“Oscar describes Oscar”: Interview with Oscar Lasso-Alcalá, Pt 2

“Working in science in a country under these conditions, and getting to publish the results of the investigations in high-level scientific journals such as ZooKeys, is an act of “true heroism”.

Oscar Miguel Lasso-Alcalá, MSc. is a Spanish-Venezuelan ichthyologist. This summer, his team described a new species of Oscar fish in the journal ZooKeys.

In this second part of his interview, he tells us about the challenges in his work and shares the story behind the new cichlid’s name. You can find Part 1 of the interview.

What did you find to be the biggest challenge?

Throughout the past seven years, the description of this species has been a real challenge. Our group of researchers knew from the beginning that it was going to be a difficult job.  However, we never imagined the magnitude of the problems or challenges we would encounter.

We had to study the specimens from the Orinoco River basin in Venezuela and Colombia, and rivers from the hydrographic basin of the Gulf of Paria in Venezuela, which were within our reach, in the main scientific collections of fishes in Venezuela. Similarly, we studied the specimens from the Amazon River basin in one of the main collections in Brazil. We studied the traditional external morphology (morphometric characters, or the body, and meristic measurements, or the number of structures or parts such as scales, fins, etc.) and their coloration, as well as their internal morphology, that is, the study of structures of their skeleton, with the use of high-definition radiographs, where we found the main differences with other species.

A novel technique was the study of the shape of the otoliths, or “ear stones”, a technique not used before in the study of this group of fish. That is why I mentioned before that we also made some great scientific discoveries.

In addition to the long and meticulous laboratory work, we also had to conduct field work, not only to capture new specimens for the morphological study, but also for the genetic and molecular study, a new methodology that has become popular in recent years as a way to support taxonomy and systematics in the description and classification of species.

For this latest work, we also relied on a recent study in this area of ​​research, carried out by the genetics specialists on our work team. This means our research was based on what is currently called “integrative taxonomy”, which is the sum of different techniques, methods, and technologies, at the service of achieving our goal: the description of a new species for science and for the world.

Many other difficulties came up along the way, which is why this research took over seven years to be published. Normally, researchers cannot focus 100% of their time on one single research, and workloads fluctuate. Sometimes we think that a greater number of specialists would help distribute the workload evenly or that getting input from others with different fields of experience, sometimes specialized, would help enrich the work, but that also makes it more difficult to reach agreement. Reaching perfection is never possible, and it took a long time for us to reach a level of results that was both acceptable to all and well accepted in the field of taxonomy and systematics.

One of the biggest challenges was purely financial. While we had some funds from Brazilian research support organizations and two universities, this was not the case in Venezuela, a country plunged in a serious political, social, economic, and humanitarian crisis.

Working in science in a country under these conditions, and being able to publish your results in high-level scientific journals, including ZooKeys, is an act of “true heroism”, as my brother José Antonio often says when cheering on my publication.

How come you named it after Ivan Mikolji?

People who do not know about the great work carried out by river explorer Ivan Mikolji might wonder about that, but the thousands of people, connoisseurs and followers of his work are absolutely clear on the justification for this appointment.

Find more about Ivan Mikolji and his work on his website: https://mikolji.com/.

In addition to being an excellent professional explorer, author, underwater photographer, audiovisual producer and even plastic artist, he is a tireless and enthusiastic disseminator of the biodiversity and natural history of freshwater fish in Venezuela and Colombia.

His work has contributed greatly to the knowledge and conservation of the aquatic ecosystems of both countries. His motto is: “You cannot preserve something that you don’t know exists.”

He has made dozens of photography and art exhibitions in Venezuela, Mexico and the United States, as well as award-winning documentaries on the Orinoco River and its biodiversity that have acquired millions of views.

Mikolji has also inspired thousands of “conservationist” aquarists, as a judge in a worldwide movement called “Biotope Aquariums,” where people try to simulate, as much as possible, the ecosystems and aquatic biodiversity of their places of origin, for the conservation of their local biodiversity.

In addition, his educational work further includes the “Wild Aquarium”, a new movement and methodology, where he recreates in the same place (in situ), a “Biotope aquarium”, helping local communities (children and adults) learn about local aquatic ecosystems and biodiversity and their conservation.

In addition to his great artistic, informative, and educational work, with the enormous data accumulated in more than 15 years of work and field observations, in the recent years, he has participated in different research projects, publishing books and numerous scientific articles, some of them with us. For this reason, in 2020, he was appointed Associate Researcher of the Museo de Historia Natural La Salle (Caracas) of the Fundación La Salle de Ciencias Naturales, in Venezuela. By the way, we are planning research that we hope to announce soon in various publications.

