspects about them remain poorly known, including their detailed body proportions, their posture and locomotion, as well as their feeding behaviour.

“In the past decades, a wealth of new, and often well-preserved, rhabdodontid fossils has been discovered throughout Europe, the majority of which still remains to be studied,” says Felix Augustin. “A joint research project is currently underway to study the available fossil material in order to gain new insights into the evolution and lifestyle of these fascinating yet still poorly known dinosaurs.”

Original source:

Augustin FJ, Ősi A, Csiki-Sava Z (2023) The Rhabdodontidae (Dinosauria, Ornithischia), an enigmatic dinosaur group endemic to the Late Cretaceous European Archipelago. Fossil Record 26(2): 171-189. https://doi.org/10.3897/fr.26.108967

Follow Fossil Record on Facebook and Twitter:

New way to browse interlinked biodiversity data: Biodiversity Knowledge Hub NOW ONLINE!

The Biodiversity Knowledge Hub is a one-stop portal that allows users to access FAIR and interlinked biodiversity data and services in a few clicks.

The Horizon 2020 BiCIKL Project is proud to announce that the Biodiversity Knowledge Hub (BKH) is now online.

BKH is a one-stop portal that allows users to access FAIR and interlinked biodiversity data and services in a few clicks. BKH was designed to support a new emerging community of users over time and across the entire biodiversity research cycle providing its services to anybody, anywhere and anytime.

The Knowledge Hub is the main product from our BiCIKL consortium, and we are delighted with the result!

BKH can easily be seen as the beginning of the major shift in the way we search interlinked biodiversity information.”

Biodiversity researchers, research infrastructures and publishers interested in fields ranging from taxonomy to ecology and bioinformatics can now freely use BKH as a compass to navigate the oceans of biodiversity data. BKH will do the linkages.

says Prof. Lyubomir Penev, BiCIKL’s Project coordinator and Founder of Pensoft Publishers
The BKH is designed to serve a new emerging community of users over time and across the entire biodiversity research cycle. 

We have invested our best energies and resources in the development of BKH and the Fair Data Place (FDP), which is the beating heart of the portal,”

BKH has been designed to support a new emerging community of users across the entire biodiversity research cycle.

Its purpose goes beyond the BiCIKL project itself: we are thrilled to say that BKH is meant to stay, aiming to reshape the way biodiversity knowledge is accessed and used.

says Dr Christos Arvanitidis, CEO of LifeWatch ERIC.

The BKH outlines how users can navigate and access the linked data, tools and services of the infrastructures cooperating in BiCIKL.

By revealing how they harvest, liberate and reuse data, these increasingly integrated sources enable researchers in the natural sciences to move more seamlessly between specimens and material samples, genomic and metagenomic data, scientific literature, and taxonomic names and units.

said Dr Joe Miller, Executive Secretary of GBIF—the Global Biodiversity Information Facility.

A training programme on how to best utilise the platform is currently being developed by the Consortium of European Taxonomic Facilities (CETAF), Pensoft PublishersPlaziMeise Botanic GardenEMBL’s European Bioinformatics Institute (EMBL-EBI), ELIXIR HubGBIF – the Global Biodiversity Information Facility, and LifeWatch ERIC and will be finalised in the coming months.

***

A detailed description of the BKH tools and services provided by its contributing organisations is available at: https://biodiversityknowledgehub.eu.

***

Find more information about the BiCIKL consortium partners on the project’s website.

***

Follow BiCIKL Project on Twitter and Facebook. Join the conversation on Twitter at #BiCIKL_H2020.

This October, TDWG 2023 is coming up to Tasmania & online

As in previous years, the abstracts – already getting published in the BISS journal – are giving a sneak peek of the event!

The annual TDWG conference will be taking place 9-13 October in Tasmania, Australia. Once again, the event will be running in a hybrid format. 

This year, the TDWG conference is hosted by Atlas of Living Australia – the Australian node of GBIF – the Global Biodiversity Information Facility and the National Research Collections Australia.

