Pensoft turns up ‘the voice’ of two strategic EU projects aiming to safeguard nature

CO-OP4CBD & BioAgora are among the latest Horizon Europe projects to benefit from Pensoft’s expertise in science communication and dissemination

Here we are, on our way to wave goodbye the first quarter of the 21st century, and the Earth is still experiencing its largest loss of life and biodiversity since the demise of the dinosaurs

One million plant and animal species are threatened with extinction, many within decades, admits the global Convention on Biological Diversity (CBD) on the eve of the adoption of its boldest plan ever, the New Global Agreement to Safeguard Nature.


Europe is a major player in the political response to this global crisis mobilised through its own Biodiversity Strategy for 2030. In recognition of its global responsibilities, the EU has taken bold steps towards global leadership in setting policies and commitments. 

However, political commitments are not sufficient to mitigate and reverse biodiversity loss. To secure the future of the planet and society politicians, business leaders, scientists and society leaders must all prioritise the conservation and restoration of ecosystems through strong legislation and smart decisions. 

The recently adopted by the CBD Global Biodiversity Framework (GBF) provides the basis for the instruments for conservation and sustainable use of biodiversity and for equitable sharing of their benefits, including the genetic resources.


About the projects

The new Horizon Europe-funded projects CO-OP4CBD (abbreviation for Co-operation for the Convention on Biological Diversity) and BioAgora (or Bio Knowledge Agora) unite experts from renowned European organisations to enhance the coordination and strengthen the EU support for the implementation of the Convention. 

Both projects will make more effective use of existing networks of experts with the aim to transform the EU policy-making process by supplying decision-makers with access to top European scientific expertise on biodiversity and social transformation.


CO-OP4CBD
Logo of the Horizon Europe project CO-OP4CBD
(abbreviation for Cooperation for the Convention on Biological Diversity).

CO-OP4CBD kicked-off in December 2022 and will be running until 2026 with the grant of EUR 4 million, provided by the European Union’s Horizon Europe programme. 

The project will put in place a mechanism for mobilising, engaging and sharing expertise necessary for effective participation of EU member States and bodies in the CBD policy and decision-making processes. 

Experts will provide advice to the European Commission, Member States and associated countries’ delegations of negotiators and technical experts.

CO-OP4CBD kick off meeting in Brussels (Belgium), February 2023.

Furthermore, the project will increase access to European expertise through enhanced mechanisms for promoting technical and scientific cooperation not only for negotiations, but also for implementation, monitoring and review of the efforts of the Parties towards the Post-2020 Global Biodiversity Framework and the Convention on Biological Diversity.

You can visit COOP4CBD on coop4cbd.eu and follow the project on Twitter (@coop4cbd) and LinkedIn (/COOP4CBD).

Consortium:

The consortium of CO-OP4CBD comprises 9 universities and research centers from across Europe. Together, they bring together experts from various backgrounds with extensive experience in EU projects in the field of biodiversity.

Full list of partners:


BioAgora
Logo of the Horizon Europe project BioAgora
(abbreviation for Bio Knowledge Agora).

BioAgora was launched in July 2022 and is a five-year project with nearly EUR 12 million granted from the European Union’s Horizon Europe programme. 

The project is tasked to build the Science Service for Biodiversity platform (SSBD) as the scientific pillar of the EU Knowledge Centre for Biodiversity (KCBD).

The KCBD, the European Commission’s initiative on better knowledge management for policy-making on biodiversity, plays a central role in the EU biodiversity policy landscape, and therefore BioAgora will support orchestrating a harmonious dialogue among scientists, other knowledge holders and policy actors in the biodiversity policy arena.

The project partners believe that science, policy, and society need to work closer together, if they wish to enable the sustainability transformation in Europe.

BioAgora kick-off meeting, Helsinki (Finland), November 2022.

A key part of this transformation will depend on a stronger role of knowledge, whether from science or practitioner experience in decision-making and implementation of decisions on the ground. BioAgora aims to facilitate this interaction. 

“Biodiversity and natural capital have to be integrated into public and business decision-making at all levels.
Collective actions and pluralistic principles have to be at the core of biodiversity policy-making efforts, which is why the Science Service for Biodiversity is envisioned as a bridge between science, policy, and society.”

comments project coordinator Kati Vierikko from the Finnish Environment Institute (SYKE).

Visit BioAgora on https://bioagora.eu/. You can also follow the project on Twitter (@BioAgoraEU), LinkedIn (BioAgora Project) and YouTube (@BioAgoraProject).

Consortium:

The consortium of BioAgora consists of 22 partnering organisations from thirteen European countries, all of which bring their extensive knowledge of biodiversity policy and decision-making. 