Regarding Astronotus mikoljii, our good friend and now colleague Ivan Mikolji, was the one who initially proposed that we describe this species that he loves so much. He selflessly supported all the authors throughout the study in diverse ways, even in the field work in Venezuela. Ivan helped us in the search for equipment and materials, in the search for information, in the photographic work, and now in the dissemination of this study. For this reason, the article, in just one week, achieved more than 4,500 downloads, both on ZooKeys and ResearchGate web platforms, a true record for a study of this type.

Most importantly, throughout these years, Ivan has always encouraged us not to lose our course and objective, even in the most difficult moments. After years of knowing him, we have cultivated an excellent friendship. This is why we decided that it was just and necessary to recognize his work, help, companionship, and friendship, naming this beautiful and beloved species in his honor.

Photos by Ivan Mikolji.

***

You can find Part 1 and continue reading with Part 3.

***

Follow the ZooKeys journal on Twitter and Facebook.

Citizen scientists from three continents help discover a new, giant slug from Europe

The animal, as big as a medium-sized carrot, was discovered on a citizen-science expedition and jointly described by its participants.

You might think that Europe is so well studied that no large animals remain undiscovered. Yet today, a new species of giant keelback slug from Montenegro was announced in the open-access Biodiversity Data Journal. The animal, as big as a medium-sized carrot, was discovered on a citizen-science expedition and jointly described by its participants.

A living specimen of Limax pseudocinereoniger on a researcher’s hand.

The international team of citizen scientists from Italy, the Netherlands, Serbia, South Africa, and the United States found the slug in July 2019 while exploring the spectacular Tara Canyon, Europe’s deepest gorge, on inflatable rafts. The brownish-grey animals, with a sharp ridge along the back, and 20 cm in length when fully stretched, were hiding under rocky overhangs in the narrowest part of the ravine.

A living specimen of Limax pseudocinereoniger seen from the side. Photo by Pierre Escoubas

At first, the newly discovered slugs seemed superficially indistinguishable from the ash-black keelback slug (Limax cinereoniger), which also lives in the Tara Canyon. The team had to use a portable DNA lab to work out that there is a 10% difference between the two slugs in the so-called DNA barcode. Moreover, when they dissected a few of them, they found differences in the reproductive organs as well. This was enough to decide that a new species had been discovered, and they named it Limax pseudocinereoniger to indicate its similarity to L. cinereoniger.

The field trip was run by Taxon Expeditions, which organises real scientific expeditions for the general public, with the aim to make scientific discoveries. Rick de Vries, a web editor and illustrator from Amsterdam who found the first specimen of L. pseudocinereoniger, says: “It’s an incredible thrill to hold an animal in your hands and to know that it is still unknown to science”.

Citizen scientists studying specimens in the team’s field lab in Montenegro.

Zoologist Iva Njunjić, one of the authors of the paper, thinks that more unknown species are likely to be found in Tara Canyon and the Durmitor National Park, of which it is part. “Using a combination of DNA analysis and anatomy will probably reveal more species that are identical on the outside but actually belong to different species,” she says.

In 2023, Taxon Expeditions plans to take a new team of citizen scientists to Montenegro with a mission to discover new species and document the hidden biodiversity.

Taxon Expeditions was founded by Iva Njunjić and Menno Schilthuizen of Naturalis Biodiversity Center and specialises in ‘taxonomy tourism’ trips in Brunei, Italy, Montenegro, Panama, and the Netherlands.

Original source:

Schilthuizen M, Thompson CG, de Vries R, van Peursen ADP, Paterno M, Maestri S, Marcolongo L, Esposti CD, Delledonne M, Njunjić I (2022) A new giant keelback slug of the genus Limax from the Balkans, described by citizen scientists. Biodiversity Data Journal 10: e69685. https://doi.org/10.3897/BDJ.10.e69685

First-ever fish species described by a Maldivian scientist

Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described by a Maldivian researcher.

Named after the country’s national flower, the species is added to the tree of life as part of the California Academy of Sciences’ global Hope for Reefs initiative

Originally published by the California Academy of Sciences

Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described—the scientific process an organism goes through to be recognized as a new species—by a Maldivian researcher.

The new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa), described in the journal ZooKeys, is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.

Scientists from the California Academy of Sciences, the University of Sydney, the Maldives Marine Research Institute (MMRI), and the Field Museum collaborated on the discovery as part of the Academy’s Hope for Reefs initiative aimed at better understanding and protecting coral reefs around the world.

“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists. This time, it is different and getting to be part of something for the first time has been really exciting, especially having the opportunity to work alongside top ichthyologists on such an elegant and beautiful species,”

says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb.

First collected by researchers in the 1990s, C. finifenmaa was originally thought to be the adult version of a different species, Cirrhilabrus rubrisquamis, which had been described based on a single juvenile specimen from the Chagos Archipelago, an island chain 1,000 kilometers (621 miles) south of the Maldives. 