For an eighth year in a row, all conference abstracts will be submitted to TDWG via the Association’s own journal: Biodiversity Information Science and Standards (BISS Journal), published by Pensoft and powered by the end-to-end publishing platform ARPHA. Using the ‘mini-paper’ format, participants are not only openly and efficiently sharing their work with the world, but they also get to enjoy many features typically exclusive to ‘standard’ research papers, including DOI registration on Crossref, semantic enrichment and structural elements (e.g., tables, figures), all of which are stored as easily exported data.

Apart from an abstract submission portal, BISS Journal also serves as a permanent, openly accessible scholarly source for all contributions concerning the creation, maintenance, and promotion of open community-driven data standards to enable sharing and use of biodiversity data for all.

Learn more about the unique features of BISS and explore past TDWG abstract collections compiled for TDWG’s previous conferences. 

As in previous years, the abstracts will be published ahead of the event itself to provide the community with a sneak preview of the conference. The 2023 collection of abstracts, will allow readers to explore the abstracts by session (e.g., symposia, posters, contributed presentations, keynotes). Sometime after the conference, check out the media tab on most abstracts for slides presented and a link to session video when it is posted on TDWG’s YouTube channel.

***

Visit the TDWG 2023 conference website for more information about the scientific program, registration, abstract submission and more. Ahead, during and after the conference, join the conversation on Twitter and Mastodon via #tdwg2023.

***

Don’t forget to also follow TDWG (Twitter, Facebook and Mastodon), BISS Journal (Twitter and Facebook) and Pensoft (Twitter and Facebook) on social media.

***

Can’t wait until TDWG 2023? Use the time to relive last year’s TDWG 2022 in this blog post and view the TDWG 2022: The Aftermovie.

Senckenberg Nature Research Society’s General director Prof. Klement Tockner on a visit at the National Museum of Natural History and Pensoft

An important discussion point was the performance of the four Senckenberg journals, which moved to Pensoft’s publishing platform a few years ago. On the agenda was also the opportunity for an Open Access agreement

Prof. Klement Tockner, Director general of the Senckenberg Society for Nature Research (centre) with Pensoft’s founder and CEO Prof. Lyubomir Penev (right) and Prof. Pavel Stoev, Director of the National Museum of Natural History (Bulgaria) and COO at Pensoft (left).

On 2 June 2023, we welcomed Prof. Klement Tockner, Director general of the Senckenberg Society for Nature Research, who travelled to Bulgaria to meet with Pensoft’s and the National Museum of Natural History’s (NMNHS) senior management to discuss current and future collaborations. 

The visit took place in the NMNHS, where Tockner had fruitful discussions with Pensoft’s founder and CEO Prof. Lyubomir Penev and Prof. Pavel Stoev, Director of the Museum and COO at Pensoft.

An important point in the discussion was the performance of the four scientific journals, owned by the Society, which moved to Pensoft’s publishing platform ARPHA a couple of years ago, and marked the beginning of a fruitful and highly promising partnership.

On the agenda was also the opportunity for an Open Access agreement to be signed between the Society and the publisher, in order to support researchers who wish to publish in any Pensoft journal. 

Tockner was also curious to learn more about the additional publishing services, provided by Pensoft via the ARPHA platform, including the various and continuously elaborated data publishing workflows, and the opportunities to streamline the description of new marine species, identified from DNA material.

In early 2021, the Senckenberg Society for Nature Research signed with the publisher to move three of its legacy titles from the natural sciences domain: Arthropod Systematics & Phylogeny, Contributions to Entomology, Geologica Saxonica and Vertebrate Zoology.

Later the same year, in November, the journal Contributions to Entomology followed suit. All four of them went for the white-label publishing solution available from ARPHA, designed to preserve the exclusive identity of historical journals.

The partners also talked about further extending the collaboration between Senckenberg and Pensoft to European Commission-funded scientific projects. Tokner was particularly fascinated with the progress made by the currently undergoing project Biodiversity Community Integrated Knowledge Library (BiCIKL), coordinated by Pensoft and involving 14 European institutions from ten countries. Additionally, over the past 20 years, Pensoft has also partnered in over 50 different consortia as a publisher, science communicator and technology provider.

