Which one is the species that springs to mind when you think about the most awesome discoveries in recent times?
In an age where we more than ever need to appreciate and preserve the magnificent biodiversity inhabiting the Earth, we decided to go for a lighter and fun take on the work of taxonomists that often goes unnoticed by the public.
From the ocean depths surrounding Indonesia to the foliage of the native forests of Príncipe Island and into the soils of Borneo, we started with 16 species described as new to science in journals published by Pensoft over the years.
Out of these most amazing creatures, over the past several weeks we sought to find who’s got the greatest fandom by holding a poll on Twitter (you can follow it further down here or via #NewSpeciesShowdown).
Grand Finale – here comes the champion!
Truly, we couldn’t have a more epic final!
The two competitors come from two kingdoms, two opposite sides of the globe, and the “pages” of two journals, namely PhytoKeys and Evolutionary Systematics.
While we need to admit that we ourselves expected to crown an animal as the crowd-favourite, we take the opportunity to congratulate the botanists amongst our fans for the well-deserved win of Nepenthes pudica (see the species description)!
Find more about the curious one-of-a-kind pitcher plant in this blog post, where we announced its discovery following the new species description in PhytoKeys in June 2022:
Back then, N. pudica gave a good sign about its worldwide web appeal, when it broke the all-time record for online popularity in a competition with all plant species described in PhytoKeys over the journal’s 22-year history of taxonomic papers comrpising over 200 issues.
What’s perhaps even more curious, is that there is only one species EVER described in a Pensoft-published journal that has so far triggered more tweets than the pitcher plant, and that species is the animal that has ended up in second place in the New Species Showdown: a tiny amphibian living in Peru, commonly known as the the Amazon Tapir Frog (Synapturanus danta).Which brings us once again to the influence of botanists in taxonomic research.
Read more about its discovery in the blog post from February 2022:
Another thing that struck us during the tournament was that there was only one species described in our flagship journal in systematic journal ZooKeys: the supergiant isopod Bathynomus raksasa, that managed to fight its way to the semi-finals, where it lost against S. danta.
This makes us especially proud with our diverse and competitive journal portfolio full of titles dedicated to biodiversity and taxonomic research!
The rules
Twice a week, @Pensoft would announce a match between two competing species on Twitter using the hashtag #NewSpeciesShowdown, where everyone could vote in the poll for their favourie.
Disclaimer
This competition is for entertainment purposes only. As it was tremendously tough to narrow the list down to only sixteen species, we admit that we left out a lot of spectacular creatures.
To ensure fairness and transparency, we made the selection based on the yearly Altmetric data, which covers articles in our journals published from 2010 onwards and ranks the publications according to their online mentions from across the Web, including news media, blogs and social networks.
We did our best to diversify the list as much as possible in terms of taxonomic groups. However, due to the visual-centric nature of social media, we gave preference to immediately attractive species.
The first tie of the New Species Showdown was between the olinguito: Bassaricyon neblina (see species description) and the “snow-coated” tussock moth Ivela yini (see species description).
In the second battle, we faced two marine species discovered in the Indian Ocean and described in ZooKeys. The supergiant isopod B. raksasa (see species description) won against the Rose Fariy Wrasse C. finifenmaa (see species description) with strong 75%.
✨Tapir “chocolate” frog S. danta claims the #NewSpeciesShowdown victory against the transparent Glass frog H. yaku by 73%! 🙌Congrats to all who voted for the tiny but very pretty frog which was described only this year in @EvolSystematics! pic.twitter.com/kAFrmepyJa
In the third battle, we faced two frog species: the tapir ‘chocolate’ frog described in Evolutionary Systematics (see species description) winning against the ‘glass frog’ described in Zookeys (see species description) with 73%.
With 62% of the votes, the two-species tournament saw the Harryplax severus crab grab the win against another species named after a great wizard from the Harry Potter universe: the Salazar’s pit viper, which was described in the journal Zoosystematics and Evolution in 2020. The “unusual” crustacean was described back in 2017 in ZooKeys. As its species characters matched no genus known to date, the species also established the Harryplax genus.
Earlier this year, the 1st #plant to grow underground pitcher was described in @PhytoKeys & quickly became the most tweeted paper EVER published in our #botany#journal! So, it isn't too hard to see how it won with 68% against the Demon's orchid in this #NewSpeciesShowdown!🔝 1/3 pic.twitter.com/toC6epfVus
With the fifth battle in the New Species Showdown taking us to the Kingdom of Plants, we enjoyed a great battle between the first pitcher plant found to grow its pitchers underground to dine (see the full study) and the Demon’s orchid, described in 2016 from a single population spread across a dwarf montane forest in southern Colombia (read the study). Both species made the headlines across the news media around the world following their descriptions in our flagship botany journal PhytoKeys.
Next, we saw the primitive dipluran Haplocampa wagnelli (read its species description in Subterranean Biology) – a likely survivor of the Ice Age thanks to the caves of Canada – win the public in a duel against Xuedytes bellus (described in ZooKeys in 2017), also known as the Most cave-adapted trechine beetle in the world!
We had a close battle between the Principe Scops-owl Otus bikegila (see species description published in our ZooKeys earlier in 2022) and the blue-tailed Monitor lizard Varanus semotus (also first ‘known’ from the pages of ZooKeys, 2016). Being adorable species, but also ‘castaways’ on isolated islands in the Atlantic, they made great sensations upon their discovery.In fact, the reptile won with a single vote!
In the last battle of Round 1, the ‘horned’ tarantula C. attonitifer claimed the victory with a strong (80%) advantage from its competitor with a rebel name: the freshwater crayfish C. snowden (species description in ZooKeys from 2015). Described in African Invertebrates in 2019, the arachnid might be one amongst many ‘horned’ baboon spiders, yet there was something quite extraordinary about its odd protuberance. Furthermore, it came to demonstrate how little we know about the fauna of Angola: a largely underexplored country located at the intersection of several ecoregions.
In the first quarter-final round, in the close battle, the isopod ’emerged’ from the ocean depths of Indonesia B. raksasa (species description in Zookeys from 2020) claimed the victory with just a few votes difference (58%!) from its competitor: lovely olinguito B. neblina, also described in Zookeys but back in 2013.
After a challenging round, the ‘chocolate’ Tapir #frog S. danta (discovery published in @EvolSystematics) makes it to the semi-final leaving its competitor #crab Harryplax severus behind!
In the second round of the quarter-final, the tapir ‘chocolate’ frog S. danta (described in Evolutionary Systematics this year) claimed the victory with a significant advantage (69%) over its competitor crab H. severus described in Zookeys in 2017.
The third battle in Round 2 secured a place at the semi-finals for the only plant to get this far in the New Species Showdown. If you are dedicated to the mission of proving the plant kingdom superior: keep supporting Nepenthes pudica in the semi-finals and beyond! In the meantime, read the full description of the species, published in our PhytoKeys in June.
The last quarter-final send the Angolan ‘horned’ tarantula to the next round. Described in African Invertebrates in 2019, its discovery would have likely remained a secret had it not been for the local tribes who provided the research team with crucial information about the curious arachnid.