In this new study, however, the researchers took a more detailed look at both adults and juveniles of the multicolored marvel, measuring and counting various features, such as the color of adult males, the height of each spine supporting the fin on the fish’s back and the number of scales found on various body regions. These data, along with genetic analyses, were then compared to the C. rubrisquamis specimen to confirm that C. finifenmaa is indeed a unique species. 

Importantly, this revelation greatly reduces the known range of each wrasse, a crucial consideration when setting conservation priorities.  

“What we previously thought was one widespread species of fish, is actually two different species, each with a potentially much more restricted distribution. This exemplifies why describing new species, and taxonomy in general, is important for conservation and biodiversity management,”

says lead author and University of Sydney doctoral student Yi-Kai Tea. 

Despite only just being described, the researchers say that the Rose-Veiled Fairy Wrasse is already being exploited through the aquarium hobbyist trade. 

“Though the species is quite abundant and therefore not currently at a high risk of overexploitation, it’s still unsettling when a fish is already being commercialized before it even has a scientific name. It speaks to how much biodiversity there is still left to be described from coral reef ecosystems,”

says senior author and Academy Curator of Ichthyology Luiz Rocha, PhD, who co-directs the Hope for Reefs initiative.

Last month, Hope for Reefs researchers continued their collaboration with the MMRI by conducting the first surveys of the Maldives’ ‘twilight zone’ reefs—the virtually unexplored coral ecosystems found between 50- to 150-meters (160- to 500-feet) beneath the ocean’s surface—where they found new records of C. finifenmaa along with at least eight potentially new-to-science species yet to be described. 

This new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa) became the first Maldivian fish to ever be described by a local researcher.
Photo by Yi-Kai Tea.

For the researchers, this kind of international partnership is pivotal to best understand and ensure a regenerative future for the Maldives’ coral reefs. 

“Nobody knows these waters better than the Maldivian people. Our research is stronger when it’s done in collaboration with local researchers and divers. I’m excited to continue our relationship with MMRI and the Ministry of Fisheries to learn about and protect the island nation’s reefs together,”

says Rocha says

“Collaborating with organizations such as the Academy helps us build our local capacity to expand knowledge in this field. This is just the start and we are already working together on future projects. Our partnership will help us better understand the unexplored depths of our marine ecosystems and their inhabitants. The more we understand and the more compelling scientific evidence we can gather, the better we can protect them,”

adds Najeeb.

***

Research article:

Tea Y-K, Najeeb A, Rowlett J, Rocha LA (2022) Cirrhilabrus finifenmaa (Teleostei, Labridae), a new species of fairy wrasse from the Maldives, with comments on the taxonomic identity of C. rubrisquamis and C. wakanda. ZooKeys 1088: 65-80. https://doi.org/10.3897/zookeys.1088.78139

***

Follow ZooKeys on Twitter and Facebook.

Snake photo posted on Instagram leads to the discovery of a new species from the Himalayas

An image on Instagram prompted the discovery of a new species of Kukri snake from Himachal Pradesh, India. Intrigued by a post shared by a master student, the research team found and examined more specimens to discover they belonged to a yet undescribed species. Their study, published in the open-access journal Evolutionary Systematics, highlights how little we still know about the biodiversity in the Western Himalayas.

Virender Kumar Kharadwaj

Intrigued by a photo shared on Instagram, a research team from India discovered a previously unknown species of kukri snake.

Staying at home in Chamba because of the COVID-19 lockdown, Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar, started exploring his backyard, photographing everything he found there and posting the pictures online. His Instagram account started buzzing with the life of the snakes, lizards, frogs, and insects he encountered.

One of those photos – a picture of a kukri snake – popped up in the feed of Zeeshan A. Mirza (National Centre for Biological Sciences, Bangalore) and immediately caught his attention. After a chat with Harshil Patel (Veer Narmad South Gujarat University, Surat), he decided to get in touch with Virendar and find out more about the sighting.

The snake, which Virendar encountered along a mud road on a summer evening, belongs to a group commonly known as Kukri snakes, named so because of their curved teeth that resemble the Nepali dagger “Kukri”. 

At first sight, the individual that Virendar photographed looked a lot like the Common Kukri snake (Oligodon arnensis). However, a herpetologist could spot some unique features that raised questions about its identity. 

Kukri snake

Virendar uploaded the photo on 5 June 2020, and by the end of the month, after extensively surveying the area, he found two individuals – enough to proceed with their identification. However, the COVID-19 pandemic slowed down the research work as labs and natural history museums remained closed. 

Upon the reopening of labs, the team studied the DNA of the specimens and found out they belonged to a species different from the Common Kukri snake. Then, they compared the snakes’ morphological features with data from literature and museums and used micro computed tomography scans to further investigate their morphology. In the end, the research team were able to confirm the snakes belonged to a species previously unknown to science.