Full list of partners:

  • SYKE: Finnish Environment Institute
  • UB: The University of Bucharest
  • UniTrento: The University of Trento
  • INRAE: National Research Institute for Agriculture, Food and Environment
  • EV INBO: Research Institute of Nature and Forest
  • PBL: Ministry of Infrastructure and Water Management
  • NINA: Norwegian Institute for Nature Research
  • UFZ: Helmholtz Centre for Environmental Research
  • DC: Delbaere Consulting
  • FVB-IGB: Leibniz-Institute of Freshwater Ecology and Inland Fisheries
  • CREAF: Ecological and Forestry Applications Research Centre
  • ESSRG: Environmental social science research group
  • PENSOFT: Pensoft Publishers
  • ERCE PAN: European Regional Centre for Ecohydrology
  • Euronovia
  • WR: Wageningen University & Research
  • ECSA: European Citizen Science Association
  • AWI: Alfred Wegener Institute for Polar and Marine Research
  • UNEP-WCMC
  • UK CEH: UK Centre For Ecology & Hydrology
  • Alternet Europe
  • OPPLA

Transformative changes for biodiversity and climate protection: Pensoft partners with EU project TRANSPATH

As an expert in science communication, dissemination and exploitation, Pensoft joins TRANSPATH for transformative changes at consumer, producer and organisational levels.

As an expert in science communication, dissemination and exploitation, Pensoft joins the Horizon-funded project TRANSPATH to identify leverage points and interventions for triggering transformative changes at consumer, producer and organisational levels.

Why TRANSPATH?

The magnitude of biodiversity loss and climate crisis has grown exponentially in recent years, which will inevitably lead to serious consequences at a global scale. Although reversing the degradation of ecosystems and reducing greenhouse gas emissions are top priorities for the European Union, science and policy communities are united in the belief that conventional policies alone are not enough to halt biodiversity loss or mitigate climate change.

In order to achieve climate neutrality by 2050, whilst simultaneously reshaping people’s relations with nature, we need transformative changes in our economies and societies urgently. 

How?

TRANSPATH (short for TRANSformative PATHways for synergising just biodiversity and climate actions) – a new European Union-funded project, plans to satisfy this need by accelerating diverse transformative pathways towards biodiversity-positive and climate-proofed societies, with sensitivity to social-cultural contexts and rights.

TRANSPATH will identify leverage points and interventions for triggering transformative changes at consumer, producer and organisational levels. A research team, consisting of leading academics, science-policy experts, and early-career professionals, will directly engage with diverse stakeholders, who affect and are affected by trade regimes and associated ‘greening’ mechanisms.

As a leader of WP5: Dissemination, outreach and catalysing transformative pathways, Pensoft is responsible for providing a dissemination and communication strategy, as well as taking care of the project branding and website. In addition, the Pensoft team is to organise joint activities with other projects or initiatives on transformative change and related topics.

What?

Funded by the European Union’s Horizon Europe research and innovation programme, TRANSPATH was launched on 1st November 2022 and will be running until October 2026. The official kick-off of the project took place online and was followed by an in-person kick-off meeting of all consortium members on the 2nd and 3rd February 2023 in Wageningen, the Netherlands.

For the next four years TRANSPATH will be focussing on the design and integrated assessment of a suite of transformative pathways that hold potential to accelerate shifts in unsustainable patterns of extraction, production, consumption and trade. The project’s mission will be achieved by four objectives:

  1. Set up a Policy Board and Science-policy-practitioner Labs at multiple scales to engage and jointly deliberate on implications of diverse visions and pathways of change.
  2. Identify and characterise leverage points for diverse contexts that lead to positive synergies between biodiversity, climate and trade domains.
  3. Integrate and customise European and global pathways by considering coupled biodiversity-climate actions and critical leverage points.
  4. Identify and test alternative interventions at global and European scales that can trigger transformative change at the level of consumers, producers and organisations.

TRANSPATH will bring together and advance several strands of recent research, which hold potential for triggering and accelerating transformative changes that can restrain biodiversity loss and climate change. 

The project will draw on diverse contexts in Eastern and Western Europe, Africa and Latin America, to engage with policy makers and practitioners, individuals, Civil Society Organisations (CSOs), small- and medium-sized enterprises (SMEs) and multinational corporations.

In addition, policy packages and other interventions will be designed to facilitate the emergence of leverage points at different scales of action in ways that change the decision-making framework of everyday choices.

These interventions take into account the synergies and trade-offs of actions across multiple individuals and locations, as well as the role of incentives and political obstacles to implementation.

The EU project will provide a suite of Transformative Pathways along with a Toolbox of Transformative Interventions to trigger and enable these pathways. The Transformative Navigation Toolkit assists practitioners in enabling and navigating these pathways, acknowledging that determining what constitutes a ‘transformative pathway’ is also a product of an iterative and adaptive process that emerges and evolves over time.

Whom?

The TRANSPATH project brings together leading academics, science-policy experts, and young professionals from different social-cultural origins across Eastern and Western Europe, Africa and Latin America. Represented by nine countries and twelve nationalities, the consortium comprises a diverse range of scientific disciplines in environments, economics, and social sciences.