Curiously enough, by winning against the ‘supergiant’ isopod B. raksasa – also known around the Internet as the ‘Darth Vader of the seas’ – the Amazonian anuran S. danta outcompetes the last species in the New Species Showdown representing our flagship taxonomy journal: ZooKeys.
In a dramatic turn of events, the tight match between the Angolan tarantula C. attonitifer , whose ‘horn’ protruding from its back surprised the scientists because of its unique structure and soft texture, and the first pitcher plant whose ‘traps’ can be found underground in Borneo, ended up with the news that the New Species Showdown will be concluding with a battle between the kingdoms Animalia and Plantae! What a denouement!
If you have gone to the Pensoft website at any point in 2022, visited our booth at a conference, or received a newsletter from any of our journals, by this time, you must be well aware that in 2022 – more precisely, on 25 December – we turned 30. And we weren’t afraid to show it!
Pensoft’s team happy to showcase the 30-year story of the company at various events this year. Left: Maria Kolesnikova at the annual Biodiversity Information Standards (TDWG 2022) conference, hosted by Pensoft in Sofia, Bulgaria. Right: Iva Boyadzhieva at the XXVI International Congress of Entomology (ICE 2022) in Helsinki, Finland.
Indeed, 30 is not that big of a number, as many of us adult humans can confirm. Yet, we take pride in reminiscing about what we’ve done over the last three decades.
The truth is, 30 years ago, we wouldn’t have been able to picture this day, let alone think that we’d be sharing it with all of you: our journal readers, authors, editors and reviewers, collaborators in innovation, project partners, and advisors.
Long story short, we wanted to do something special and fun to wrap up our anniversary year. While we have been active in various areas, including development of publishing technology concerning open and FAIR access and linkage for research outcomes and underlying data; and multiple EU-supported scientific projects, we have always been associated with our biodiversity journal portfolio.
Besides, who doesn’t like to learn about the latest curious creature that has evaded scientific discovery throughout human history up until our days? 😉
“This is why Mikolji’s Oscar is a highly appreciated species in the aquarium hobby. It is more than just a fish in an aquarium when it is considered a true pet.”
In this last part, we talked with ichthyologist Oscar Miguel Lasso-Alcalá about what makesAstronotus mikoljii – a new to science cichlid species that he recently described in ZooKeys – so special.
What makes this species so charismatic and loved by aquarists and ichthyologists?
I already spoke about my experience as an aquarist from an early age, where the qualities of the species of the Astronotus genus, known as Oscars are highlighted.
Different varieties and color patterns have been obtained from them through selective breeding, or genetic manipulation, which are called living modified organisms (LMOs) or genetically modified organisms (GMOs).
However, the true lovers of nature, the aquarians of the “Biotope Aquarium” movement and the like, prefer pure specimens to manipulated or artificially modified ones. This is why Mikolji’s Oscar is a highly appreciated species in the aquarium hobby. It is more than just a fish in an aquarium since it is considered a true pet.
For ichthyologists, it is remarkably interesting and at the same time very challenging to study a genus like Astronotus, which already has only three described species (Astronotus ocellatus, A. cassiprinnis and A. mikoljii).
This is an unusual situation, which, as we have reported, requires an integrative approach and the work and experience of different specialists for its study. With all certainty, as in the case of Mikolji’s Oscar, other species of the genus Astronotus remain to be studied and described, and we hope that we will have the fortune to participate with our experience in these new works.
Local people have long known this species. What role does it have in their lives?
It is important to clarify that Astronotus mikoljii is a new species for science, but it is not a “new species” for people who already knew it locally under the name of Pavona, Vieja, or Cupaneca in Venezuela or Pavo Real, Carabazú, Mojarra and Mojarra Negra in Colombia. Nor for the aquarium trade, where it was known by the common name of Oscar and scientific name of Astronotus ocellatus, or, to a lesser degree, as Astronotus cassiprinnis.
This species has been of great food importance for thousands of years for at least nine indigenous ethnic groups.
Much less is it a new species for the nine thousand-year-old indigenous ethnic groups that share their world with the habitat of this fish, who baptized it with some 14 different names, known in their languages as mijsho (Kariña), boisikuajaba (Warao), hácho (Pumé = Yaruro), phadeewa, jadaewa (Ye’Kuana = Makiritare), perewa, parawa (Eñepá = Panare), yawirra (Kúrrim = Kurripako), kohukohurimï, kohokohorimï, owënawë kohoromï” (Yanomami = Yanomamï), eba (Puinave), Itapukunda (Kurripako), uan (Tucano).
Hence, the importance of scientific names, since the same species can have multiple common names, in the same language or in multiple languages.
It is important to note that very few studies that describe new species for science include the common names of the species, as given by the indigenous ethnic groups or natives of the regions, where the species live.
This species has been of great food importance for thousands of years for at least nine indigenous ethnic groups, and for more than 500 years to the hundreds of human communities of locals who inhabit the Orinoco River basin in Venezuela and Colombia. In our studies, in the plains of Orinoco from 30 years ago, we were able to verify its consumption, as well as high gastronomic value, due to its pleasant taste and enhanced texture.
However, due to my imprint as an aquarist, I have not wanted to consume it on the different occasions that it was offered to me, because it is very difficult to eat the beloved pets that we had in our childhood.
Why is this fish important to people and to ecosystems?
It is especially important to highlight that the Astronotus mikoljii species plays a very important role in the ecosystem, due to its biological and ecological background.
Although it can feed from different sources, it is a fundamentally carnivorous species, and therefore, it “controls” other species in the ecosystem.
Without Mikolji’s Oscar, the aquatic ecosystem would lose one of its fundamental links and the delicate balance of its functioning, because the species it feeds on could increase their populations uncontrollably, becoming veritable pests. This would put in great danger the entire future of the aquatic ecosystem of the Orinoco River basin and the permanence of other species of ecological importance.
In addition, it would surely affect other species used by man, both those of commercial importance (sold as food or as ornamental species), and for the subsistence fishing of native and indigenous inhabitants.
Mikolji’s Oscar, although a carnivorous species, also has its natural predators, for example piranhas and other predatory fish. For this reason, it evolved with an ocellus, or false eye, at the base of the caudal fin, to confuse its predators and guarantee its survival. Obviously, this species will be compromised if we don’t learn about it, use its populations wisely and preserve it in the long term.
***
Photos by Ivan Mikolji.
***
You can find Part 1 and Part 2 of the interview with Oscar.
“Working in science in a country under these conditions, and getting to publish the results of the investigations in high-level scientific journals such as ZooKeys, is an act of “true heroism”.
Oscar Miguel Lasso-Alcalá, MSc. is a Spanish-Venezuelan ichthyologist. This summer, his team described a new species of Oscar fish in the journal ZooKeys.
In this second part of his interview, he tells us about the challenges in his work and shares the story behind the new cichlid’s name.You can find Part 1 of the interview.
What did you find to be the biggest challenge?
Throughout the past seven years, the description of this species has been a real challenge. Our group of researchers knew from the beginning that it was going to be a difficult job. However, we never imagined the magnitude of the problems or challenges we would encounter.