Stoev (right) showing Tockner (left) around the collections of the National Museum of Natural History (Sofia, Bulgaria).

In his role as Director of the NMNHS, Stoev used the occasion to tour Tockner around the NMNHS collections and tell him more about the Museum’s latest achievements and projects, as well as its traditions in the fields of human evolution research and paleornithology.

Stoev (left) tells Tockner (right) more about the recently launched Bulgarian national unit of DiSSCo.

The two also engaged in a vivid discussion about the poorly studied biodiversity in Bulgaria and the region, but also about the recent efforts of the NMNHS team, including the launch of a Bulgarian national unit of DiSSCo tasked to digitise a large proportion of the institution’s collection in the next three years. Tockner and Stoev also talked about the need of additional networking activities and closer collaborations between smaller natural history museums across Europe that could be mediated through the Consortium of European Taxonomic Facilities (CETAF), where Senckenberg is an active member.

***

Follow ARPHA Platform on Twitter and LinkedIn for further updates.

BiCIKL keeps on adding project outcomes in own collection in RIO Journal

The publications so far include the grant proposal; conference abstracts, a workshop report, guidelines papers and deliverables submitted to the Commission.

The dynamic open-science project collection of BiCIKL, titled “Towards interlinked FAIR biodiversity knowledge: The BiCIKL perspective” (doi: 10.3897/rio.coll.105), continues to grow, as the project progresses into its third year and its results accumulate ever so exponentially. 

Following the publication of three important BiCIKL deliverables: the project’s Data Management Plan, its Visual identity package and a report, describing the newly built workflow and tools for data extraction, conversion and indexing and the user applications from OpenBiodiv, there are currently 30 research outcomes in the BiCIKL collection that have been shared publicly to the world, rather than merely submitted to the European Commission.

Shortly after the BiCIKL project started in 2021, a project-branded collection was launched in the open-science scholarly journal Research Ideas and Outcomes (RIO). There, the partners have been publishing – and thus preserving – conclusive research papers, as well as early and interim scientific outputs.

The publications so far also include the BiCIKL grant proposal, which earned the support of the European Commission in 2021; conference abstracts, submitted by the partners to two consecutive TDWG conferences; a project report that summarises recommendations on interoperability among infrastructures, as concluded from a hackathon organised by BiCIKL; and two Guidelines papers, aiming to trigger a culture change in the way data is shared, used and reused in the biodiversity field. 

In fact, one of the Guidelines papers, where representatives of the Consortium of European Taxonomic Facilities (CETAF), the Society for the Preservation of Natural History Collections (SPNHC) and the Biodiversity Heritage Library (BHL) came together to publish their joint statement on best practices for the citation of authorities of scientific names, has so far generated about 4,000 views by nearly 3,000 unique readers.

At the time of writing, the top three of the most read papers in the BiCIKL collection is completed by the grant proposal and the second Guidelines paper, where the partners – based on their extensive and versatile experience – present recommendations about the use of annotations and persistent identifiers in taxonomy and biodiversity publishing. 

Access to data and services along the entire data and research life cycle in biodiversity science.
The figure was featured in the BiCIKL grant proposal, now made available from the BiCIKL project collection in RIO Journal.

What one might find quite odd when browsing the BiCIKL collection is that each publication is marked with its own publication source, even though all contributions are clearly already accessible from RIO Journal

So, we can see many project outputs marked as RIO publications, but also others that have been published in the likes of F1000Research, the official journal of TDWG: Biodiversity Information Science and Standards, and even preprints servers, such as BiohackrXiv

This is because one of the unique features of RIO allows for consortia to use their project collection as a one-stop access point for all scientific results, regardless of their publication venue, by means of linking to the original source via metadata. Additionally, projects may also upload their documents in their original format and layout, thanks to the integration between RIO and ARPHA Preprints. This is in fact how BiCIKL chose to share their latest deliverables using the very same files they submitted to the Commission.