Dedicated to ensuring sufficient engagement from local to global levels in this project, the experts are focused on integrated and inclusive deliberation that is essential for identifying, legitimising, and navigating transformative pathways.

Full list of partners

You can find more about the project on the TRANSPATH website: transpath.eu. Stay up to date with the project’s progress on Twitter (@TRANSPATH_EU) and Linkedin (/transpath-project).

Endangered vulture returns to Bulgaria after being extinct for 36 years

Preliminary results from the releases of Cinereous Vultures (Aegypius monachus) were published in the Biodiversity Data Journal.

The Cinereous Vulture (Aegypius monachus) – also known as Black Vulture, Monk Vulture or Eurasian Black Vulture – is the largest bird of prey in Europe.

Globally classified as Near Threatened, its populations in southern Europe, once abundant, have been experiencing a dramatic decline since the late 1800s. So dramatic, in fact, that by the mid-1900s, these birds had already been nowhere to be seen throughout most of their distributional range across the Old Continent. In Bulgaria, the species has been considered locally extinct since 1985.

Thanks to the re-introduction initiative that was started in 2015 by three Bulgarian non-governmental organisations: the leading and oldest environmental protection NGO in Bulgaria: Green Balkans, the Fund for Wild Flora and Fauna and the Birds of Prey Protection Society, the species is now back in the country.

The project, aptly named  “Vultures Back to LIFE“, where the Vulture Conservation Foundation (Switzerland), EuroNatur (Germany) and Junta de Extremadura (Spain) are also partners, has been co-financed by the LIFE+ financial instrument of the European Commission.

By mid-2022, the team imported a total of 72 individuals from Spain and European zoos, before releasing them in strategically-chosen sites in the Eastern Balkan Mountains and the Vrachanski Balkan Nature Park in Northwestern Bulgaria. 

The team brought 63 immatures from Spain, where the birds had been found in distress and rehabilitated in aviaries. The other nine juveniles were captive-bred in zoos, and then released by means of hacking, which involves an artificial nest, from where the fledglings can gradually ‘’take off” to a life in the wild.

The re-introduction campaign to date is presented in a research article, published in the open-access Biodiversity Data Journal. There, the scientists led by Ivelin Ivanov (Green Balkans), report on and discuss the effectiveness and challenges of the different release methods and offer tips on the conservation and re-introduction. 

For example, hacking proved to be inefficient for establishing an entirely new core (or nucleus) population of Cinereous Vultures in the Balkan Mountains in Bulgaria. It did not work for supplementing a small settled group of individuals either.

A Cinereous Vulture on a hacking platform.
Photo by Hristo Peshev, Fund for Wild Flora and Fauna.

Instead, the team recommend the aviary method and delayed release, where captive-bred birds are introduced to the new locality after a period of acclimatisation, where the birds can gain life experience to the local environment.

 “The Cinereous Vulture re-introduction establishment phase in Bulgaria in the two first release sites is running according to the plan, and the first results are satisfactory,” 

the scientists comment.

“Two distinct nuclei are now created, and the species started breeding, which might be a reason to up-list it in the Red Data Book of Bulgaria from ’Extinct’ to ‘Critically Endangered.’”

These two newly created breeding nuclei of the Cinereous Vulture in Bulgaria are the second and third of their kind in the Balkan Peninsula. 

“Following a dramatic decline throughout the 20th century for decades, the species had remained in only one breeding colony in Dadia-Lefkimi-Soufli Forest National Park in north-eastern Greece. Now, exchange between the three colonies will facilitate the exchange of individuals, ensure long-term stability, and give rise to the regional population,”

the authors of the study say.

However, the team points out that further monitoring and modelling and adaptive management are indispensable for the long-term persistence of the new national population. Now that there is already evidence that the imported vultures have been successfully breeding in Bulgaria, there is one step left before it can be officially confirmed that the Cinereous Vulture species has successfully re-established in the country. This conclusion can only be made after the core breeding populations begin to produce about ten chicks every year and after the locally fledged individuals begin to reproduce on their own. Such results are expected by 2030.

The re-introduction of the Cinereous Vulture is the latest in a series of conservation projects focused on birds of prey in Bulgaria. 

First, in a programme that started in 2009, the Griffon Vulture was successfully re-introduced in Bulgaria after about 50 years of “extinction”. In fact, the team took a lot of the know-how and methods used in that project to apply in the present project. The success story was published in a research paper in the Biodiversity Data Journal in 2021.

In fact, the very same day in 2021 saw two publications in the Biodiversity Data Journal that reported on re-introduction successes involving birds of prey in Bulgaria, which had gone missing for decades. The second instance was the discovery of the first nesting Saker Falcons in twenty years  

Both scientific publications are part of a dynamic ‘living’ collection, titled “Restoration of species of conservation importance”, whose aim is to collate publicly available research studies reporting on the reintroduction and/or restocking of animal and plant species of conservation importance around the world. The collection was inspired by the “International Scientific Conference on Restoration of Conservation-Reliant Species and Habitats” held in Sofia, Bulgaria, in 2020.