We had to study the specimens from the Orinoco River basin in Venezuela and Colombia, and rivers from the hydrographic basin of the Gulf of Paria in Venezuela, which were within our reach, in the main scientific collections of fishes in Venezuela. Similarly, we studied the specimens from the Amazon River basin in one of the main collections in Brazil. We studied the traditional external morphology (morphometric characters, or the body, and meristic measurements, or the number of structures or parts such as scales, fins, etc.) and their coloration, as well as their internal morphology, that is, the study of structures of their skeleton, with the use of high-definition radiographs, where we found the main differences with other species.
A novel technique was the study of the shape of the otoliths, or “ear stones”, a technique not used before in the study of this group of fish. That is why I mentioned before that we also made some great scientific discoveries.
In addition to the long and meticulous laboratory work, we also had to conduct field work, not only to capture new specimens for the morphological study, but also for the genetic and molecular study, a new methodology that has become popular in recent years as a way to support taxonomy and systematics in the description and classification of species.
For this latest work, we also relied on a recent study in this area of research, carried out by the genetics specialists on our work team. This means our research was based on what is currently called “integrative taxonomy”, which is the sum of different techniques, methods, and technologies, at the service of achieving our goal: the description of a new species for science and for the world.
Many other difficulties came up along the way, which is why this research took over seven years to be published. Normally, researchers cannot focus 100% of their time on one single research, and workloads fluctuate. Sometimes we think that a greater number of specialists would help distribute the workload evenly or that getting input from others with different fields of experience, sometimes specialized, would help enrich the work, but that also makes it more difficult to reach agreement. Reaching perfection is never possible, and it took a long time for us to reach a level of results that was both acceptable to all and well accepted in the field of taxonomy and systematics.
One of the biggest challenges was purely financial. While we had some funds from Brazilian research support organizations and two universities, this was not the case in Venezuela, a country plunged in a serious political, social, economic, and humanitarian crisis.
Working in science in a country under these conditions, and being able to publish your results in high-level scientific journals, including ZooKeys, is an act of “true heroism”, as my brother José Antonio often says when cheering on my publication.
How come you named it after Ivan Mikolji?
People who do not know about the great work carried out by river explorer Ivan Mikolji might wonder about that, but the thousands of people, connoisseurs and followers of his work are absolutely clear on the justification for this appointment.
In addition to being an excellent professional explorer, author, underwater photographer, audiovisual producer and even plastic artist, he is a tireless and enthusiastic disseminator of the biodiversity and natural history of freshwater fish in Venezuela and Colombia.
His work has contributed greatly to the knowledge and conservation of the aquatic ecosystems of both countries. His motto is: “You cannot preserve something that you don’t know exists.”
He has made dozens of photography and art exhibitions in Venezuela, Mexico and the United States, as well as award-winning documentaries on the Orinoco River and its biodiversity that have acquired millions of views.
Mikolji has also inspired thousands of “conservationist” aquarists, as a judge in a worldwide movement called “Biotope Aquariums,” where people try to simulate, as much as possible, the ecosystems and aquatic biodiversity of their places of origin, for the conservation of their local biodiversity.
In addition, his educational work further includes the “Wild Aquarium”, a new movement and methodology, where he recreates in the same place (in situ), a “Biotope aquarium”, helping local communities (children and adults) learn about local aquatic ecosystems and biodiversity and their conservation.
In addition to his great artistic, informative, and educational work, with the enormous data accumulated in more than 15 years of work and field observations, in the recent years, he has participated in different research projects, publishing books and numerous scientific articles, some of them with us. For this reason, in 2020, he was appointed Associate Researcher of the Museo de Historia Natural La Salle (Caracas) of the Fundación La Salle de Ciencias Naturales, in Venezuela. By the way, we are planning research that we hope to announce soon in various publications.
Regarding Astronotus mikoljii, our good friend and now colleague Ivan Mikolji, was the one who initially proposed that we describe this species that he loves so much. He selflessly supported all the authors throughout the study in diverse ways, even in the field work in Venezuela. Ivan helped us in the search for equipment and materials, in the search for information, in the photographic work, and now in the dissemination of this study. For this reason, the article, in just one week, achieved more than 4,500 downloads, both on ZooKeys and ResearchGate web platforms, a true record for a study of this type.
Most importantly, throughout these years, Ivan has always encouraged us not to lose our course and objective, even in the most difficult moments. After years of knowing him, we have cultivated an excellent friendship. This is why we decided that it was just and necessary to recognize his work, help, companionship, and friendship, naming this beautiful and beloved species in his honor.
On this occasion full of sweet memories, we are also inviting you to complete this 3-minute survey. We would deeply appreciate your invaluable feedback!
It was in late 1992 when biologist and ecologist Prof Dr Lyubomir Penev in a collaboration with his friend Prof. Sergei Golovatch established Pensoft: a scholarly publisher with the ambition to contribute to novel and even revolutionary methods in academic publishing by applying its own approach to how science is published, shared and used. Inspired by the world’s best practices in the field, Pensoft would never cease to view the issues and gaps in scholarly publishing in line with its slogan: “by scientists, for scientists”.
As we celebrate the 30th anniversary of Pensoft, we are asking ourselves: What’s a tree without its roots?
That’s why we’ve put up an attractive timeline of Pensoft’s milestones on our website, and complemented it with some key figures, in an attempt to translate those years into numbers. Yet, one can say only that much in figures. Below, we’ll give a bit more context and background about Pensoft’s key milestones.
1994: Pensoft publishes its first book & book series
In time for New Year’s Day in 1994, we published the first book bearing the name of Pensoft. The catalogue of the sheet weaver spiders (Lyniphiidae) of Northern Asia did not only set the beginning of the publishing activities of Pensoft, but also started the extensive Pensoft Series Faunistica, which continues to this day, and currently counts over 120 titles.
2003: Pensoft joins its first EU-funded research project
By 2003, we were well-decided to expand our activities toward participation in collaborative, multinational projects, thereby building on our mission to shed light and communicate the latest scientific work done.
By participating in the FP6-funded project ALARM (abbreviation for Assessing LArge-scale environmental Risks with tested Methods), coordinated by Dr. Joseph Settele from the Helmholtz Centre for Environmental Research (Germany), we would start contributing to the making of science itself in close collaboration with another 67 institutions from across Europe. Our role at ALARM during the five years of the duration of the project was to disseminate and communicate the project outcome. At the end of the project, we also produced the highly appreciated within the community Atlas of Biodiversity Risk.
As for today, 19 years later, Pensoft has taken part in 40 research projects as a provider of various services ranging from data & knowledge management and next-generation open access publishing; to communication, dissemination and (web)design; to stakeholder engagement; consultations; and event and project management.
Our project activities culminated last year, when we became the coordinator of a large and exciting BiCIKL project, dedicated to access to and linking of biodiversity data along the entire data and research life cycle.
2008: Pensoft launches its first scholarly journal to revolutionise & accelerate biodiversity research
Openly accessible and digital-first since the very start, the ZooKeys journal was born on a sunny morning in California during the Entomological Society of America meeting in 2007, when Prof Lyubomir Penev and his renowned colleague Dr Terry Erwin from the Smithsonian Institution agreed over breakfast that zoologists from around the world could indeed use a new-age taxonomic journal. What the community at the time was missing was a scholarly outlet that would not only present a smooth fast track for their research papers, while abiding by the highest and most novel standards in the field, but do so freely and openly to any reader at any time and in any place. Fast forward to 2021, ZooKeys remains the most prolific open-access journal in zoology.