The discovery was published in a research paper in the international peer-reviewed journal Evolutionary Systematics. There, the new species is described as Oligodon churahensis, its name a reference to the Churah Valley in Himachal Pradesh, where it was discovered. 

What’s even more interesting is that the exploration of your own backyard may yield still undocumented species… if one looks in their own backyard, they may end up finding a new species right there.

Zeeshan A. Mirza

“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” comments Zeeshan A. Mirza.

“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”

“Compared to other biodiversity hotspots, the Western Himalayas are still poorly explored, especially in terms of herpetological diversity, but they harbor unique reptile species that we have only started to unravel in the last couple of years,” Mirza adds.

Research article:

Mirza ZA, Bhardwaj VK, Patel H (2021) A new species of snake of the genus Oligodon Boie in Fitzinger, 1826 (Reptilia, Serpentes) from the Western Himalayas. Evolutionary Systematics 5(2): 335-345. https://doi.org/10.3897/evolsyst.5.72564

A star in subtropical Japan: a new species of parasitoid wasp constructs unique cocoon masses hanging on 1-meter-long strings

A new species of parasitoid wasp that constructs remarkable star-shaped cocoon masses is reported from the biodiversity hot spot Ryukyu Islands. Japanese researchers observed how the wasps construct “stars” after making their way out of the moth larvae they inhabit during their own larval stage. In their study, published in the open-access journal Journal of Hymenoptera Research, the team discuss the ecological significance of the cocoon mass and the evolution of this peculiar structure.

A unique “star” was discovered from the Ryukyu Islands, a biodiversity hot spot in subtropical Japan: a star-shaped structure that turned out to be the cocoon mass of a new species of parasitoid wasp. Researchers Shunpei Fujie (Osaka Museum of Natural History), So Shimizu, Kaoru Maeto (Kobe University), Koichi Tone (Okinawa Municipal Museum), and Kazunori Matsuo (Kyushu University) described this parasitoid wasp as a new species in the open-access Journal of Hymenoptera Research.

The new parasitoid wasps, Meteorus stellatus. Photo by Fujie S

Parasitoid wasps parasitize a variety of organisms, mostly insects. They lay eggs in the host, a larva of hawk moth in this case, where the wasp larvae later hatch. After eating the host from the inside out, the larvae spin threads to form cocoons, in which they pupate, and from which the adult wasps eventually emerge. 

The larvae of Meteorus stellatus emerging from a host moth. Photo by Tone K

Larvae of the newly discovered parasitoid wasp form star-shaped masses of cocoons lined up in a spherical pattern, suspended by a thread that can reach up to 1 meter in length. The structure, 7 to 14 mm wide and 9 to 23 mm long, can accommodate over 100 cocoons.

The star-shaped cocoon mass and the cable of the new parasitoid wasps. Photo by Shimizu S

Despite its peculiarity, the wasp species constructing these masses had not been previously described: morphological observation and molecular analysis revealed that it was new to science. The authors aptly called it Meteorus stellatus, adding the Latin word for “starry” to its scientific name.

Thanks to the recent publication, we now have the first detailed report about the construction of such a remarkable cocoon mass in parasitoid wasps. We can also see what the process looks like, as the researchers were able to film the wasps escaping from the moth larvae and forming the star-shaped structure.

Why does M. stellatus form cocoons in such a unique structure?

The authors of the study believe this unique structure helps the wasps survive through the most critical time, i.e. the period of constructing cocoons and pupating, when they are exposed to various natural enemies and environmental stresses. The star shape most likely reduces the exposed area of individual cocoons, thus increasing their defense against hyper-parasitoids (wasps attacking cocoons of other parasitoid wasps), while the long thread that suspends the cocoon mass protects the cocoons from potential enemies like ants.

“How parasitoid wasps have evolved to form such unique masses instead of the common individual cocoons should be the next thing on our ‘to-research’ list,” say the authors.

Research article:

Fujie S, Shimizu S, Tone K, Matsuo K, Maeto K (2021) Stars in subtropical Japan: a new gregarious Meteorus species (Hymenoptera, Braconidae, Euphorinae) constructs enigmatic star-shaped pendulous communal cocoons. Journal of Hymenoptera Research 86: 19-45. https://doi.org/10.3897/jhr.86.71225

Guest blog post: Operation desert: crab and dwarf spider discovered on sand dunes in military area, Slovakia

Guest blog post by Pavol Purgat

For the first time in Slovakia, the dwarf spider Walckenaeria stylifrons and crab spider Spiracme mongolica were discovered on sand dunes in Záhorie Protected Landscape Area, on  localities that serve as a military complex, used by the native Slovak army. Moreover, the spider W. stylifrons was found in a wine-growing region near the historical town of Modra.

Scientists Pavol Purgat, Dr Peter Gajdoš, Natália Hurajtová, Institute of Landscape Ecology-Slovak Academy of Sciences, Slovakia, and Dr Katarína Krajčovičová, Dr Adrián Purkart, Ľubomír Volnár, Faculty of Natural Sciences-Comenius University in Bratislava, Slovakia have published their paper, where they introduce two new spider species for Slovakia, in the open-access journal CheckList, the journal of biodiversity data.

Dwarf spider, Walckenaeria stilifrons

European continental sand dunes, characterized by high ground temperature, high temperature fluctuations and movement of sand masses, belong to the rare, climatically extreme areas resembling deserts. In Europe, lowland sandy grassland habitats are considered to be among the most endangered and are often the subject of nature conservation.

The researchers decided to understand the spider assemblages living in such extreme habitats in Western Slovakia. During 2018–2019, the study sites were chosen and co-called pitfall traps hidden in the ground were used to collect spiders.

Among other collected species, two spiders were found for the first time in Slovakia. The dwarf spider W. stilifrons is recorded from 15 European countries and it is known from Eastern England to Eastern Germany in the north, and from the Iberian Peninsula to the Crimea and Cyprus in the south. Within Central Europe, the species has so far been known from Austria, Germany and Switzerland. The crab spider S. mongolica is known from Serbia to the European part of Russia. Its distribution in Asia extends from Central Asian part of Russia, Azerbaijan, Kazakhstan to Mongolia and China. In China it is known only from Western Inner Mongolia and Xinjiang region.

Crab spider, Spiracme mongolica

Upon the detailed examination of male copulatory organs, the researchers found out that one of the species shares characters typical for the genus Spiracme, in consideration of that a new combination Spiracme mongolica for the spider previously known as Xysticus mongolicus was suggested.

In conclusion, the authors assume that W. stilifrons can live elsewhere in Europe. The rarity of the species may be related to the occurrence of adults, especially in the winter months, as most researchers are focused only on the growing seasons. The occurrence of S. mongolica in sand dunes in Slovakia confirms this species preference for dry habitats. The new finding of S. mongolica is the most known westernmost.

Research article:
Purgat P, Gajdoš P, Purkart A, Hurajtová N, Volnár Ľ, Krajčovičová K (2021) Walckenaeria stilifrons and Spiracme mongolica (Araneae, Linyphiidae, Thomisidae), two new species to Slovakia. Check List 17 (6): 1601-1608. doi: 10.15560/17.6.1601

First moth species on Alpenrose discovered

Discovery of the first moth species to mine the leaves of the highly poisonous Alpine rose

 Rust-red alpine rose, one of the most popular alpine plants. Photo by Ingrid Huemer

An Austrian-Swiss research team was able to find a previously unknown glacial relic in the Alps, the Alpine rose leaf-miner moth. It is the first known species to have its caterpillars specializing on the rust-red alpine rose, a very poisonous, widely distributed plant that most animals, including moths and butterflies, strictly avoid. The extraordinary record was just published in the peer-reviewed scientific journal Alpine Entomology.

Poisonous host plant

The rust-red alpine rose (Rhododendron ferrugineum) is among the best-known and most attractive plants due to its flowering splendor – at least for humans. It is, in fact, a highly poisonous plant, strictly avoided by grazing animals. For insects, the alpine rose is attractive at most as a nectar plant; insect larvae, on the other hand, develop on it only in exceptional cases. This also applies to Alpine butterflies and moths, which leave Alpine roses largely untouched despite their wide distribution. Therefore, the discovery of a highly specialized species in the Alps came as a complete surprise.

Chance find

Since alpine roses are unattractive to caterpillars and no insect the entire Alpine region was previously known to specialize on them, butterfly and moth experts had considered them rather uninteresting and ignored them in their research. The discovery of the alpine rose leaf-miner wasn’t the result of a targeted search: it was a pure stroke of luck.

During a cloudy spell in July this year, researchers surveying the butterflies in Ardez in the Engadine valley, Switzerland, happened to take a break exactly at an infested alpine rose bush. 

“The accidental sighting of the first caterpillar in an alpine rose leaf was an absolute adrenaline rush, it was immediately clear that this must be an extraordinary species,”

Peter Huemer, researcher and head of the natural sciences department of the Tyrolean State Museums

Peter Huemer, researcher and head of the natural sciences department of the Tyrolean State Museums, and Swiss butterfly and moth expert Jürg Schmid came back in late July and early August to look for caterpillars and pupae and find out more about this curious insect. The extended search yielded evidence of a stable population of a species that was initially a complete enigma. 