“The restoration of species is one of the most important conservation tools in the context of constantly intensified human-driven global biodiversity loss. The reintroduction/restocking activities are related to significant research and data gathering before and during the work process, which ensures their sustainable success,”

explain the collection editors.

Research article: 

Ivanov I, Stoynov E, Stoyanov G, Kmetova–Biro E, Andevski J, Peshev H, Marin S, Terraube J, Bonchev L, Stoev IP, Tavares J, Loercher F, Huyghe M, Nikolova Z, Vangelova N, Stanchev S, Mitrevichin E, Tilova E, Grozdanov A (2023) First results from the releases of Cinereous Vultures (Aegypius monachus) aiming at re-introducing the species in Bulgaria – the start of the establishment phase 2018–2022. Biodiversity Data Journal 11: e100521. https://doi.org/10.3897/BDJ.11.e100521

You can also follow Biodiversity Data Journal on Twitter and Facebook.

Pensoft joins EU-funded project SOLO, supporting the EU Mission “A Soil Deal for Europe”

Apart from communication, dissemination and data management tasks, within SOLO, Pensoft is also responsible for the development of the key project output: the SOLO platform

The issue at hand

As the foundation of our food systems, healthy soils are essential for life on Earth. They provide clean water and habitats for biodiversity while contributing to climate resilience and support our cultural heritage and landscapes and are the basis of our economy and prosperity.

Soils are under multiple pressures, including climate change, urbanisation, pollution, overexploitation, nutrient mining and biodiversity loss with the European Commission estimating that under current management practices, it’s between 60% and 70% of our soils that are unhealthy.

The ‘deal’ with soils

The EU Mission “A Soil Deal for Europe” aims to address these issues by:

  • funding an ambitious research and innovation programme with a strong social science component;

  •  putting in place an effective network of 100 living labs and lighthouses to co-create knowledge, test solutions and demonstrate their value in real-life conditions;

  • developing a harmonised framework for soil monitoring in Europe;

  •  raising people’s awareness on the vital importance of soils.

Achieving those objectives requires a direct involvement of a wide range of stakeholders, bringing together multiple perspectives in ecological, environmental, economic and social contexts.

The project

SOLO launched in December 2022 and will be running until November 2027 with the support of 5 million euros provided by the European Union’s Horizon Europe program. 

SOLO will identify current knowledge gaps, drivers, bottlenecks, and novel research and innovation approaches to be considered in the European Soil Mission research and innovation roadmap.

The project aims to create a knowledge hub for soil health research and innovation that will last beyond the project’s lifespan by establishing strategic partnerships and by implementing a participatory and transparent process.

The project will implement Think Tanks, one for each Mission objective, with the aim of co-creating knowledge and identifying the knowledge gaps, drivers, bottlenecks, and novel approaches in terms of research and innovation.

The Think Tanks will consist of groups of experts who will together tackle the issues regarding soil health, set out in the EU Mission ‘A Soil Deal for Europe’.

Together with an open digital platform, based on Pensoft’s ARPHA Writing Tool, the Think Tanks will function as an operational tool for implementing a participatory process that will last beyond SOLO’s lifespan.

The project will engage users at regional, national and European level to support the co-design of comprehensive research and innovation roadmaps for the Soil Mission and identify knowledge gaps and novel avenues for European soil research and innovation in the context of the Soil Mission objectives. 

Furthermore, SOLO will identify, describe and assess the drivers and barriers to soil health in Europe, develop dynamic roadmaps as effective research and innovation agendas for the Soil Mission with a particular focus on the integration and synthesis across sectors.

The 3rd Global Soil Biodiversity Conference (March 2023; Dublin, Ireland) saw several talks by researchers involved in the SOLO project, while communication materials provided additional information to the delegates who stopped by the Pensoft exhibition stand.

You can find out more about the project on the Soils for Europe (SOLOwebsitesoils4europe.eu. Stay up to date with the project’s progress on Twitter (@soils4europe) and LinkedIn (/Soils-for-Europe).

The consortium

SOLO’s consortium comprises a European network of established professionals from the academic and non-academic fields from various backgrounds, who have agreed to work collaboratively to fulfil the objectives set by the EU Mission “A Soil Deal for Europe” which aims to create a shared research and innovation vision that will accelerate Europe’s trajectory towards sustainable soil management and restoration as part of a wider, green transition in rural and urban areas.