With over 1,100 volumes published to date, ZooKeys is one of our most renowned journals with its own curious and intriguing history. You can find more about it in the celebratory blog post we published on the occasion of the journal’s 1,000th volume in late 2020.
At the time of writing, Pensoft has 21 journals under its own belt, co-publishes another 16, and provides its self-developed journal management platform ARPHA to another 35 scholarly outlets.
2010a: Pensoft launches its first journal publishing platform
By 2010, we realised that the main hurdle holding our progress as a next-age publisher of scientific knowledge was posed by the technology – or lack thereof – underlying the publishing process. We figured that – in our position of users – we were best equipped to figure what exactly this backbone structure should be made of.
This is when we released the publishing platform TRIADA, which was able to support both the editorial and the publication processes at our journals. This was also the point in time when we added “technology provider” to the Pensoft’s byline. Surely, we had so many ideas in our mind and TRIADA was only the beginning!
2010b: In the 50th issue of ZooKeys, Pensoft publishes the first semantically enhanced biodiversity research papers
Later the same year, TRIADA let us write some history. The 50th volume of ZooKeys wasn’t only special because of its number. It contained the first scholarly papers in the study of biodiversity featuring semantic enrichments.
The novelty that keeps a taxon only a click away from a list of related data, including its occurrences, genomics data, treatments, literature etc. is a feature that remains a favourite to our journals’ users to this very day. Unique to date, this workflow is one of the many outcomes of our fantastic long-time collaboration and friendship with Plazi.
2011: Journal of Hymenoptera Research becomes the first society journal to move to Pensoft
Three years after the launch of the very first Pensoft journal, we received a request from the International Society of Hymenopterists who wanted for their own journal: the Journal of Hymenoptera Research to follow the example of ZooKeys and provide to their authors, editors and readers a similar set of services and features designed to streamline biodiversity knowledge in a modern, user-friendly and highly efficient manner.
Ever since, the journal has been co-published by the Society and Pensoft, and enjoyed growing popularity and appeal amongst hymenopterists from around the world.
Impact Factor and CiteScore trend for Journal of Hymenoptera Research since 2015.
2013: Pensoft replaces TRIADA with its own in-house built innovative ARPHA Platform
As we said, TRIADA was merely the crude foundation of what was to become the ARPHA publishing platform: a publishing solution providing a lot more than an end-to-end entirely online environment to support the whole publishing process on both journal and article level.
On top of that, ARPHA’s publishing package includes a variety of automated and manually provided services, web service integrations and highly customisable features. With all of those, we aimed at one thing only: create a comprehensive scholarly publishing solution to our own dearest journals and all their users.
Having just unveiled ARPHA Platform, we were quite confident that we have developed a pretty all-in publishing solution. Our journals would be launched, set up, hosted and upgraded safely under our watchful eye, while authors, editors and reviewers would need to send not a single email or a file outside of our collaborative environment from the moment they submit a manuscript to the moment they see it published, indexed and archived at all relevant databases.
Yet, we could still spot a gap left to bridge. The Pensoft Writing Tool (or what is now known as the ARPHA Writing Tool or AWT) provides a space where researchers can do the authoring itself prior to submitting a manuscript straight to the journal. It all happens within the tool, with co-authors, external collaborators, reviewers and editors all able to contribute to the same manuscript file. Due to the XML technology underlying AWT, various data(sets) and references can be easily imported in a few clicks, while a list of templates and content management features lets researchers spend their time and efforts on their scientific work rather than format requirements.
2015: Pensoft launches the open-science RIO Journal
Six years ago, amid heated discussions over the pros and cons of releasing scientific knowledge freely to all, we felt it’s time to push the boundaries even further.
No wonder that, at the time, a scholarly journal with the aim to bring to light ‘alternative’ research outputs from along the whole research process, such as grant proposals, project and workshop reports, data management plans and research ideas amongst many others, was seen as quite brave and revolutionary. Long story short, a year after its launch, RIO earned the honorary recognition from the Scholarly Publishing and Academic Resources Coalition (SPARC) to be named an Open Science Innovator.
Learn about the key milestones and achievements at RIO Journal to date – in addition to its future goals – in the special blog post and the editorial published on the occasion of the journal’s fifth anniversary.
2016: Pensoft provides ARPHA Platform as a white-label journal publishing solution for the first time
Led by our intrinsic understanding for scholars and smaller publishers, we saw the need of many journals and their owners to simultaneously secure a user-friendly and sustainable publishing solution for their scientific outlets. This is why we decided to also offer our ARPHA Platform as a standalone package of technology, services and features, dissociated with Pensoft as a publisher. This option is particularly useful for university presses, learned societies and institutions who would rather stick to exclusivity when it comes to their journal’s branding and imprint.
Another step forward to encompassing the whole spectrum of research outputs was to take care after conference materials: proceedings and abstracts. Once again, our thinking was that all scientific work and efforts need to be made openly available, accessible, reusable and creditable.
Both ARPHA Conference Abstracts and ARPHA Proceedings allow for organisers to conveniently bring the publications together in a conference-branded collection, thereby providing a one-stop permanent access point to all content submitted and presented at a particular event, alongside associated data, images, videos and multimedia, video recordings of conference talks or graphic files of poster presentations.
Publications at both platforms benefit from all key advantages available to conventional research papers at a Pensoft journal, such as registration at Crossref and individual DOI; publication in PDF, semantically enhanced HTML and data-minable XML formats; indexing and archiving at multiple major databases; science communications services.
2019: Pensoft develops the OpenBiodiv Knowledge Graph
As firm believers in the power and future of linked and FAIR data, at Pensoft we realise there is still a great gap in the way biodiversity data is collated, stored, accessed and made available to researchers and key stakeholders for further reuse.
In fact, this is an area within biodiversity research that is in dire need of a revolutionary mechanism to provide a readily available and convenient hub that allows a researcher to access all related data via multi-directional links interconnecting various and standardised databases, in accordance with the Web 2.0 principles.
As the first step in that direction, in 2019, we launched the OpenBiodiv Knowledge Graph, which began to collate various types of biodiversity data as extracted from semantically enhanced articles published by Pensoft and taxonomic treatments harvested by Plazi.
Since then, the OpenBiodiv Knowledge Graph has evolved into the Open Biodiversity Knowledgement Management System (OBKMS), which also comprises a Linked Open Dataset, an ontology and а website. Our work on the OBKMS continues to this day, fueled by just as much enthusiasm as in those early days in 2019.
By 2020, a number of factors and issues that had long persisted within scholarly publishing and academia had already triggered the emergence of multiple preprint servers. Yet, the onset of the unprecedented for our age COVID-19 pandemic, seemed like the final straw that made everyone realise we needed to start uncovering early scientific work, and we needed to do that fast.
At the time, we had already been considering applying the Pensoft approach to preprints. So, we came up with a solution that could seamlessly blend into our existing infrastructure.
Offered as an opt-in service to journals published on the ARPHA Platform, ARPHA Preprints allows for authors to check a box and post their manuscripts as a preprint as they are filling in the submission form at a participating journal.
Learn more about ARPHA Preprints on the ARPHA blog.