Life in the leaf

The alpine rose leaf-miner moth drills through the upper leaf skin and into the leaf interior immediately after the caterpillar hatches. The caterpillar then spends its entire life until pupation between the intact leaf skins, eating the leaf from the inside. Thanks to this behavior, the caterpillar is just as well protected from bad weather as from many predators such as birds, spiders, or some carnivore insects. The feeding trail, called a leaf mine, begins with a long corridor and ends in a large square-like mine section. The feces are deposited inside this mine. When the time comes for pupation, the caterpillar leaves the infested leaf and makes a typical web on the underside or a nearby leaf. With the help of several fine silk threads, it produces an elaborate “hammock”, in which the pupation finally takes place. In the laboratory, after about 10 days, the successful breeding to a moth succeeded, with a striking result.

Enigmatic glacial relic

Final instar larva of the alpine rose leaf-miner moth on Rhododendron ferrugineum in Ardez, Graubünden, Switzerland. Photo by Jürg Schmid

Huemer and Schmid were surprised to find out that the moths belonged to a species that was widespread in northern Europe, northern Asia and North America – the swamp porst leaf-miner butterfly Lyonetia ledi. By looking at its morphological features, such as wing color and pattern, and comparing its DNA barcodes to those of northern European specimens, they were able to confirm its identity.

Habitat of the alpine rose leaf-miner moth in Engadine/Switzerland with Rhododendron ferrugineum. Photo by Jürg Schmid

The Engadine population, however, is located more than 400 km away from the nearest other known populations, which are on the border of Austria and the Czech Republic. Furthermore, the species lives in northern Europe exclusively on swamp porst and Gagel bush – two shrubs that are typical for raised bogs and absent from the Alps. However, the researchers suggest that in earlier cold phases – some 22,000 years ago – the swamp porst and the alpine rose did share a habitat in perialpine lowland habitats north of the Alps. It is very likely that after the last cold period and the melting of the glaciers, some populations of the species shifted their host preference from the swamp porst to the alpine rose. The separation of the distribution areas of the two plants caused by subsequent warm phases inevitably led to the separation of the moth populations. 

Extinction risk

The Alpine Rose Leaf-miner Moth is so far only known from the Lower Engadine. It lives in a steep, north-exposed, spruce-larch-pine forest at about 1,800 m above sea level. The high snow coverage in winter and the largely shady conditions in summer mean that alpine roses don’t get to bloom there. The scientists suspect that the moth species can still be discovered in places with similar conditions in the northern Alps, such as in neighboring Tyrol and Vorarlberg. Since the moth is likely nocturnal and flies late in the year, probably hibernating in the adult stage, the search for the caterpillars and pupae is more promising. However, the special microclimate of the Swiss location does not suggest that this species, which has so far been overlooked despite 250 years of research, is widespread. On the contrary, there are legitimate concerns that it could be one of the first victims of climate change.

Research article:

Huemer P, Schmid J (2021) Relict populations of Lyonetia ledi Wocke, 1859 (Lepidoptera, Lyonetiidae) from the Alps indicate postglacial host-plant shift to the famous Alpenrose (Rhododendron ferrugineum L.). Alpine Entomology 5: 101-106. https://doi.org/10.3897/alpento.5.76930

Learning more about vampire fish: first report of candiru attached to an Amazonian thorny catfish

For the first time, scientists report a vampire fish attached to the body of an Amazonian thorny catfish. Very unusually, the candirus were attached close to the lateral bone plates, rather than the gills, where they are normally found. Since the hosts were not badly harmed, and the candirus apparently derived no food benefit, scientists believe this association is commensalistic rather than parasitic. The research is published in the open-access journal Acta Ichthyologica et Piscatoria.

Guest blog post by Chiara C. F. Lubich, André R. Martins, Carlos E. C. Freitas, Lawrence E. Hurd and Flávia K. Siqueira-Souza

The Amazon River Basin is home to about 15% of all freshwater fish species known to science, and an estimated 40% yet to be named. These include some of the most bizarre fishes: the vampire fishes, locally known as candiru, members of the catfish subfamily Vandelliinae.). They survive by attaching themselves to the bodies of other fish and sucking on their blood, hence their common name. Yet, it was only recently that we found out that one candiru species, belonging to the genus Paracanthopoma, seems to be making use of its host in quite a different way.

During a sampling study of freshwater fish fauna in a lake of the Demeni River Basin, a left bank tributary of the Negro River, we found candirus attached to the surface of the body of an Amazonian species of a thorny catfish. By the end of the survey, we had observed a total of twenty candirus attached to the outside of the bodies of nine larger Doras phlyzakion, one or two per host. Very unusually, the candirus were attached close to the lateral bone plates, rather than the gills, where these fish are normally found.

Location of the study: Demeni River, left bank tributary of Negro River, Amazonas State, Brazil.