Full list of partners:
  1. National Resources Institute Finland
  2. University of Leipzig
  3. Pesticide Action Network
  4. Agroecology Europe
  5. Leitat Technological Centre
  6. Netherlands Institute of Ecology
  7. Leibniz Centre for Agricultural Landscape Research
  8. Lund University
  9. Pensoft Publishers
  10. University of Évora
  11. Institute of Advanced Studies Kőszeg
  12. National Observatory of Athens
  13. Norwegian University of Life Sciences
  14. University of Antwerp
  15. University of Trento
  16. Fraunhofer Society
  17. ICLEI European Secretariat GMBH

Towards a climate-neutral society: Pensoft takes part in the Horizon project ForestPaths

Apart from science communication, Pensoft is also tasked with the development and maintenance of the CANOPY platform, whose aim is to support policymakers and national and regional authorities

Dedicated to bridging the gap between science, policy, industry and society, Pensoft is striving to maximise ForestPaths’ impact in meeting Europe’s climate and biodiversity targets
The backdrop

The European Union (EU) has set ambitious targets to reduce greenhouse gas emissions by at least 55% in 2030 and to become climate neutral by 2050, which require urgent and major societal and economic reforms. 

In the meantime, the EU also aims to protect biodiversity and reverse the degradation of ecosystems, while using natural resources to mitigate climate change. 

ForestPaths – a recently started Horizon Europe project will help meet Europe’s climate and biodiversity targets by providing clear policy options that enable European forests and the forest-based sector to contribute to climate change mitigation, while conserving their biodiversity and sustaining the services they provide to people.

As an experienced science communicator, Pensoft is dedicated to maximising ForestPaths’ impact. The team will do so by means of tailored communication, dissemination and exploitation strategies aimed at sharing the project’s results with relevant stakeholder groups.

Furthermore, Pensoft is tasked with the development and long-term maintenance of the CANOPY platform, whose aim is to support policymakers and national and regional authorities by granting them access to the knowledge and scientific evidence acquired within ForestPaths long after the project is finalised.

The ForestPaths approach

ForestPaths will work with practitioners through four demo cases to determine climate- and biodiversity-smart forest management options

Building on these options, the project will collaborate with policymakers and key authorities through a series of Policy labs, where the partners will co-design policy pathways, which will then be analysed with next-generation integrated assessment techniques

Lastly, ForestPaths will apply this framework for an all-round assessment of the climate mitigation potential of European forests and the forest-based sector.

Aerial view of a forest road.
The ForestPaths legacy

ForestPaths’ policy pathways – as well as their supporting information and evidence – will be made openly available through the project’s policy-support platform CANOPY, hosted on the ForestPaths website. 

The platform, whose launch is scheduled for 2026, will feature an interactive policy analysis tool explaining the policy pathways and showcasing their implications, as well as providing detailed assessment results and policy recommendations in an easily accessible manner. Its long-term mission is to become the go-to place for easily accessible assessment results and policy recommendations.

“We are excited to be doing our part for Europe’s fight for climate neutrality by extending ForestPaths reach to policy, industry and society at large! As an open-access scientific publisher engaged in about 50 environmental research projects, Pensoft echoes ForestPaths’ aim to support the EU’s climate neutrality transition through what we are sure will be a prolific international research collaboration,” says ForestPaths’ WP7 leader Anna Sapundzhieva.

You can find out more about the project on the ForestPath website: forestpaths.eu. Stay up to date with the project’s progress on Twitter (@forestpaths_eu) and LinkedIn (/forestpaths-project).

Full list of project partners:
  1. European Forest Institute
  2. Lund University
  3. Technical University of Munich
  4. Karlsruhe Institute of Technology
  5. Natural Resources Institute Finland
  6. Wageningen Research
  7. Flemish Institute for Technological Research
  8. PBL Netherlands Environmental Assessment Agency
  9. Oeko-Institut
  10. Euro-Mediterranean Center on Climate Change
  11. Prospex Institute
  12. Transilvania University of Brasov
  13. Pensoft Publishers
  14. Joint Research Centre – European Commission
  15. University of Edinburgh
  16. Teesside University

Scientists conceptualize a species ‘stock market’ to put a price tag on actions posing risks to biodiversity

“…the most realistic and tangible way out of the looming biodiversity crisis is to put a price tag on species and thereby a cost to actions that compromise them.”

So far, science has described more than 2 million species, and millions more await discovery. While species have value in themselves, many also deliver important ecosystem services to humanity, such as insects that pollinate our crops. 

Meanwhile, as we lack a standardized system to quantify the value of different species, it is too easy to jump to the conclusion that they are practically worthless. As a result, humanity has been quick to justify actions that diminish populations and even imperil biodiversity at large.

In a study, published in the scholarly open-science journal Research Ideas and Outcomes, a team of Estonian and Swedish scientists propose to formalize the value of all species through a conceptual species ‘stock market’ (SSM). Much like the regular stock market, the SSM is to act as a unified basis for instantaneous valuation of all items in its holdings.

However, other aspects of the SSM would be starkly different from the regular stock market. Ownership, transactions, and trading will take new forms. Indeed, species have no owners, and ‘trade’ would not be about transfer of ownership rights among shareholders. Instead, the concept of ‘selling’ would comprise processes that erase species from some specific area – such as war, deforestation, or pollution.