“In line with the mission of BiCIKL and our consortium’s dedication to FAIRness in science, we wanted to keep our project’s progress and results fully transparent and easily accessible and reusable to anyone, anywhere,” 

explains Prof Lyubomir Penev, BiCIKL’s Project Coordinator and founder and CEO of Pensoft. 

“This is why we opted to collate the outcomes of BiCIKL in one place – starting from the grant proposal itself, and then progressively adding workshop reports, recommendations, research papers and what not. By the time BiCIKL concludes, not only will we be ready to refer back to any step along the way that we have just walked together, but also rest assured that what we have achieved and learnt remains at the fingertips of those we have done it for and those who come after them,” he adds.

***

You can keep tabs on the BiCIKL project collection in RIO Journal by subscribing to the journal newsletter or following @RIOJournal on Twitter and Facebook.

Interoperable biodiversity data extracted from literature through open-ended queries

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

The OpenBiodiv contribution to BiCIKL

Apart from coordinating the Horizon 2020-funded project BiCIKL, scholarly publisher and technology provider Pensoft has been the engine behind what is likely to be the first production-stage semantic system to run on top of a reasonably-sized biodiversity knowledge graph.

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

As of February 2023, OpenBiodiv contains 36,308 processed articles; 69,596 taxon treatments; 1,131 institutions; 460,475 taxon names; 87,876 sequences; 247,023 bibliographic references; 341,594 author names; and 2,770,357 article sections and subsections.

In fact, OpenBiodiv is a whole ecosystem comprising tools and services that enable biodiversity data to be extracted from the text of biodiversity articles published in data-minable XML format, as in the journals published by Pensoft (e.g. ZooKeys, PhytoKeys, MycoKeys, Biodiversity Data Journal), and other taxonomic treatments – available from Plazi and Plazi’s specialised extraction workflow – into Linked Open Data.

“I believe that OpenBiodiv is a good real-life example of how the outputs and efforts of a research project may and should outlive the duration of the project itself. Something that is – of course – central to our mission at BiCIKL.”

explains Prof Lyubomir Penev, BiCIKL’s Project Coordinator and founder and CEO of Pensoft.

“The basics of what was to become the OpenBiodiv database began to come together back in 2015 within the EU-funded BIG4 PhD project of Victor Senderov, later succeeded by another PhD project by Mariya Dimitrova within IGNITE. It was during those two projects that the backend Ontology-O, the first versions of RDF converters and the basic website functionalities were created,”

he adds.

At the time OpenBiodiv became one of the nine research infrastructures within BiCIKL tasked with the provision of virtual access to open FAIR data, tools and services, it had already evolved into a RDF-based biodiversity knowledge graph, equipped with a fully automated extraction and indexing workflow and user apps.

Currently, Pensoft is working at full speed on new user apps in OpenBiodiv, as the team is continuously bringing into play invaluable feedback and recommendation from end-users and partners at BiCIKL. 

As a result, OpenBiodiv is already capable of answering open-ended queries based on the available data. To do this, OpenBiodiv discovers ‘hidden’ links between data classes, i.e. taxon names, taxon treatments, specimens, sequences, persons/authors and collections/institutions. 

Thus, the system generates new knowledge about taxa, scientific articles and their subsections, the examined materials and their metadata, localities and sequences, amongst others. Additionally, it is able to return information with a relevant visual representation about any one or a combination of those major data classes within a certain scope and semantic context.

Users can explore the database by either typing in any term (even if misspelt!) in the search engine available from the OpenBiodiv homepage; or integrating an Application Programming Interface (API); as well as by using SPARQL queries.

On the OpenBiodiv website, there is also a list of predefined SPARQL queries, which is continuously being expanded.

Sample of predefined SPARQL queries at OpenBiodiv.

“OpenBiodiv is an ambitious project of ours, and it’s surely one close to Pensoft’s heart, given our decades-long dedication to biodiversity science and knowledge sharing. Our previous fruitful partnerships with Plazi, BIG4 and IGNITE, as well as the current exciting and inspirational network of BiCIKL are wonderful examples of how far we can go with the right collaborators,”

concludes Prof Lyubomir Penev.