As a result of these observations, we recently published the first record of a candiru attached to the body surface of an Amazonian thorny catfish in an article in the open-access scholarly journal Acta Ichthyologica et Piscatoria.

Vampire fish have long and robust snouts, with strong dentary teeth that help them stay attached to the epidermis of their host and feed on its blood. However, when we performed a macroscopic analysis of the stomach contents of the preserved Paracanthopoma specimens, we were surprised to find no coagulated blood, nor flesh, skin or mucus. This might indicate an interaction between parasite and host that is more benign than usually attributed to vampire fish. 

Doras phlyzakion with vampire fish (Paracanthopoma sp.)  fixed into its epidermis close to the bony plates of the lateral line. Arrows: areas with reddish wounds.

We believe the association between candiru and host in this case might be commensalistic (where one organism benefits from another without harming it), rather than parasitic, because the hosts were not badly harmed, and the candiru apparently derived no food benefit. 

But what else would they seek on the back of Amazonian thorny catfish? One explanation could be that, since candirus are tiny and nearly transparent, they might be avoiding getting noticed by visual predators by riding on larger fish. Another hypothesis is that they could be using their big cousins to transport them over longer distances that they wouldn’t be able to cover themselves, eventually making it to safety or new food sources.

Research article:

Lubich CCF, Martins AR, Freitas CEC, Hurd LE, Siqueira-Souza FK (2021) A candiru, Paracanthopoma sp. (Siluriformes: Trichomycteridae), associated with a thorny catfish, Doras phlyzakion (Siluriformes: Doradidae), in a tributary of the middle Rio Negro, Brazilian Amazon. Acta Ichthyologica et Piscatoria 51(3): 241-244. https://doi.org/10.3897/aiep.51.e64324

Dating in a jungle: Female praying mantises jut out weird pheromone gland to attract mates

Scientists from the Ruhr-University and the Bavarian State Collection of Zoology discovered that females of a South American species protrude a Y-shaped organ on their backs to release pheromones and attract males. Found in none of the over 2,500 species of praying mantises worldwide, the behaviour is reported for the first time in the peer-reviewed scientific Journal of Orthoptera Research.

Female of Stenophylla lobivertex with protruded pheromone gland
(Photo by Christian J. Schwarz)

It isn’t only myriads of currently unknown species that await discovery in the Amazon rainforests. As a new study by German scientists at the Ruhr-University (Bochum) and the Bavarian State Collection of Zoology (Munich)published in the open-access peer-reviewed scientific Journal of Orthoptera Research, concludes, it seems that so do plenty of unusual behaviours.

“When I saw the maggot-like structures peeking out from the back of the praying mantis and then withdrew, I immediately thought of parasites that eat the animal from the inside, because that is not really uncommon in insects,”

says Frank Glaw, a reptile and amphibian expert from the Bavarian State Collection of Zoology, who discovered the unusual phenomenon.
How does the Alien Mantis (Stenophylla lobivertex) attract partners?

However, it took specialists in this particular animal group to solve the riddle. Although the experts had seen nothing like this in praying mantises before either, they pointed out that there are other species of mantises, in which mostly unfertilised females release pheromones from a gland in the same part of the body (between the 6th and 7th tergite), in order to attract mates. The Y-shaped organ, which can stretch up to 6 mm in length, is in fact an advanced pheromone gland, which the insect controls with the help of hemolymph.

“We suspect that Stenophylla lobivertex can release the pheromones with the protrusible organ more efficiently and in a more targeted manner than other praying mantises,”

says Christian J. Schwarz, entomologist at the Ruhr-University.

“This can be very important, especially for rare species with a low population density, so that males can reliably find their females.”

Stenophylla lobivertex is a very rare species and lives hidden in the Amazon rainforests. Discovered only 20 years ago, the bizarre-looking and well-camouflaged animal has only been spotted a few times, and apparently only mates at night in the darkness.

Stenophylla lobivertex is a rare praying mantis from the Amazon rainforest. Its ‘true’ face becomes apparent only at second glance
(Photo by Christian J. Schwarz)

***

Follow Journal of Orthoptera Research on Twitter and Facebook.

***

Publication:

Schwarz CJ, Glaw F (2021) The luring mantid: Protrusible pheromone glands in Stenophylla lobivertex (Mantodea: Acanthopidae). Journal of Orthoptera Research 30(1): 39-41. https://doi.org/10.3897/jor.30.55274

Senckenberg Nature Research Society transfers three journals to ARPHA Platform

Arthropod Systematics & Phylogeny, Vertebrate Zoology and Geologica Saxonica are the latest historic titles to select the various services and advanced technology provided by the OA-born scholarly publishing platform

One of the largest natural research associations in Germany, the Senckenberg Nature Research Society moved three of its international, open-access scholarly journals to the publishing platform ARPHA, following a recent contract with the scientific publisher and technology provider Pensoft.

Having opted for the white-label publishing solution, the journals remain under the brand of the Society and the Senckenberg Natural History Collections Dresden, one of the oldest natural-science museums in the world. Despite transitioning to a new platform, the past volumes of the journals remain accessible from a link on their website homepages.

Following their recent move to the Pensoft-developed publishing platform, Arthropod Systematics & PhylogenyVertebrate Zoology and Geologica Saxonica have not only acquired their own glossy and user-friendly websites, but have also taken advantage from ARPHA’s signature fast-track, end-to-end publishing system, which is to benefit all journal users: authors, reviewers and editors alike. In addition, the journals are already using many of the unique services offered by ARPHA, including publication in PDF, semantically enhanced HTML and machine-readable XML formats; advanced data publishing; sub-article-level usage metrics; automated export of sub-article elements and data to key aggregators; web-service integrations with major indexing and archiving databases; and others.

In particular, to the appeal of the authors, editors and reviewers, the ARPHA’s collaboration-centred online environment takes care after each submitted manuscript during the review, editing, publication, dissemination and archiving stages, so that no one needs to deal with locally stored files and their transfer by email or third-party cloud storages. Additionally, the platform is designed to regularly notify the users about any required action, thus sparing the burden of unnecessary communication and ensuring the speedy processing of manuscripts.

All three journals operate a Diamond Open Access policy, thanks to the support of the Senckenberg Nature Research Society, making the journals free to publish for all authors.

Arthropod Systematics & Phylogeny

Arthropod Systematics & Phylogeny is the successor of the historical Entomologische Abhandlungen, formerly published by the Museum of Zoology at Dresden.

Its scope covers the taxonomy, morphology, anatomy, phylogeny, historical biogeography and palaeontology of arthropod taxa, but excludes faunistics and research with a strong regional focus. Descriptions of new taxa are only welcome when embedded in a wider context, for example, a phylogenetic, evolutionary, or biogeographical framework.

Currently, the journal enjoys an Impact Factor of 1.51 and a continuously increasing Scopus CiteScore.

Vertebrate Zoology

Similarly, Vertebrate Zoology was preceded by Zoologische Abhandlungen, also formerly published by the Museum of Zoology at Dresden. Its first publications since the move to ARPHA Platform and part of the first journal volume for 2021 are already a fact.

The journal deals with research on taxonomy, morphology, anatomy, phylogeny, historical biogeography and palaeontology of vertebrates. Again, descriptions of new taxa should be integrated into a proper context, for example, a complete revision of a taxon. To support accountability and reproducibility in science and academia, the journal requires that studied specimens have to be deposited in a public scientific collection.

Vertebrate Zoology’s Impact Factor is currently standing at 1.167, while its last Scopus CiteScore reached 2.1 (2019).

Geologica Saxonica

Geologica Saxonica – Journal of Central European Geology, began its life in distant 1876, when it was founded under the name Mitteilungen aus dem Königlichen Mineralogisch-Geologischen und Prähistorischen Museum by German geologist Hanns Bruno Geinitz, renowned for his work on the Carboniferous and Cretaceous rocks and fossils of Saxony.

The journal’s scope ecompasses geology, paleontology, stratigraphy, petrography, mineralogy and geoscience history with focus on Central Europe.

“At Pensoft, we are delighted to support a world-renowned natural history association like Senckenberg in carrying its legacy and treasure of knowledge into our days and well beyond. Now, with ARPHA’s white-label solution, we’re certain that the journals will simultaneously preserve their identity and enjoy all perks of modern and technologically advanced publishing,”

comments Pensoft and ARPHA’s founder and CEO Prof. Lyubomir Penev.

“We are very pleased to have found reliable partners in Pensoft and the ARPHA platform for our three publications to further increase their visibility. Senckenberg’s scientific publications have a long – almost 200-year tradition – and are now shown in a new and innovative design with unprecedented information retrieval options!”

says Prof. Dr. Uwe Fritz, Editor-in-Chief of the journal Vertebrate Zoology and head of the Department of Zoology at Senckenberg Natural History Collections in Dresden.

###

Senckenberg is not the first prestigious German research institution to sign an agreement with Pensoft and ARPHA Platform. Since 2014, the Natural History Museum Berlin has trusted the publisher with its own historical titles in the Biology domain: Deutsche Entomologische Zeitschrift and Zoosystematics and Evolution. In 2017, Evolutionary Systematics by the University of Hamburg, another prominent journal with a legacy in the field of Zoology, followed suit. Last year, Zitteliana, a historical scholarly journal covering all fields of paleontology and geobiology by the State Natural History Collection of Bavaria (SNSB) also announced its joining the journal portfolio of Pensoft and ARPHA Platform.

###

Follow ARPHA Platform on Twitter and LinkedIn.