“The SSM would be able to put a price tag on such transactions, and the price could be thought of as an invoice that the seller needs to settle in some way that benefits global biodiversity,”

explains the study’s lead author Prof. Urmas Kõljalg (University of Tartu, Estonia).

Conversely, taking some action that benefits biodiversity – as estimated through individuals of species – would be akin to buying on the species stock market. Buying, too, has a price tag on it, but this price should probably be thought of in goodwill terms. Here, ‘money’ represents an investment towards increased biodiversity. 

“By rooting such actions in a unified valuation system it is hoped that goodwill actions will become increasingly difficult to dodge and dismiss,”

adds Kõljalg.

Interestingly, the SSM revolves around the notion of digital species. These are representations of described and undescribed species concluded to exist based on DNA sequences and elaborated by including all we know about their habitat, ecology, distribution, interactions with other species, and functional traits. 

For the SSM to function as described, those DNA sequences and metadata need to be sourced from global scientific and societal resources, including natural history collections, sequence databases, and life science data portals. Digital species might be managed further by incorporating data records of non-sequenced individuals, notably observations, older material in collections, and data from publications.

The study proposes that the SSM is orchestrated by the international associations of taxonomists and economists. 

“Non-trivial complications are foreseen when implementing the SSM in practice, but we argue that the most realistic and tangible way out of the looming biodiversity crisis is to put a price tag on species and thereby a cost to actions that compromise them,”

says Kõljalg.

“No human being will make direct monetary profit out of the SSM, and yet it’s all Earth’s inhabitants – including humans – that could benefit from its pointers.”

Original source

Kõljalg U, Nilsson RH, Jansson AT, Zirk A, Abarenkov K (2022) A price tag on species. Research Ideas and Outcomes 8: e86741. https://doi.org/10.3897/rio.8.e86741

***

Follow RIO Journal on Twitter and Facebook.

Pets or threats? Goldfish might be harmful for biodiversity

Goldfish pose a triple threat: not only are they readily available, but they combine insatiable appetites with bold behaviour

Invasive species are one of the leading causes of global biodiversity loss, and the pet trade is responsible for a third of all aquatic invasive species. Pet owners releasing unwanted pets into the wild is a major problem. Whilst many believe this is a humane option, a new research suggests that attempting to ‘save’ the life of a goldfish could in fact lead to catastrophic outcomes for native biodiversity.

To better understand the ecological risks posed by species within the pet trade, the researchers focused on the two most commonly traded fish species in Northern Ireland: goldfish and the white cloud mountain minnow.

Photo by Jeff-o-matic under a CC BY-NC 2.0 license

The globally popular goldfish was first domesticated over a thousand years ago and has since established non-native populations around the world. The white cloud mountain minnow on the other hand is a species with a limited invasion history to date.

This study, published in NeoBiota, developed a new method for assessing the ecological impacts and risks of potential pet trade invaders, based on availability, feeding rates and behaviour. The research showed goldfish to be voracious, consuming much more than the white cloud mountain minnow or native species. In terms of behaviour patterns, goldfish were also found to be much braver, a trait linked with invasive spread.

Dr James Dickey.

Lead author, Dr James Dickey from Queen’s University Belfast, explains: “Our research suggests that goldfish pose a triple threat. Not only are they readily available, but they combine insatiable appetites with bold behaviour. While northern European climates are often a barrier to non-native species surviving in the wild, goldfish are known to be tolerant to such conditions, and could pose a real threat to native biodiversity in rivers and lakes, eating up the resources that other species depend on.

“Our research highlights that goldfish are high risk, but we hope that the methods developed here can be used to assess others in the pet trade across Ireland and further afield. Readily available species are most likely to be released, so limiting the availability of potentially impactful ones, alongside better education of pet owners, is a solution to preventing damaging invaders establishing in the future.”

The research led by Queen’s University Belfast was funded by the Alexander von Humboldt Foundation, Inland Fisheries Ireland and the Department of Agriculture, Environment and Rural Affairs (DAERA) NI. The study was presented at the International Conference on Aquatic Invasive Species in Oostende, Belgium along with a range of other leading research from Queen’s on alien species.

Research article:

Dickey JWE, Arnott G, McGlade CLO, Moore A, Riddell GE, Dick JTA (2022) Threats at home? Assessing the potential ecological impacts and risks of commonly traded pet fishes. NeoBiota 73: 109–136. https://doi.org/10.3897/neobiota.73.80542

Simplified method to survey amphibians will aid conservation

Researchers developed a method to determine which amphibians inhabit a specific area. The new technique will resolve some of the issues with conventional methods, such as capture and observational surveys.

Ryukyu Sword Tailed Newt, or Firebellied Newt. Photo by Neil Dalphin via Creative Commons CC0.

An international collaborative research group of members from seven institutions has developed a method to determine which amphibians (frogs, newts and salamanders) inhabit a specific area. Their work was published in the open-access, peer-reviewed journal Metabarcoding and Metagenomics (MBMG).