***

Follow BiCIKL on Twitter and Facebook. Join the conversation on Twitter at #BiCIKL_H2020.

You can also follow Pensoft on Twitter, Facebook and Linkedin and use #OpenBiodiv on Twitter.

Experts in insect taxonomy “threatened by extinction” reveals the first European Red List of Taxonomists

While insect populations continue to decline, taxonomic expertise in Europe is at serious risk, confirms data obtained within the European Red List of Insect Taxonomists, a recent study commissioned by the European Union. 

Expertise tends to be particularly poor in the countries with the richest biodiversity, while taxonomists are predominantly male and ageing

While insect populations continue to decline, taxonomic expertise in Europe is at serious risk, confirms data obtained within the European Red List of Insect Taxonomists, a recent study commissioned by the European Union. 

Scientists who specialise in the identification and discovery of insect species – also known as insect taxonomists – are declining across Europe, highlights the newly released report by CETAF, International Union for Conservation of Nature (IUCN) and Pensoft. The authors of this report represent different perspectives within biodiversity science, including natural history and research institutions, nature conservation, academia and scientific publishing.

Despite the global significance of its taxonomic collections, Europe has been losing taxonomic expertise at such a rate that, at the moment nearly half (41.4%) of the insect orders are not covered by a sufficient number of scientists. If only EU countries are counted, the number looks only slightly more positive (34.5%). Even the four largest insect orders: beetles (Coleoptera), moths and butterflies (Lepidoptera), flies (Diptera) and wasps, bees, ants and sawflies (Hymenoptera) are only adequately ‘covered’ in a fraction of the countries.

To obtain details about the number, location and productivity of insect taxonomists, the team extracted information from thousands of peer-reviewed research articles published in the last decade, queried the most important scientific databases and reached out to over fifty natural science institutions and their networks. Furthermore, a dedicated campaign reached out to individual researchers through multiple communication channels. As a result, more than 1,500 taxonomists responded by filling in a self-declaration survey to provide information about their personal and academic profile, qualification and activities. 

Then, the collected information was assessed against numerical criteria to classify the scientists into categories similar to those used by the IUCN Red List of Threatened SpeciesTM. In the European List of Insect Taxonomists, these range from Eroded Capacity (equivalent to Extinct) to Adequate Capacity (equivalent to Least Concern). The assessment was applied to the 29 insect orders (i.e. beetles, moths and butterflies etc.) to figure out which insect groups the society, conservation practitioners and decision-makers need not be concerned at this point.

Overview of the taxonomic capacity in European countries based upon the Red List Index (colour gradient goes from red (Eroded Capacity) to green (Adequate Capacity).
Image by the European Red List of Taxonomists consortium.

On a country level, the results showed that Czechia, Germany and Russia demonstrate the most adequate coverage of insect groups. Meanwhile, Albania, Azerbaijan, Belarus, Luxembourg, Latvia, Ireland and Malta turned out to be the ones with insufficient number of taxonomists.

In most cases, the availability of experts seems to correlate to GDP, as wealthiest countries tend to invest more in their scientific institutions.

What is particularly worrying is that the lack of taxonomic expertise is more evident in the countries with the greatest species diversity. This trend may cause even more significant problems in the knowledge and conservation of these species, further aggravating the situation. Thus, the report provides further evidence about a global pattern where the countries richest in biodiversity are also the ones poorest in financial and human resources. 

The research team also reminds that it is European natural history museums that host the largest scientific collections – including insects – brought from all over the globe. As such, Europe is responsible to the world for maintaining taxonomic knowledge and building adequate expert capacity.

Other concerning trends revealed in the new report are that the community of taxonomists is also ageing and – especially in the older groups – male-dominated (82%). 

One reason to have fewer young taxonomists could be due to limited opportunities for professional training (…), and the fact that not all professional taxonomists provide it, as a significant number of taxonomists are employed by museums and their opportunities for interaction with university students is probably not optimal. Gender bias is very likely caused by multiple factors, including fewer opportunities for women to be exposed to taxonomic research and gain an interest, unequal offer of career opportunities and hiring decisions. A fair-playing field for all genders will be crucial to address these shortcomings and close the gap.

comments Ana CasinoCETAF’s Executive Director.