2021a: RIO Journal expands into a project-driven knowledge hub
Ever since its launch, RIO had been devised as the ultimate scholarly venue to share the early, intermediate and final results of a research project. While collections at the journal had already been put in good use, we still had what to add, so that we could provide a one-stop place for consortia to permanently store their outputs and make them easily discoverable and accessible long after their project had concluded.
With the upgraded collections, their owners received the oppotunity to also add various research publications – including scholarly articles published elsewhere, author-formatted documents and preprints. In the former case, the article is visualised within the collection at RIO via a link to its original source, while in the latter, it is submitted and published via ARPHA Preprints.
Over the years, we have been partnering with many like-minded innovators and their institutions from across the natural science community. Surely, we hadn’t successfully developed all those technologies and workflows without their invaluable feedback and collaborations.
In 2021, our shared passion and vision about the future of research data availability and usage culminated in the project BiCIKL (abbreviation for Biodiversity Community Integrated Knowledge Library), which was granted funding by the European Commission and will run until April 2024.
Within BiCIKL, our team of 14 European institutions are deploying and improving our own and partnering infrastructures to bridge gaps between each other’s biodiversity data types and classes with the ultimate goal to provide flawless access to data across all stages of the research cycle. By the end of the project, together we will have created the first-of-its-kind Biodiversity Knowledge Hub, where a researcher will be able to retrieve a full set of linked and open biodiversity data.
Naturally, being a coordinator of such a huge endeavour towards revolutionising biodiversity science is a great honour by itself.
For us, though, this project has a special place in our hearts, as it perfectly resonates with the very reason why we are here: publishing and sharing science in the most efficient and user-friendly manner.
Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described by a Maldivian researcher.
Named after the country’s national flower, the species is added to the tree of life as part of the California Academy of Sciences’ global Hope for Reefs initiative
Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described—the scientific process an organism goes through to be recognized as a new species—by a Maldivian researcher.
The new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa), described in the journal ZooKeys, is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.
“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists. This time, it is different and getting to be part of something for the first time has been really exciting, especially having the opportunity to work alongside top ichthyologists on such an elegant and beautiful species,”
says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb.
First collected by researchers in the 1990s, C. finifenmaa was originally thought to be the adult version of a different species, Cirrhilabrus rubrisquamis, which had been described based on a single juvenile specimen from the Chagos Archipelago, an island chain 1,000 kilometers (621 miles) south of the Maldives.
In this new study, however, the researchers took a more detailed look at both adults and juveniles of the multicolored marvel, measuring and counting various features, such as the color of adult males, the height of each spine supporting the fin on the fish’s back and the number of scales found on various body regions. These data, along with genetic analyses, were then compared to the C. rubrisquamis specimen to confirm that C. finifenmaa is indeed a unique species.
Importantly, this revelation greatly reduces the known range of each wrasse, a crucial consideration when setting conservation priorities.
“What we previously thought was one widespread species of fish, is actually two different species, each with a potentially much more restricted distribution. This exemplifies why describing new species, and taxonomy in general, is important for conservation and biodiversity management,”
says lead author and University of Sydney doctoral student Yi-Kai Tea.
Despite only just being described, the researchers say that the Rose-Veiled Fairy Wrasse is already being exploited through the aquarium hobbyist trade.
“Though the species is quite abundant and therefore not currently at a high risk of overexploitation, it’s still unsettling when a fish is already being commercialized before it even has a scientific name. It speaks to how much biodiversity there is still left to be described from coral reef ecosystems,”
says senior author and Academy Curator of Ichthyology Luiz Rocha, PhD, who co-directs the Hope for Reefs initiative.
Last month, Hope for Reefs researchers continued their collaboration with the MMRI by conducting the first surveys of the Maldives’ ‘twilight zone’ reefs—the virtually unexplored coral ecosystems found between 50- to 150-meters (160- to 500-feet) beneath the ocean’s surface—where they found new records of C. finifenmaa along with at least eight potentially new-to-science species yet to be described.
This new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa) became the first Maldivian fish to ever be described by a local researcher. Photo by Yi-Kai Tea.
For the researchers, this kind of international partnership is pivotal to best understand and ensure a regenerative future for the Maldives’ coral reefs.
“Nobody knows these waters better than the Maldivian people. Our research is stronger when it’s done in collaboration with local researchers and divers. I’m excited to continue our relationship with MMRI and the Ministry of Fisheries to learn about and protect the island nation’s reefs together,”
says Rocha says
“Collaborating with organizations such as the Academy helps us build our local capacity to expand knowledge in this field. This is just the start and we are already working together on future projects. Our partnership will help us better understand the unexplored depths of our marine ecosystems and their inhabitants. The more we understand and the more compelling scientific evidence we can gather, the better we can protect them,”
adds Najeeb.
***
Research article:
Tea Y-K, Najeeb A, Rowlett J, Rocha LA (2022) Cirrhilabrus finifenmaa (Teleostei, Labridae), a new species of fairy wrasse from the Maldives, with comments on the taxonomic identity of C. rubrisquamis and C. wakanda. ZooKeys 1088: 65-80. https://doi.org/10.3897/zookeys.1088.78139
In 2001, the famous herpetologist Joseph B. Slowinski died from snakebite by an immature black-and-white banded krait, while leading an expedition team in northern Myanmar. The very krait that caused his death is now confirmed to belong to the same species identified as a new to science venomous snake, following an examination of samples collected between 2016 and 2019 from Yingjiang County, Yunnan Province, China.
The new krait species Bungarus suzhenae. Photo by Dr Li Ding
The researchers decided to name the new species Bungarus suzhenae – Suzhen’s krait, after the mythical figure of Bai Su Zhen (白素贞) – a powerful snake goddess from the traditional Chinese myth ‘Legend of White Snake (白蛇传)’.
The legend says that, after thousands of years of practicing magic power, the white snake Bai Su Zhen transformed herself into a young woman and fell in love with the human man Xu Xian. Together, they ran a hospital, saving lots of human lives with medicine and magic. However, this love between goddess and human was forbidden by the world of the gods and, eventually, Bai Su Zhen was imprisoned in a tower for eternity. Since then, the Chinese regard her as a symbol of true love and good-heartedness.
Illustration of the Legend of the White Snake, by Xin Wang, Chongqing museum of natural history
“The black-and-white banded krait is one of the snakes most similar to the white snake in nature, so we decided to name it after Bai Su Zhen,” say the authors.
In fact, the discovery of Suzhen’s krait was inspired by another accident from 2015, when the Chinese herpetologist Mian Hou was bitten by a black-and-white banded krait in Yingjiang. “It hurt around the wound, and the skin around it turned dark,” said the unfortunate man, who luckily survived.
The skull of Bungarus suzhenae (3d-reconstructed model, by Jingsong Shi)
The authors of the present study realized that the bite was different from those of the many-banded krait B. multicinctus, which go without clear symptoms or pain around the wound. This clue eventually led to the discovery of Suzhen’s krait.
Because kraits are highly lethal, understanding their species diversity and geographic distribution is vital for saving human lives. Thanks to adequate description and classification of deadly snakes, research on venom, antivenom development and proper snakebite treatment can advance more rapidly.
The new study makes it easier to distinguish between krait species from China and adjacent southeastern Asia. “Three species of the black-and-white banded kraits from China were previously put under the same name – many-banded krait, which would hinder appropriate medical treatment,” the authors point out. Additionally, they suggest that antivenom for the many-banded krait be reevaluated accordingly.
Happy Taxonomist Appreciation Day! On this day dedicated to the scientists who name, define and classify all living things, the World Register of Marine Species (WoRMS) also honors discoveries in marine biology by posting a “Top 10” of the marine species discovered throughout the year. The year 2020 saw fascinating discoveries in the world of sea life, and, once more, species first described in Pensoft‘s open-access journal ZooKeys made it to the Top 10!
Deep in the Pacific Ocean, researchers found not one, not two, but four species of iridescent scale worms. They have yet to figure out why these critters shimmer, but the Internet was already calling them ‘Elvis worms’ or ‘glitter worms’, because their scales evoked associations with Elvis’ shiny costumes. One species was even formally named Peinaleopolynoe elvisiin honor of the King of Rock ‘n’ Roll.
These gorgeous creatures are called a scale worm, and scientists found, among other places: ON UNDERWATER VOLCANOES, near scalding hydrothermal vents and around THE BODIES OF DEAD WHALES. These worms = badass. And they're hungry… Study: https://t.co/4T7wfqZiZIpic.twitter.com/FGSqoza9Nm
— Open Ocean Exploration (@RebeccaRHelm) May 13, 2020
It was however one of the other three species, Peinaleopolynoe orphanae, that made it to the Top 10 – because, in the words of the committee, it has “both the most stunning iridescence and the feistiest temperament!”
P.orphanae was first collected from a hydrothermal vent in the Gulf of California at a depth of 3700 m and named after geobiologist Victoria Orphan. The first part of its name, Peinaleopolynoe, comes from a Greek word for hungry, in reference to the attraction of these worms to food falls.
Surprisingly, Peinaleopolynoe orphanae engage in fights between each other before the eyes of the researchers! In what has never been seen in scale worms before, the scientists recorded a “face-off”, where two individuals kept attacking one another back and forth for several minutes.
The Red Pipefish, Master of Disguise
The Red Wide-Bodied Pipefish (Stigmatopora harastii) dwells in New South Wales, Australia, at 10-25 m depth, and is so good at camouflage that you might have a hard time spotting it even when you’re looking straight at it. It was first reported by underwater photographers in Jervis Bay in 2002, but was only described as a new species in 2020 by scientists from the Australian Museum, California Academy of Sciences, Burke Museum, and the University of British Columbia.
This curious new fish associates with red algae or finger sponges, which allows it to stay hidden in plain sight. It is colored bright red, but curiously that only helps it to go unnoticed. Oriented vertically or at an angle, it camouflages itself among the red algae. Virtually indistinguishable from its surroundings, it only occasionally darts out of its cozy cover to munch on small copepods and shrimp.
Stigmatopora harastii
Stigmatopora harastii was named after David Harasti, one of the first people to recognize it as a new species and a pronounced fan of the Stigmatopora genus. According to the research paper, “David has stated he counts green pipefish to fall asleep.” We don’t know how he feels about red pipefish, but this one charms with both looks and skills, so we hope it becomes one of his favorites.
Stigmatopora harastii
Researchers believe the red pipefish might have a wider distribution in New South Wales and possibly New Zealand – it can be very hard to detect because of its preferred depth range and its remarkable camouflaging ability.
The 10 remarkable new marine species from 2020 listed by WoRMS are a celebration of all wonderful and sometimes even quite weird creatures that dwell in the sea, and a reminder of how important it is to explore and protect marine life. Here’s to another year of fun little creatures and amazing scientific discoveries!
Phoneutria boliviensis in the Peruvian Amazon Photo by N. Hazzi
Spiders from the genus Phoneutria – also known as banana spiders – are considered aggressive and among the most venomous spiders in the world, with venom that has a neurotoxic action. These large nocturnal spiders usually inhabit environments disturbed by humans and are often found in banana plantations in the Neotropical region.
One of these spiders, P. boliviensis, is a medically important species widely distributed in Central and South America, whose behaviour, habitat, venom composition, toxicity and bites on humans have already been paid considerable attention in previous research work. Nevertheless, after examining a large pool of museum specimens, biologists from The George Washington University (N. Hazzi and G. Hormiga) began to wonder if samples named P. boliviensis were actually belonging to one and the same species.
Everything started when N. Hazzi was examining specimens of banana spiders identified in the past by experts as P. boliviensis. The research team quickly realized that the morphological features currently used to identify this species were not sufficient. Then, they discovered two well-defined morphological groups of P. boliviensis that were separated by the Andean mountain range, a geographic barrier that separates many other species.
To prove that these two “forms” were different species, the authors conducted fieldwork in the Amazon, Andes, and Central America, collecting specimens of these venomous spiders to explore if the genomic signal also suggests two species. They discovered that genetic differences separating these two forms were similar compared to the genetic differences separating other recognized species of banana spiders. Using morphological, genomic and geographic distribution data, the authors concluded that P.boliviensis represents not a single species, but two different ones. They uncovered that the true P. boliviensis was only found in the Amazonian region, and the second species, P. depilata (an old name revalidated by the research team), was found in the Andes, Chocó and Caribbean regions. Their findings are published in the open-access, peer-reviewed journal ZooKeys.
To obtain more distribution records for these species, the research team used the citizen science platform iNaturalist. Since the two species are among the few spiders that can be identified using only images, the platform turned out to be a very helpful tool. Data submitted by the iNaturalist community helped identify where the two species of Phoneutria are found. Curiously enough, for these two species, iNaturalist presented higher and more widely distributed records than the scientists’ own database.
“To our knowledge, this is the first study that has used iNaturalist to gather occurrence records on venomous species to estimate distribution models,”
the researchers say.
This is how the two spiders can be distinguished using only photographs: P. boliviensis has two lateral white-yellow bands in the anterior area of the carapace, while P. depilata has four series of yellow dots in the ventral side of the abdomen. In addition, for P. depilata’s identification, information is needed on where the image was taken, because this is the only species of Phoneutria found in the Andes, Chocó, and Central America. However, the most reliable approach to identify these species requires examination under a stereomicroscope.
Interestingly, P. depilata has been mislabeled as P. boliviensis throughout many studies, including works on venom composition and toxicity, ecology, geographic distribution, and human epidemiology of bites. There have been human bite records of this species reported in Costa Rica and in banana plantations in Colombia, most of them with mild to moderate envenomation symptoms. Except for brief anecdotal mentions by field explorers in the Amazon, little is known about P.depilata.
Genetic evolutionary tree of the banana spiders genus Phoneutria Photo by N.Hazzi
The study provides detailed diagnoses with images to distinguish both species and distribution maps.
“This valuable information will help identify risk areas of accidental bites and assist health professionals in determining the identity of the species involved, especially for P. depilata. This is a significant discovery that will affect studies about toxicology, opening new opportunities to compare the venom composition and the effect of these two species,” the authors conclude.
Research article:
Hazzi NA, Hormiga G (2021) Morphological and molecular evidence support the taxonomic separation of the medically important Neotropical spiders Phoneutria depilata (Strand, 1909) and P. boliviensis (F.O. Pickard-Cambridge, 1897) (Araneae, Ctenidae). ZooKeys 1022: 13-50. https://doi.org/10.3897/zookeys.1022.60571
With the 1,000th ZooKeys issue now hot off the press, the time has come to celebrate the millennium of Pensoft’s very first scientific journal: ZooKeys!
With the 1,000thZooKeys issue now hot off the press, the time has come to celebrate the millennium of Pensoft’s very first scientific journal: ZooKeys!
In fact, the cause for celebration is two-fold: this year, it’s also the 10th anniversary of ZooKeys’ very special 50th issue, which marked a new era for biodiversity data publishing by introducing several innovative workflows and tools. This is when ZooKeys became an example to follow globally: a title the journal still takes pride to be holding to this day.
Articles published in ZooKeys since the journal’s launch in 2008 (data from 3/12/2020).
Today, we shall reminisce about everything along the way: from that sunny Californian morning at the Entomological Society of America meeting in 2007, where the idea about a new-age taxonomic journal in zoology sprang up in a breakfast chat between renowned entomologists and future founders of ZooKeys: Prof Lyubomir Penev and Dr Terry Erwin, to this very moment, where we’re counting over 5,500 published articles, authored by more than 8,000 researchers from 144 countries and comprising ~150,000 pages. Thus, we saw the description of one supertribe, seven tribes, five subtribes, 27 families, over 800 genera and more than 12,000 species previously unknown to science. In this journey, ZooKeys climbed up the ladder of academic rigour and trustability to become today’s most prolific open-access journal of zoology.
Even though today is the time to feel exalted and look back on our achievements and conquered milestones with ear-to-ear smiles, it is with heavy hearts that we’ll be raising our glasses tonight, as we won’t be joined by our beloved friend and founding Editor-in-Chief, Dr Terry Erwin, whom we lost on 11th May 2020. While his place in our hearts and ZooKeys’ Editorial board will never be filled, we accept our duty to help for his legacy to persist for the future generations of scientists by taking a vow to never lower our standards or cease to improve our services and care for our readers, authors, reviewers and editors alike.
In honour of Terry, who will be remembered for his splendid personality and zealous enthusiasm for carabid beetles and the world’s immense biodiversity, we’ve opened up a special memorial volume to be published on 11th May 2021.
In fact, we have thousands of people to thank for the place ZooKeys is at right now: these are our authors, who have trusted us with their research work time and time again; our reviewers and editors, who have taken their invaluable time to promptly process submitted manuscripts; and, of course, our readers, who are using ZooKeys content to expand the world’s knowledge, either by learning and building on the findings in their own research, or by spreading the knowledge to those who will.
With a thought for our authors & readers
We’ve been striving to implement the latest and most convenient scholarly publishing technologies and innovations, and also develop some of our own to make sure that ZooKeys users enjoy their experience with our flagship journal.
In hindsight, ZooKeys was the first journal to pioneer a lot of scholarly publishing technologies, which back in the time were quite revolutionary. Notable examples from 2008-2016 include:
Semantic tagging and enhancements of taxonomic articles, in order to provide extensive background information about each taxon mentioned in a paper at a click.
Automated export of species descriptions and other taxon treatments to data aggregators (e.g. EOL, Plazi, Species ID) on the day of publication;
Software tool to automate the mandatory registration of all new taxa in ZooBank.
Yet, this was only the beginning. Fast forward to December 2020, we’re working even harder to build up on our achievements and evolve, so that we stay on top of our game and the scholarly publishing scene. Here are the key innovations we recently implemented in ZooKeys:
Routine data auditing for each submitted data paper, in order to ensure that datasets described in ZooKeys are using data that are FAIR: Findable, Accessible, Interoperable and Reusable;
A standard appendix template for primary biodiversity data to provide direct harvesting and conversion to interlinked FAIR data, thus enabling a convenient link between various data items concerning, for example, a single species, regardless of those items’ locations. The approach was recently piloted in ZooKeys, where a free-to-publish special issue on the biology of bats and pangolins is meant to demonstrate how such linked biodiversity data can help identify important biotic interactions;
The Pensoft Annotator, which matches free text to ontological terms for the use of biodiversity research.
With a thought for our editors
Besides revolutionising research publishing, at Pensoft, we’re also deeply devoted to facilitating our editors in their day-to-day editorial work, as well as their long-term engagement with the journal and its progress.
Recently, we expanded journal performance reporting services, in order to keep our editors on track with the most recent trends in their journal’s performance. Meanwhile, we’ve also taken care after the continuous improvement in those stats by implementing several features meant to facilitate and expedite the handling of manuscripts.
Follow ARPHA’s blog to keep up with the new features available to users of Pensoft’s journals and all journals hosted on ARPHA Platform.
With a thought for the community
Naturally, research outputs are only as valuable to publish as they are valuable to the community: within and beyond academia. Ultimately, their merit is best measured by citations and readership. This is why, we shall now have a look back at the most impactful papers published in ZooKeys to date.
Author’s delight
Thanks to the indexation of ZooKeys in the research citation database of Dimensions, following the collaboration between ARPHA and Digital Science, which started in 2018, we’re now able to explore the all-time most cited publications in our flagship journal. Detailed information and links to the papers where each of those studies has been cited is available on the webpage of the article.
Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool (DOI: 10.3897/zookeys.150.2109)
Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication (DOI: 10.3897/zookeys.219.3944)
Forty years of carabid beetle research in Europe – from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation (DOI: 10.3897/zookeys.100.1523)
Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions (DOI: 10.3897/zookeys.100.1533)
Reader’s delight
Thanks to ARPHA Platform’s all-roundedness and transparency, we get to explore the most read papers ever published in ZooKeys straight from the Articles section on the journal’s website.
Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito (DOI: 10.3897/zookeys.324.5827)
In 2013, ZooKeys had the honour to announce the first carnivore found in the Western Hemisphere in over three decades. Further, that wasn’t ANY carnivore, but the olinguito, which National Geographic rightfully called a “fuzzy fog-dweller with a face like a teddy bear”.
An extraordinary new family of spiders from caves in the Pacific Northwest (Araneae, Trogloraptoridae) (DOI: 10.3897/zookeys.215.3547)
A year prior to the description of the olinguito, a brand new family of “cave robbing” spiders emerged from the pages of ZooKeys, after US scientists found a previously unknown to science spider with “unique, toothed claws at the end of each leg” in Oregon.
A huge, first-of-its-kind catalogue containing data on all family-group names for all known extant and fossil beetles (order Coleoptera) was published in ZooKeys in an exemplary research collaboration, spanning three continents in 2011.
Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae) (DOI: 10.3897/zookeys.646.11411)
In a truly world-wide sensation, a new species of tiny moth inhabiting a narrow stretch of extremely fragile habitat running between the USA and Mexico, was named after then President-elect Donald Trump in a desperate call to protect this and other similarly vulnerable ecosystems in North America. The species currently goes by the name Neopalpa donaldtrumpi.
Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States (DOI: 10.3897/zookeys.560.6264)
In 2016, US scientists described a total of 14 new to science tarantula species from what many would think to be one the best-researched countries: the United States of America. Curiously enough, one of those tarantula species, found in California near Folsom Prison – a place best known from Cash’s song “Folsom Prison Blues”, was aptly named Aphonopelmajohnnycashi.
Public’s delight
As visionaries, we’ve long realised that scientific impact goes beyond citations and journal subscribers. Communicating science to the community beyond academia is, in fact, one of the strongest components in research dissemination, as it lets the laypeople make sense of the wider world and where exactly they stand in the bigger picture. This is why we’ve been putting that special extra effort to promote research published in our journals–including ZooKeys–using press releases, blog posts and social media content (follow ZooKeys on Twitter and Facebook).
Thanks to our partnership with Altmetric, we’re able to identify the top five most popular papers from ZooKeys for all times. These are the ones that have sparkled the most online discussions via social media, big news headlines, blog posts, Wikipedia and more.
Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae) (DOI: 10.3897/zookeys.646.11411)
Not only was the previously undescribed species of moth subject to a serious threat of extinction, having been exclusively known from a fragmented area along the Mexico–United States border, but the insect’s “hairstyle” was pointed out to bear a striking resemblance to the golden locks of the 45th U.S. President Donald Trump.
Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco (DOI: 10.3897/zookeys.928.47517)
Published in ZooKeys earlier this year, this extensive geology and paleontology monograph presents an unprecedented in its volume and scientific value account of a large portion of the most important prehistoric vertebrate fossils ever unearthed from the famous Kem Kem beds in Morocco. “A monograph larger than Paralititan,” as a Reddit user justly pointed out.
Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States (DOI: 10.3897/zookeys.560.6264)
On top of taking pride in becoming the discoverer of as many as 14 tarantula species living “right under our noses” in the US, Dr Chris Hamilton enjoyed the spotlight of Live television in his appearance on Sky News. So did a lucky specimen of the newly described species: Aphonopelma johnnycashi! Suffice it to say, the tarantula was named after the legendary American singer-songwriter for all the right reasons.
Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group (DOI: 10.3897/zookeys.751.22661)
Apparently, ants that rip their bodies apart in a self-sacrificial attempt to save their colonies from enemies, weren’t something new by the time PhD student Alice Laciny and her team described the new to science species Colobopsis explodens from Brunei. However, the study published in ZooKeys in 2018 was the first to conduct and film experiments on the peculiar exploding behaviour. Although not the very first for science, C. explodens was the first “T-ant-T” species to be described since 1935.
Mapping the expansion of coyotes (Canis latrans) across North and Central America (DOI: 10.3897/zookeys.759.15149)
Today, coyotes live all around North America: from Alaska to Panama, California to Maine. Once upon a time, or rather, between the Holocene and the early 1900s, their range used to be restricted to the arid west of North America. So, how did the coyotes turn up at the doorstep of South America? North Carolina scientists reached to natural history collections to map the historic colonisation of the coyotes all the way to our days.
In our final remarks on this special occasion, it’s the time to say a special Thank you! to our most prolific authors:
Dr Shuqiang Li, expert on spider taxonomy and systematics at the Chinese Academy of Sciences, who’s also a reviewer and a subject editor at ZooKeys (64 publications).
Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, who is also amongst the top five most active reviewers and the three most active subject editors in ZooKeys (59 publications).
Dr Li-Zhen Li, coleopterist at Shanghai Normal University (57 publications).
Dr Reginald Webster, coleopterist at Natural Resources Canada and a reviewer at ZooKeys (57 publications).
Dr Sergei Golovatch, myriapodologist at the Russian Academy of Sciences, and a reviewer and a subject editor at ZooKeys (53 publications).
Dr Yuri Marusik, arachnologist at the Russian Academy of Sciences and the University of Free State, Magadan, South Africa. He is also a subject editor at ZooKeys.
Dr Donald Lafontaine, entomologist at the Canadian National Collection of Insects, Arachnids, and Nematodes and Agriculture and Agri-Food Canada. He is also a subject editor at ZooKeys.
Dr Ivan H. Tuf, ecologist at Palacký University (Czech Republic) and a subject editor at ZooKeys.
Dr Viatcheslav Ivanenko, taxonomist at the Lomonosov Moscow State University.
Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, and also one of the most productive authors and most active subject editors at ZooKeys.
Prof Pavel Stoev, taxonomist, ecologist, and director at the National Natural History Museum (Bulgaria), and managing editor at ZooKeys.
Prof Lyubomir Penev, entomologist, ecologist at the Bulgarian Academy of Sciences and founder of ZooKeys.
Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, and also one of the most productive authors and most active reviewers at ZooKeys.
Dr Nina Bogutskaya, hydrobiologist and ichthyologist at the Museum of Natural History Vienna, and also a reviewer at ZooKeys.
Dr Jeremy Miller, taxonomist and arachnologist at the Naturalis Biodiversity Center (Netherlands), and also a reviewer at ZooKeys.
Looking forward to sharing with you our next milestones and celebrations!
Meanwhile, make sure to follow ZooKeys on Twitter and Facebook to stay in touch!
“We thought that it was a good idea to remember this extraordinary year through the name of one remarkable species of Darwin wasp found in seven Mexican States (including Tamaulipas, where the UAT campus is located) and also Guatemala,” comment the researchers who discovered the previously unknown species.
Scientists at the Autonomous University of Tamaulipas (UAT) in Mexico recently discovered five new species of parasitoid wasps in Mexico, but the name of one of them sounds a bit weird: covida. Why this name?
In fact, the reason is quite simple. The thing is that the team of Andrey Khalaim (also a researcher at the Zoological Institute of Russian Academy of Sciences in Saint Petersburg, Russia) and Enrique Ruíz Cancino discovered the new to science species during the 2020 global quarantine period, imposed due to the COVID-19 pandemic. Their findings are described in a newly published research article, in the peer-reviewed, open-access scientific journal ZooKeys.
“We thought that it was a good idea to remember this extraordinary year through the name of one remarkable species of Darwin wasp found in seven Mexican States (including Tamaulipas, where the UAT campus is located) and also Guatemala,”
explain the scientists.
The new species, which goes by the official scientific name Stethantyx covida, belongs to the Darwin wasp family Ichneumonidae, one of the most species-rich insect families, which comprises more than 25,000 species worldwide.
“Darwin wasps are abundant and well-known almost everywhere in the world because of their beauty, gracility, and because they are used in biological control of insect pests in orchards and forests. Many Darwin wasp species attack the larvae or pupae of butterflies and moths. Yet, some species are particularly interesting, as their larvae feed on spider eggs and others, even more bizarre, develop on living spiders!”
further explain the authors of the new study.
Stethantyx covida is a small wasp that measures merely 3.5 mm in length. It is predominantly dark in colour, whereas parts of its body and legs are yellow or brown. It is highly polished and shining, and the ovipositor of the female is very long and slender.Along with Stethantyx covida, the authors also described four other Mexican species of Darwin wasps from three different genera (Stethantyx, Meggoleus, Phradis), all belonging to the subfamily Tersilochinae. Some tersilochines are common on flowers in springtime. While the majority of them are parasitoids of larvae of various beetles, some Mexican species attack sawflies, inhabiting the forests.
***
Original source:
Khalaim AI, Ruíz-Cancino E (2020) Contribution to the taxonomy of Mexican Tersilochinae (Hymenoptera, Ichneumonidae), with descriptions of five new species. ZooKeys 974: 1-21. https://doi.org/10.3897/zookeys.974.54536