To do so, the scientists amplified and analysed extra-organismal DNA (also known as environmental DNA or eDNA) found in the water. This DNA ends up in the water after being expelled from the amphibian’s body along with mucus and excrement. 

The research group included Postdoctoral Researcher Sakata K. Masayuki and Professor Minamoto Toshifumi (Kobe University), Associate Professor Kurabayashi Atsushi (Nagahama Institute of Bio-Science and Technology), Nakamura Masatoshi (IDEA Consultants, Inc.) and Associate Professor Nishikawa Kanto (Kyoto University). 

The newly developed technique will resolve some of the issues with conventional methods, such as capture and observational surveys, which require a specialist surveyor who can visually identify species. Conventional surveys are also prone to discrepancies due to environmental factors, such as climate and season.

The researchers hope that the new method will revolutionise species monitoring, as it will enable anyone to easily monitor the amphibians that inhabit an area by collecting water samples.  

While monitoring in general is crucial to conserve the natural ecosystems, the importance of surveying amphibians is even more pressing, given the pace of their populations’ decline.

Amongst major obstacles to amphibian monitoring, however, are the facts that they are nocturnal; their young (e.g. tadpoles) and adults live in different habitats; and that specialist knowledge is required to capture individuals and identify their species. These issues make it particularly difficult to accurately survey amphibians in a standardised way, and results of individual efforts often contradict each other.

On the other hand, eDNA analysis techniques have already been established in programmes targeted at monitoring fish species, where they are already commonplace. So, the researchers behind the present study joined forces to contribute towards the development of a similar standardised analysis method for amphibians.

First of all, the researchers designed multiple methods for analysing the eDNA of amphibians and evaluated their performance to identify the most effective method. Next, they conducted parallel monitoring of 122 sites in 10 farmlands across Japan using the developed eDNA analysis along with the conventional methods (i.e. capture surveys using a net and observation surveys). 

As a result, the newly developed method was able to detect all three orders of amphibians: Caudata (the newts and salamanders), Anura (the frogs), and Gymnophiona (the caecilians). 

Furthermore, this novel eDNA analysis method was able to detect more species across all field study sites than the conventional method-based surveys, indicating its effectiveness.

Research Background

Amphibian biodiversity is continuing to decline worldwide and collecting basic information about their habitats and other aspects via monitoring is vital for conservation efforts. Traditional methods of monitoring amphibians include visual and auditory observations, and capture surveys.

However, amphibians tend to be small in size and many are nocturnal. The success of surveys varies greatly depending on the climate and season, and specialist knowledge is required to identify species. Consequently, it is difficult to monitor a wide area and assess habitats. The last decade has seen the significant development of environmental DNA analysis techniques, which can be used to investigate the distribution of a species by analysing external DNA (environmental DNA) that is released into the environment along with an organism’s excrement, mucus and other bodily fluids. 

The fundamentals of this technique involve collecting water from the survey site and analysing the eDNA contained in it to find out which species inhabit the area. In recent years, the technique has gained attention as a supplement for conventional monitoring methods. Standardised methods of analysis have already been established for other species, especially fishes, and diversity monitoring using eDNA is becoming commonplace. 

However, eDNA monitoring of amphibians is still at the development stage. One reason for this is that the proposed eDNA analysis method must be suitable for the target species or taxonomic group, and there are still issues with developing and implementing a comprehensive method for detecting amphibians. If such a method could be developed, this would make it possible for monitoring to be conducted even by people who do not have the specialised knowledge to identify species nor surveying experience.

Hopefully, this would be established as a unified standard for large-scale monitoring surveys, such as those on a national scale. This research group’s efforts to develop and evaluate analysis methods will hopefully lay the foundations for eDNA analysis to become a common tool for monitoring amphibians, as well as fish. 

***

Follow Metabarcoding and Metagenomics (MBMG) journal on Twitter and Facebook.

***

Research article: 

Sakata MK, Kawata MU, Kurabayashi A, Kurita T, Nakamura M, Shirako T, Kakehashi R, Nishikawa K, Hossman MY, Nishijima T, Kabamoto J, Miya M, Minamoto T (2022) Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia. Metabarcoding and Metagenomics 6: e76534. https://doi.org/10.3897/mbmg.6.76534

One water bucket to find them all: Detecting fish, mammals, and birds from a single sample

Revolutionary environmental DNA analysis holds great potential for the future of biodiversity monitoring, concludes a new study.

Revolutionary environmental DNA analysis holds great potential for the future of biodiversity monitoring, concludes a new study

Collection of water samples for eDNA metabarcoding bioassessment.
Photo by Till-Hendrik Macher.

In times of exacerbating biodiversity loss, reliable data on species occurrence are essential, in order for prompt and adequate conservation actions to be initiated. This is especially true for freshwater ecosystems, which are particularly vulnerable and threatened by anthropogenic impacts. Their ecological status has already been highlighted as a top priority by multiple national and international directives, such as the European Water Framework Directive.