***

Entomologist examining a small insect under a microscope.
Photo by anton_shoshin/stockadobe.com.
The European Red List of Taxonomists concludes with practical recommendations concerning strategic, science and societal priorities, addressed to specific decision-makers.

The authors give practical examples and potential solutions in support of their call to action.

For instance, in order to develop targeted and sustainable funding mechanisms to support taxonomy, they propose the launch of regular targeted Horizon Europe calls to study important insect groups for which taxonomic capacity has been identified to be at a particularly high risk of erosion.

To address specific gaps in expertise – such as the ones reported in the publication from Romania – a country known for its rich insect diversity, yet poor in taxonomic expertise – the consortium proposes the establishment of a natural history museum or entomological research institute that is well-fitted to serve as a taxonomic facility.

Amongst the scientific recommendations, the authors propose measures to ensure better recognition of taxonomic work at a multidisciplinary level. The scientific community, including disciplines that use taxonomic research, such as molecular biology, medicine and agriculture – need to embrace universal standards and rigorous conduct for the correct citation of scientific publications by insect taxonomists.

Societal engagement is another important call. “It is pivotal to widely raise awareness of the value and impact of taxonomy and the work of taxonomists. We must motivate young generations to join the scientific community” points Prof. Lyubomir Penev, Managing Director of Pensoft.

***

Understanding taxonomy is a key to understanding the extinction risk of speciesIf we strategically target the gaps in expert capacity that this European Red List identifies, we can better protect biodiversity and support the well-being and livelihoods of our societies. With the climate crisis at hand, there is no time left to waste,

added David Allen from the IUCN Red List team.

As a dedicated supporter of the IUCN Red List, I am inspired by this call to strengthen the capacity, guided by evidence and proven scientific methods. However, Europe has much more scientific capacity than most biodiversity-rich regions of the world. So, what this report particularly highlights is the need for massively increasing investment in scientific discovery, and building taxonomic expertise, around the world,”  

said Jon Paul Rodríguez, Chair of the IUCN Species Survival Commission.

***

Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag. 

‘Nature’s Envelope’ – a simple device that reveals the scope and scale of all biological processes

All processes fit into a broad S-shaped envelope extending from the briefest to the most enduring biological events. For the first time, we have the first simple model that depicts the scope and scale of biology.

Arctic tern by Mark Stock, Schleswig-Holstein Wadden Sea National Park. License: CC BY-SA.

As biology is progressing into a digital age, it is creating new opportunities for discovery. 

Increasingly, information from investigations into aspects of biology from ecology to molecular biology is available in a digital form. Older ‘legacy’ information is being digitized. Together, the digital information is accumulated in databases from which it can be harvested and examined with an increasing array of algorithmic and visualization tools.

From this trend has emerged a vision that, one day, we should be able to analyze any and all aspects of biology in this digital world. 

However, before this can happen, there will need to be an infrastructure that gathers information from ALL sources, reshapes it as standardized data using universal metadata and ontologies, and made freely available for analysis. 

That information also must make its way to trustworthy repositories to guarantee the permanent access to the data in a polished and fully suited for re-use state.

The first layer in the infrastructure is the one that gathers all old and new information, whether it be about the migrations of ocean mammals, the sequence of bases in ribosomal RNA, or the known locations of particular species of ciliated protozoa.

How many of these subdomains will be there?

To answer this, we need to have a sense of the scope and scale of biology.

With the Nature’s Envelope we have, for the first time, a simple model that depicts the scope and scale of biology. Presented as a rhetorical device by its author Dr David J. Patterson (University of Sydney, Australia), the Nature’s Envelope is described in a Forum Paper, published in the open-science journal Research Ideas and Outcomes (RIO).

This is achieved by compiling information about the processes conducted by all living organisms. The processes occur at all levels of organization, from sub-molecular transactions, such as those that underpin nervous impulses, to those within and among plants, animals, fungi, protists and prokaryotes. Further, they are also the actions and reactions of individuals and communities; but also the sum of the interactions that make up an ecosystem; and finally, the consequences of the biosphere as a whole system. 

Nature’s Envelope, in green, includes all processes carried out by, involving, or the result of the activities of any and all organisms. The axes depict the duration of events and the sizes of participants using a log10 scale. Image by David J. Patterson. License: CC BY.

In the Nature’s Envelope, information on sizes of participants and durations of processes from all levels of organization are plotted on a grid. The grid uses a logarithmic (base 10) scale, which has about 21 orders of magnitude of size and 35 orders of magnitude of time. Information on processes ranging from the subatomic, through molecular, cellular, tissue, organismic, species, communities to ecosystems is assigned to the appropriate decadal blocks. 

Examples include movements from the stepping motion of molecules like kinesin that move forward 8 nanometres in about 10 milliseconds; or the migrations of Arctic terns which follow routes of 30,000 km or more from Europe to Antarctica over 3 to 4 months.

The extremes of life processes are determined by the smallest and largest entities to participate, and the briefest and most enduring processes.

The briefest event to be included is the transfer of energy from a photon to a photosynthetic pigment as the photon passes through a chlorophyll molecule several nanometres in width at a speed of 300,000 km per second. That transaction is conducted in about 10-17 seconds. As it involves the smallest subatomic particles, it defines the lower left corner of the grid. 

The most enduring is the process of evolution that has been progressing for almost 4 billion years. The influence of the latter has created the biosphere (the largest living object) and affects the gas content of the atmosphere. This process established the upper right extreme of the grid.

All biological processes fit into a broad S-shaped envelope that includes about half of the decadal blocks in the grid. The envelope drawn round the initial examples is Nature’s Envelope.

Nature’s envelope will be a useful addition to many discussions, whether they deal with the infrastructure that will manage the digital age of biology, or provide the context for education on the diversity and range of processes that living systems engage in.

The version of Nature’s Envelope published in the RIO journal is seen as a first version, to be refined and enhanced through community participation,”

comments Patterson.

***

Original source:

Patterson DJ (2022) The scope and scale of the life sciences (‘Nature’s envelope’). Research Ideas and Outcomes 8: e96132. https://doi.org/10.3897/rio.8.e96132

***

Follow Research Ideas and Outcomes (RIO Journal) on Twitter, Facebook and Linkedin.

Digitising beans to feed the world

In 2018, NHM London’s digitisation team started a project to digitise non-type herbarium material from the legume family. A recent data paper in the Biodiversity Data Journal reports on the outcomes.

You can find the original blog post by the Natural History Museum of London, reposted here with minor edits.

Legumes are a group of plants that include soybeans, peas, chickpeas, peanuts and lentils. They are a significant source of protein, fibre, carbohydrates, and minerals in our diet and some, like the cowpea, are resistant to droughts.

In 2018, the Natural History Museum of London’s (NHM London) digitisation team started a project in collaboration with project leader Royal Botanic Gardens Kew and the Royal Botanic Garden Edinburgh.

The project’s outcomes were published in a data paper in the Biodiversity Data Journal. Within the project, the digitisation team aimed to collectively digitise non-type herbarium material from the legume family. This includes rosewood trees (Dalbergia), padauk trees (Pterocarpus) and the Phaseolinae subtribe that contains many of the beans cultivated for human and animal food.

This project was made possible through the Department for Environment Food & Rural Affairs (DEFRA)-allocated Official Development Assistance (ODA) funding, distributed by the UK government in its “global efforts to defeat poverty, tackle instability and create prosperity in developing countries”.

AfricanGuinea, Ethiopia, Sudan, Kenya, Uganda, Tanzania, Mozambique, Malawi and Madagascar
AsianBangladesh, Myanmar, Nepal, New Guinea and India
Southern and Central AmericanGuatemala, Honduras, El Salvador, Nicaragua, Bolivia, Argentina and Brazil
ODA-listed Countries

The legume groups: Dalbergia, Pterocarpus and Phaseolinae,were chosen for digitisation to support the development of dry beans as a sustainable and resilient crop, and to aid conservation and sustainable use of rosewood and padauk trees. Some of these beans, especially cow pea and pigeon pea, are sustainable and resilient crops, as they can be grown in poor-quality soils and are drought stress resistant. This makes them particularly suitable for agricultural production where the growing of other crops would be difficult.

Digitally discoverable herbarium specimens can provide important information about the distribution of individual species, as well as highlighting which species occur naturally together.

While there have been collaborative efforts between herbaria in the past, these have tended to prioritise digitisation of type specimens: the example specimens for which a species is named.

Types are important to identification, but being individual specimens, they don’t offer insights into species distribution over time. By focusing on the non-types across the world and over the last 200 years, we have released a brand-new resource to the global scientific community.

Searching for beans

This collection was digitised by creating an inventory record for each specimen, attaching images of each herbarium sheet, and then transcribing more data and georeferencing the specimens, providing an accurate locality in space and time for their collection. 

We originally had four months and three members of staff to digitise over 11,000 specimens. The Covid-19 lockdown was ironically rather lucky for this project as it enabled us to have more time to transcribe and georeference all of the records. 

say the researchers behind the digitisation project.
Map showing breakdown of records by country.

“We were able to assign country-level data to 10,857 out of the total number of 11,222 records. We were also able to transcribe the collectors’ names from the majority of our specimen labels (10,879 out of 11,222). Only 770 out of the 2,226 individuals identified during this project collected their specimens in ODA listed countries. The highest contributors were: Richard Beddome (130 specimens), Charles Clarke (110), Hans Schlieben (98) and Nathaniel Wallich (79). The breakdown of records by ODA country can be seen in the chart below. “

Map showing breakdown of records by country and pie chart showing distribution by ODA listed countries.

From our data, we can see the peak decade of collection was the 1930s, with almost half (4,583 specimens or 49,43%) collected between 1900 and 1950 (Fig. 10).

This peak can be attributed to three of our most prolific collectors: Arthur Kerr, John Gossweiler and Georges Le Testu, all of whom were most active in the 1930s. The oldest specimen (BM013713473) was collected by Mark Catesby (1683-1749) in the Bahamas in 1726.

they explain.

An interesting, but perhaps unsurprising, finding is that our collection is strongly male-dominated.

There are only two women (Caroline Whitefoord and Ynes Mexia) in the list of our top 50 plant collectors and they are not close to the most prolific collectors.

We identified more women in the rest of our records, but their contribution is on average less than 25 specimens per person in the dataset consisting of more than 10,000 specimens. In contrast, the top five male collectors contributed 10% of our collection. 

they continued

Releasing Rosewoods

Both the Pterocarpus and Dalbergia genera include species that are used as expensive good quality timber that is prone to illegal logging. Many species such as Pterocarpus tinctorius are also listed on the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. By releasing this new resource of information on all these plants from three of the biggest herbaria in the world, we can share this datа with the people who are taking care of biodiversity in these countries. The data can be used to identify hotspots, where the tree is naturally growing and protect these areas. These data would also allow much closer attention to be paid to areas that could be targets for illegal logging activity.

Pterocarpus tinctorius is a species of padauk tree that is listed as endangered on the IUCN Red List.
Cowpea (Vigna unguiculata) is a food and animal feed crop grown in the semi-arid tropics.

The ODA-listed countries are economically impoverished and disproportionately prone to be disadvantaged with the changing climate whether from flood or drought or increase in temperature.

Using data to identify good, nutritious plant species that can be grown in such conditions can therefore benefit local communities, potentially reducing dependence on imports, aid and on less resilient crops. 

the team adds in conclusion.

***

This dataset is now openly available on the Museum’s Data Portal and a data paper about this work has been released in the Biodiversity Data Journal.

***

Stay in touch with the Digitisation team by following us on Instagram and Twitter

Don’t forget to also follow the Biodiversity Data Journal on Twitter and Facebook.