However, traditional monitoring methods, such as electrofishing, trapping methods, or observation-based assessments, which are the current status-quo in fish monitoring, are often time- and cost-consuming. As a result, over the last decade, scientists progressively agree that we need a more comprehensive and holistic method to assess freshwater biodiversity.

Meanwhile, recent studies have continuously been demonstrating that eDNA metabarcoding analyses, where DNA traces found in the water are used to identify what organisms live there, is an efficient method to capture aquatic biodiversity in a fast, reliable, non-invasive and relatively low-cost manner. In such metabarcoding studies, scientists sample, collect and sequence DNA, so that they can compare it with existing databases and identify the source organisms.

Furthermore, as eDNA metabarcoding assessments use samples from water, often streams, located at the lowest point, one such sample usually contains not only traces of specimens that come into direct contact with water, for example, by swimming or drinking, but also collects traces of terrestrial species indirectly via rainfalls, snowmelt, groundwaters etc. 

In standard fish eDNA metabarcoding assessments, these ‘bycatch data’ are typically left aside. Yet, from a viewpoint of a more holistic biodiversity monitoring, they hold immense potential to also detect the presence of terrestrial and semi-terrestrial species in the catchment.

In their new study, reported in the open-access scholarly journal Metabarcoding and MetagenomicsGerman researchers from the University of Duisburg-Essen and the German Environment Agency successfully detected an astonishing quantity of the local mammals and birds native to the Saxony-Anhalt state by collecting as much as 18 litres of water from across a two-kilometre stretch along the river Mulde.

After water filtration the eDNA filter is preserved in ethanol until further processing in the lab.
Photo by Till-Hendrik Macher.

In fact, it took only one day for the team, led by Till-Hendrik Macher, PhD student in the German Federal Environmental Agency-funded GeDNA project, to collect the samples. Using metabarcoding to analyse the DNA from the samples, the researchers identified as much as 50% of the fishes, 22% of the mammal species, and 7.4% of the breeding bird species in the region. 

However, the team also concluded that while it would normally take only 10 litres of water to assess the aquatic and semi-terrestrial fauna, terrestrial species required significantly more sampling.

Unlocking data from the increasingly available fish eDNA metabarcoding information enables synergies among terrestrial and aquatic biodiversity monitoring programs, adding further important information on species diversity in space and time. 

“We thus encourage to exploit fish eDNA metabarcoding biodiversity monitoring data to inform other conservation programs,”

says lead author Till-Hendrik Macher. 

“For that purpose, however, it is essential that eDNA data is jointly stored and accessible for different biodiversity monitoring and biodiversity assessment campaigns, either at state, federal, or international level,”

concludes Florian Leese, who coordinates the project.

Original source:

Macher T-H, Schütz R, Arle J, Beermann AJ, Koschorreck J, Leese F (2021) Beyond fish eDNA metabarcoding: Field replicates disproportionately improve the detection of stream associated vertebrate species. Metabarcoding and Metagenomics 5: e66557. https://doi.org/10.3897/mbmg.5.66557

The first Red List of Taxonomists in Europe is calling for the support of insect specialists

The Red List of Taxonomists portal, where taxonomy experts in the field of entomology can register to help map and assess expertise across Europe, in order to provide action points necessary to overcome the risks, preserve and support this important scientific community, will remain open until 31st October 2021.

About 1,000 insect taxonomists – both professional and citizen scientists – from across the European region have already signed up on the Red List of Taxonomists, a recently launched European Commission-funded initiative by the Consortium of European Taxonomic Facilities (CETAF), the International Union for Conservation of Nature (IUCN) and the scholarly publisher best-known for its biodiversity-themed journals and high-tech innovations in biodiversity data publishing Pensoft.

Insect taxonomists, both professional and citizen scientists, are welcome to register on the Red List of Taxonomists portal at: red-list-taxonomists.eu and further disseminate the registration portal to fellow taxonomists until 31st October 2021.

Within the one-year project, the partners are to build a database of European taxonomy experts in the field of entomology and analyse the collected data to shed light on the trends in available expertise, including best or least studied insect taxa and geographic distribution of the scientists who are working on those groups. Then, they will present them to policy makers at the European Commission.

By recruiting as many as possible insect taxonomists from across Europe, the Red List of Taxonomists initiative will not only be able to identify taxa and countries, where the “extinction” of insect taxonomists has reached a critical point, but also create a robust knowledge base on taxonomic expertise across the European region to prompt further support and funding for taxonomy in the Old Continent.

On behalf of the project partners, we would like to express our immense gratitude to everyone who has self-declared as an insect taxonomist on the Red List of Taxonomists registration portal. Please feel welcome to share our call for participation with colleagues and social networks to achieve maximum engagement from everyone concerned about the future of taxonomy!

***

Read more about the rationale of the Red List of Taxonomists project.

***

Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag.