Hidden in plain sight: snake named 46 years after first discovery

Although it had been documented and studied for years, it took molecular analyses to confirm that the snake was in fact a species new to science.

A new species of snake was described from western Panama. First documented in 1977 by Dr. Charles Myers, a scientist studying amphibians and reptiles throughout Panama, it was only now that it got a scientific description.

The new snake has been given the name Dipsas aparatiritos. The genus Dipsas includes the snailsuckers, a unique group of snakes that feed on soft-bodied prey including snails extracted from their shells, slugs, and earthworms. The species epithet “aparatiritos” is Greek for unnoticed: a reference to the fact that the snake had remained hidden in plain sight for over forty years at a very well-studied field site.

A snail-eating snake.
Live individual of Dipsas aparatiritos in Parque Nacional General de División Omar Torrijos Herrera photographed in the wild. Photo by Kevin Enge

Scientists Dr. Julie Ray, University of Nevada – Reno, Paola Sánchez-Martínez, Abel Batista, Daniel G. Mulcahy, Coleman M. Sheehy III, Eric N. Smith, R. Alexander Pyron and Alejandro Arteaga, have described the new species in a paper published in the open-access journal ZooKeys.

Dipsas aparatiritos has the characteristic bulbous head and brown-and-black patterning of many of the snakes in the genus. It looks very similar to its closest known relative, Dipsas temporalis, which is also found in Panama. It is now known that D. aparatiritos is endemic to, or known only from, the western and central parts of the country.

The Hidden Snail-eating Snake, Dipsas aparatiritos. Photo by Dr. Julie M. Ray

Panama has a rich diversity of snakes, with over 150 documented species in a country the size of Ireland or the U.S. state of South Carolina. Dr. Ray has documented over 55 species of snakes in Parque Nacional General de División Omar Torrijos Herrera where the newly described snake is best studied, and over 80 species in Coclé Province in Central Panama. She published a field guide, Snakes of Panama, in 2017.

Four individuals of Dipsas aparatiritos intertwined on one plant at Parque Nacional General de División Omar Torrijos Herrera. Photo by Noah Carl

Co-author of the species description Dr. Alex Pyron, The George Washington University, visited Parque Nacional General de División Omar Torrijos Herrera in June 2013 with Dr. Frank Burbrink, American Museum of Natural History. “That was my first trip to Central America,” he says. “We were able to see the after-effects of the amphibian declines. But I was struck by the diversity and abundance of snakes that were still present, including this species of snail-eater we have just described, the rare Geophis bellus [a small leaf litter snake known from just one specimen prior to this discovery] and an unusual Coralsnake.”

Despite being a new species, Dipsas aparatiritos is relatively common in Parque Nacional General de División Omar Torrijos Herrera and has been studied for years before it was described. Dr. Ray has published a paper about the diet of snail-eating snakes, where it was found that earthworms from bromeliads compose a large portion of the diet of Dipsas aparatiritos. She also co-authored a paper on trophic cascades following amphibian declines, where it was found that Dipsas aparatiritos actually was increasing in numbers due to a diet independent of amphibians.

The Hidden Snail-eating Snake, Dipsas aparatiritos. Photo by Dr. Julie M. Ray

Dipsas aparatiritos is already considered Near Threatened based on IUCN Red List standards. The snake is endemic to Panama and comes from a limited range in the cloud forests of mid-elevation, where at least 44% of the overall range has been deforested. In addition, as snakes are constantly persecuted by humans, almost all snake species are in danger of extinction in the near future. Efforts must be made to conserve these rare species, the researchers believe, especially as so many are just being described now.

 “This work was a true collaboration of scientists from different countries each contributing their expertise to thoroughly understand this new species, morphologically and molecularly,” said Dr. Ray.

“We are in an exciting time in science. Naturalists and scientists must continue to document the natural world; there are many species out there yet to be found and described. The usage of molecular techniques is exciting and facilitates the confirmation of so many new species.”

Research article:

Ray JM, Sánchez-Martínez P, Batista A, Mulcahy DG, Sheehy III CM, Smith EN, Pyron RA, Arteaga A (2023) A new species of Dipsas (Serpentes, Dipsadidae) from central Panama. ZooKeys 1145: 131-167. https://doi.org/10.3897/zookeys.1145.96616

Interview with SAGE 2022 awardee Camila G. Meneses

The PhD student at University of Kansas shares about her work on the amphibians and reptiles of the Philippenes that earned her the Best Poster Award at SAGE 2022

A  specimen  of  Pseudogekko  isapa with  tail  autotomized.
Photo by Camila G Meneses.

In August 2022, Pensoft Publishers joined the 4th International Conference on Southeast Asian Gateway Evolution (SAGE 2022) in Manila, the Philippines. As a sponsor of the conference, we gave Best Talk and Best Poster awards at the event, providing a complimentary publication in a Pensoft-published journal of their choice to each of the winners. 

A month later, we are happy to present you the first claimed prize. Titled Amphibian and reptile diversity along a ridge-to-reef elevational gradient on a small isolated oceanic island of the central Philippines”, this Annotated List of Species paper, authored by scientists at the University of Kansas, University of Oklahoma and University of the Philippines Los Banos, and published in the Check List journal, reports on the herpetofauna of Mount Guiting-Guiting Natural Park, located in the so far understudied Sibuyan Island in the Philippines. In their study, the team recorded a total of 47 species of amphibians and reptiles, including 14 new island records and one atypical occurrence of a snake species recorded for the first time from a high elevation.

Now, the first author of the study, PhD student Camila G. Meneses (University of Kansas), who was awarded at SAGE 2022 for her poster: “A New Species of Fringed Forest Gecko, Genus Luperosaurus (Squamata: Gekkonidae), from Sibuyan Island, Central Philippines” joins us for an interview, sharing some further insights into her research and recent publication.

Congratulations for your Best Poster award at SAGE 2022! Can you introduce the topic of your poster to our readers? How does it fit in the broader context of your research?

The poster is entitled “A New Species of Fringed Forest Gecko, Genus Luperosaurus (Squamata: Gekkonidae), from Sibuyan Island, Central Philippines”. We are currently describing a new species of one of the rarest endemic Philippine lizards which corresponds to the Sibuyan Island population in central Philippines.

It is a poorly understood Southeast Asian and Southwest Pacific genus Luperosaurus, known popularly as fringed geckos, wolf geckos, or flap-legged geckos, and is documented here for the first time.

In the context of my research, visualizing historical, dry land connections that were once shared among modern islands has been crucial for understanding the distribution of biodiversity in the Philippines, an archipelago in which sea level oscillations during the Pleistocene undoubtedly influenced the assembly of regionalized floras and faunas. Sibuyan Island, separated by deep-water channels from neighboring landmasses, harbors distinct communities of amphibians and reptiles, many of which are island endemics.   

Happy to see your Annotated List of Species for amphibians and reptiles from the central Philippines, which just got published in the open-access journal Check List. Can you tell us a bit more about the biodiversity of the region and what made you and your co-authors choose it for your survey?

Centers of ende­mism in the Philippine archipelago coincide with the physi­ography of the greater Pleistocene Aggregate Islands Complexes (PAICs) of Luzon, Palawan, Negros-Panay (West Visayan islands), Mindoro, Mindanao, and the Sulu Archipelago during Pliocene and Pleistocene sea level regressions according to Inger (1954) and Voris ( 2000). However, until relatively recently, little attention was paid to fully inventorying smaller islands like those in central Romblon Province. The province is not only known for its beautiful landscapes but also the seascape.

Sibuyan was identified as a focal site for this study because of its unique complex ecosystem with notable geologic history that contributed to its high endemism—oceanic origin, geographic isolation, elevational relief, and relatively intact forests. In addi­tion, Sibuyan Island presents biogeographically com­pelling questions relating to the colonization history of organisms that could only have arrived on Sibuyan by dispersing over water . 

We also considered that a comprehensive characterization of the diversity and distribution of amphibians and reptiles of Mount Guiting-Guiting would be highly desirable on the part of the local government, specifically the Protected Management Board and the regional Department of Environment and Natural Resources (Region IV-B) for future management planning. The additional informa­tion and data will strengthen their existing conservation programs, ideally by engaging local communities, wild­life managers, ecotourists, and university researchers in Romblon Province. 

What are some of the unique or unexpected challenges you encounter in doing biogeographic research? How do you tackle them?

This is my first co-led (with the late young mammalogist, James Alvarez) big expedition in the country. The most challenging aspects for us as students this time are getting funding to do ridge to reef sampling for each season (wet and dry season), the inaccessibility of the area, and the unexpected natural calamities when we are at the peak of the mountain.

Biodiversity conservation efforts often depend on cooperation with non-experts in the field and wider support within the local community. What is the most important message that you hope your research helps transmit to the general audience?

Our knowledge of the endemic species diversity in these islands is still incomplete. It is of crucial importance to continue long-term, repeated biodiversity survey efforts that utilize a multifaceted approach and integration of an independent data stream for the understanding of small islands’ species community composition. 

We encourage the conservation of  the island’s seascape and landscape (one of the well-known tourist spots in the country), and we highly encourage interested students in nearby universities to continue studying the richly biodiverse areas in the province.

Finding excitement in your work is one of the great gifts of doing what you are passionate about. What brings you the most excitement?

For me, gradually getting answers for your own questions and making new discoveries are exciting, but of course the outstanding scenery, journey, experiences, skill sets being developed, and the stories we come to create during each expedition are priceless.

Did you happen to encounter your favorite species during the field surveys in Mount Guiting-Guiting Natural Park?

Honestly, when I am studying the diversity of amphibians and reptiles of Mt. Guiting-Guiting Natural Park, I consider every species that we collect my favorite.

Each survey site brings new knowledge (i.e., new elevation site recording, morphological variation, new distribution records, varied habitat type preferences of secretive species, etc). There are observations that have not been documented for some species in previous studies (even going back over 50 years ago in Brown and Alcala field collection, or more recently in the 2012 study by Siler et al.). This is especially the case for secretive RIG island endemics of amphibian and reptile species.

However, there are three species I can definitely say are my favorites — Brachymeles dalawangdaliri, Pseudogekko isapa, and the undescribed species of Fringed Forest Gecko These are very rare and secretive species of Philippine endemic lizards that can be found, we assumed, on Romblon Island Group and nowhere else in the world. Hence, the new collections are, we can say, very highly significant.

The first two have very few museum specimens, but we were lucky enough to document and collect enough samples to redescribe both species in terms of their morphological variations and know their first ever phylogenetic placement in relation to its related congeners (see Meneses et al. 2020). The third one is our new discovery of the Fringed-forest Gecko.

Three new species of ground snakes discovered under graveyards and churches in Ecuador

The new snakes, which are small and cylindrical, were named in honor of institutions or people supporting the exploration of remote cloud forests in the tropics.

A group of scientists led by Alejandro Arteaga, grantee of The Explorers Club Discovery Expeditions and researcher at Khamai Foundation, discovered three new cryptozoic (living underground) snakes hidden under graveyards and churches in remote towns in the Andes of Ecuador. The discovery was made official in a study published in the journal ZooKeys. The new snakes, which are small, cylindrical, and rather archaic-looking, were named in honor of institutions or people supporting the exploration and conservation of remote cloud forests in the tropics.

Atractus michaelsabini was found hidden besides a church in the Andean town Guanazán, El Oro province, Ecuador. Photo by Amanda Quezada

Believe or not, graveyards are also land of the living. In the Andes of Ecuador, they are inhabited by a fossorial group of snakes belonging to the genus Atractus. These ground snakes are the most species-rich snake genus in the world (there are now 150 species known globally), but few people have seen one or even heard about their existence. This is probably because these serpents are shy and generally rare, and they remain hidden throughout most of their lives. Additionally, most of them inhabit remote cloud forests and live buried underground or in deep crevices. In this particular case, however, the new ground snakes where found living among crypts.

General view of a graveyard in Amaluza, Azuay province, Ecuador. Photo by Alejandro Arteaga

The discovery of the three new species took place rather fortuitously and in places where one would probably not expect to find these animals. The Discovery Ground Snake (Atractus discovery) was found hidden underground in a small graveyard in a remote cloud forest town in southeastern Ecuador, whereas the two other new species were found besides an old church and in a small school. All of this seems to suggest that, at least in the Andes, new species of snakes might be lurking just around the corner.

Unfortunately, the coexistence of ground snakes and villagers in the same town is generally bad news for the snakes. The study by Arteaga reports that the majority of the native habitat of the new snakes has already been destroyed. As a result of the retreating forest line, the ground snakes find themselves in the need to take refuge in spaces used by humans (both dead and alive), where they are usually killed on sight.

Atractus zgap. Photo by Alejandro Artaga.

Diego Piñán, a teacher of the town where one of the new reptiles was found, says: “when I first arrived at El Chaco in 2013, I used to see many dead snakes on the road; others where hit by machetes or with stones. Now, after years of talking about the importance of snakes, both kids and their parents, while still wary of snakes, now appreciate them and protect them.” Fortunately, Diego never threw away the dead snakes he found: he preserved them in alcohol-filled jars and these were later used by Arteaga to describe the species as new to science.

A jar full of Atractus snakes. Photo by Alejandro Arteaga

In addition to teaching about the importance of snakes, the process of naming species is important to create awareness about the existence of a new animal and its risk of extinction. In this particular case, two of the new snakes are considered to be facing a high risk of extinction in the near future.

The discovery process also provides an opportunity to recognize and honor the work of the people and institutions fighting to protect wildlife.

Alejandro Arteaga examines the holotype of Atractus discovery. He had to examine hundreds museum specimens before confirming the new species as such. Photo by David Jácome

Atractus discovery was named to honor The Explorers Club Discovery Expedition Grants initiative, a program seeking to foster scientific understanding for the betterment of humanity and all life on Earth and beyond. The grant program supports researchers and explorers from around the world in their quest to mitigate climate change, prevent the extinction of species and cultures, and ensure the health of the Earth and its inhabitants.

Atractus zgap. Photo by Alejandro Arteaga

Atractus zgap was named in honor of the Zoological Society for the Conservation of Species and Populations (ZGAP), a program seeking to conserve unknown but highly endangered species and their natural habitats throughout the world. The ZGAP grant program supports the fieldwork of young scientists who are eager to implement and start conservation projects in their home countries.

Atractus discovery. Photo by Alejandro Arteaga

Atractus michaelsabini was named in honor of a young nature lover, Michael Sabin, grandson of American philanthropist and conservationist Andrew “Andy” Sabin. Through the conservation organization Re:wild, the Sabin family has supported field research of threatened reptiles and has protected thousands of acres of critical habitat throughout the world.

“Naming species is at the core of biology”, says Dr. Juan M. Guayasamin, co-author of the study and a professor at Universidad San Francisco de Quito. “Not a single study is really complete if it is not attached to the name of the species, and most species that share the planet with us are not described.”

“The discovery of these new snakes is only the first step towards a much larger conservation project,” says Arteaga. “Now, thanks to the encouragement of ZGAP, we have already started the process of establishing a nature reserve to protect the ground snakes. This action would not have been possible without first unveiling the existence of these unique and cryptic reptiles, even if it meant momentarily disturbing the peace of the dead in the graveyard where the lived.”

Research article:

Arteaga A, Quezada A, Vieira J, Guayasamin JM (2022) Leaving no stone unturned: three additional new species of Atractus ground snakes (Serpentes, Colubridae) from Ecuador discovered using a biogeographical approach. ZooKeys 1121: 175-210. https://doi.org/10.3897/zookeys.1121.89539

Follow ZooKeys on Twitter and Facebook.

Celebrating World Lizard day with amazing discoveries

This August 14, we’re looking back to the most impressive lizard discoveries we’ve witnessed throughout the years.

World Lizard Day is a great way to raise awareness of these curious reptiles and their conservation needs; it is also a good excuse to look at pretty lizard pictures! Today, we’re doing a bit of both.

At Pensoft, we’ve published many new lizard species, some of them rare and truly fascinating. This August 14, we’re looking back to the most impressive lizard discoveries we’ve witnessed throughout the years.

The Dracula lizard

This beautiful lizard, described in 2018, comes from the Andean slopes of southwestern Colombia and northwestern Ecuador. It inhabits evergreen low montane forests, and is only known from a relatively small territory of approximately 1582 km2. Its prey most often consists of insects, spiders and worms.

Contrary to what you might think, this species was not named after the eponymous vampire count, but rather after some beautiful tropical flowers.

The specific epithet dracula refers to the Dracula Reserve, which is located within the lizard’s distribution and near its type locality. The Reserve protects an area with a high diversity of orchids of the genus Dracula.

Published in ZooKeys.

The tiny chameleon

This lizard friend, known as Brookesia tedi, is less than 3 cm long! It is more than ten times smaller than the longest known chameleon, Furcifer oustaleti. Its size makes it difficult to find, and as a result, challenging to study. Its description, published in 2019, helped resolve a 50-year old identity question.

Living at 1300 m above sea level on the Marojejy massif in northeastern Madagascar, Brookesia tedi lives is brown in colour, its tail and the back of its head grey.

The researchers consider it Vulnerable but worry that improper protection on Marojejy, as well as fires, could rapidly drive the species to becoming Critically Endangered.

Published in Zoosystematics and Evolution.

The charismatic wood lizard

Enyalioides feiruzae is a colourful and highly variable lizard – especially its males, who can have brownish turquoise, gray, or greenish brown backs traced with pale lines. Females, in turn, can be greenish brown or floury brown, with faint dark brown lines on their back, limbs and tail, and spots on the sides. The team behind its discovery spent seven years in the area searching for amphibians and reptiles before describing it.

The species comes from the Tropical Andes, and more specifically – from the Huallaga River basin, an area which is still poorly studied because for a long time it was disturbed by civil wars.

The Feiruz wood lizard was named after another reptile, Feiruz the iguana – “muse and lifelong friend”.

The spotted monitor lizard

Mussau is a small island in northeastern Papua New Guinea. The top predator on it? A lizard.

Varanus semotus has been isolated from related species for an estimated one to two million years, with its closest relatives several hundred kilometers away.

Even so, science discovered it only recently.

The one-meter-long lizard has a black body with yellow and orange markings and a pale yellow tongue, with a turquoise to blue tail. These animals “will eat just about anything they can catch and kill,” study author Valter Weijola told the Washington Post.

As the only large terrestrial generalist predator and scavenger on the island, Varanus semotus may fill an important ecological function, making it of particular conservation concern.

Published in ZooKeys.

The black iguana

What makes Iguana melanoderma so distinct is its black color; in fact, it only gets blacker with age. The species was discovered in Saba and Montserrat islands, the Lesser Antilles (Eastern Caribbean), to which it is endemic.

However, it is threatened by unsustainable harvesting (including pet trade), and competition and hybridization from invasive alien iguanas from South and Central America.

A greater focus on biosecurity, the minimization of hunting, and habitat conservation, would help its conservation, the researchers write in their paper.

In Saba, Iguana melanoderma lives on cliffs, in trees and bushes, in shrublands, and deciduous woodlands. It lives in a foggy and cool environment up to about 500 m a.s.l. and sunbathes as soon as the sun rises.

Published in ZooKeys.

Bonus: Illegal lizard trade might be closer than you think

Dubbed “miniature Godzilla” and “the Holy Grail of Herpetology,” the earless monitor lizard is endemic to Borneo. Legally, it can neither be traded within Indonesia, Malaysia and Brunei, nor exported out of them.

Even so, reptile enthusiasts and unscrupulous traders have long been smuggling small numbers of earless monitor lizards, eventually bringing them to Europe.

A new study reported that accredited zoos have acquired individuals of the protected lizard, without any evidence of legal export.

“Zoos that continue to obtain animals that have been illegally acquired, directly or indirectly, are often fuelling the illegal wildlife trade, supporting organised crime networks and possibly contributing to the decline in some species,” Vincent Nijman, author of the study, told us.

Published in Nature Conservation.

Venomous! New pit viper discovered in Jiuzhaigou National Nature Reserve, China

The discovery was published in the open-access journal ZooKeys as part of a new molecular phylogenetic analysis of the Asian pit vipers.

Jiuzhaigou National Nature Reserve, a World Heritage Site, lies in the transition zone from the eastern edge of the Qinghai-Tibet Plateau to the Sichuan Basin in Sichuan Province, China, and occupies an area of 651 km2. The reserve is covered with well-preserved original forests, and numerous alpine lakes. Beautiful and picturesque, it is home to some rare animals, such as the Giant Panda (Ailuropoda melanoleuca) and Golden Snub-nosed Monkey (Rhinopithecus roxellana).

Landscape in Jiuzhaigou National Park. Photo by Jie Du

The herpetological di­versity, in contrast to the mammals, is relatively low in the area due to the harsh alpine environment. To find out more about it, and to investigate the post-earthquake ecological system in the region, a group of researchers conducted a series of investigations in Jiuzhaigou National Nature Reserve. During their herpetological surveys, they collected some specimens of Gloydius, a genus of venomous pit vipers endemic to Asia, from Zharu Valley.

After running morphological and phylogenetic analyses, the scientists found out that these specimens in fact belonged to a yet-to-be-described species.

Holotype of Gloydius lateralis. Photo by Sheng-chao Shi.

“The new species is morphologically similar, and phylogenetically closely related to G. swild, another recently described species from Heishui, Aba, Sichuan, but differs from it by having larger eyes (related to the head) and a continuous regular brown stripe on each dorsolateral side of the body,” explained the corresponding author, Dr Jingsong Shi.

“Thus, we named it after its unique color pattern: Gloydius lateralis.”

Holotype of Gloydius lateralis. Photo by Sheng-chao Shi

The newly described snake feeds on small mammals, such as mice, and “is active on sunny days by the roadside in a hot, dry valley”, the researchers write in their study, which was published in the open-access scientific journal ZooKeys.

“The discovery of G. lateralis provides new insights into the diversity and the distribution patterns of Asian pit vipers”, they write, suggesting that the formation of the Qinghai-Tibet Plateau might be one of the key factors to the geographical isolation of the alpine pit vipers in southwest China.

Jiuzhaigou National Nature Reserve, where G. lateralis was found, receives millions of tourists every year. “The only known habitat of the new species is Zharu Valley, and it is now under touristic development,” the researchers point out. “Thus, warning signs are still needed to remind visitors to watch out for the venomous pit viper, since this and another pit viper species, Protobothrops jerdo­nii, are often found in grass or bushes on both sides of roads.”

Snakes’ thermoregulation needs make them more prone to vehicle collisions, which is why the research team highlights the necessity to remind drivers to slow down in order to avoid road killings.

Original source:

Zhang M-H, Shi S-C, Li C, Yan P, Wang P, Ding L, Du J, Plenković-Moraj A, Jiang J-P, Shi J-S (2022) Exploring cryptic biodiversity in a world heritage site: a new pitviper (Squamata, Viperidae, Crotalinae) from Jiuzhaigou, Aba, Sichuan, China. ZooKeys 1114: 59–76. https://doi.org/10.3897/zookeys.1114.79709

Lizards go north: Balkan wall lizard population found all the way in the Czech Republic

The northernmost population of the Balkan lizard, recently discovered in the Czech Republic, has proven to be genetically unique and variable.

The Czech Republic is a zoologically well-studied area, and its reptile fauna is not very rich. Therefore, the recent discovery of a new reptile species for the country, the Balkan wall lizard (Podarcis tauricus), came as a big surprise. This lizard inhabits areas of the Central and Western Balkans as far as Crimea, with isolated areas of occurrence in Hungary and northern Romania, so how did it get as far north as the Czech Republic? Fortunately, the genetics in much of the lizard’s range are relatively well-studied. Finding out where lizards from the Czech Republic fit genetically could reveal the origins of this northernmost population.

Podarcis tauricus in the wild – Váté písky near Bzenec, Czech Republic.

An analysis published by Czech herpetologists in the journal Biodiversity Data Journal shows that the lizards from the Czech population are genetically variable; therefore, the population was not established by the introduction of a single gravid female.

Geographical distribution of Podarcis tauricus. The green arrow shows the northernmost known locality (Váté písky, Czech Republic).

The population also has genetic “markers” not yet found elsewhere, although it is clearly related to populations from the Central and Western Balkans and Hungary. These findings suggest that this could be an original, possibly relict population.

Haplotype network, designed from 24 haplotypes of the cytb locus from 167 individuals of Podarcis tauricus and Podarcis gaigeae (Psonis et al. 2017; this study). Colours correspond to the country of the specimen’s geographical origin and each circle corresponds to a haplotype. The circle size is proportional to the number of individuals with the same haplotype. The number of individuals per haplotype is indicated. Due to the unequal size of cytb sequences from Psonis et al. (2017), only a fragment of 257 bp which was common for all 167 sequences was used for the haplotype network reconstruction. For this region of cytb locus, the sequences of our individuals from Czech Republic are identical to 18 individuals from Albania, Hungary, Kosovo and Serbia.

However, we cannot rule out recent introductions or spontaneous northward dispersal of the lizard associated with global climate change. Exotic species of animals and plants appear in the Czech Republic through various routes and tracing their origin is not always easy. Both intentional and unintentional introductions have been recorded for some reptiles, while some previously southern vertebrate and invertebrate species spread to the north spontaneously.

The first genetic data on the origin of the northernmost population of the Balkan wall lizard suggest that the lizard can spread to the north naturally; however, further investigations are needed to support this tentative conclusion. 

Research article:

Rehák I, Fischer D, Kratochvíl L, Rovatsos M (2022) Origin and haplotype diversity of the northernmost population of Podarcis tauricus (Squamata, Lacertidae): Do lizards respond to climate change and go north? Biodiversity Data Journal 10: e82156. https://doi.org/10.3897/BDJ.10.e82156

Endemic frogs in Himalayan region exhibit site fidelity

The Murree Hills Frog and Hazara Torrent Frog show minimum movement out of their habitat, which makes them more unique from an ecology and conservation perspective

Amongst tetrapods, amphibians entail the highest number of threatened and data deficient species, which has put them in the limelight of research in animal ecology and conservation. Endemic species have evolved and adapted to a particular set of environmental conditions. Hence, these are more vulnerable to environmental changes and are susceptible to population declines because of their restricted distribution ranges.

Murree Hills Frog (Nanorana vicina). Photo by Herpetology Lab, Arid Agriculture University, Rawalpindi

The Murree Hills Frog and Hazara Torrent Frog are endemic to Pakistan and South Asian countries. They are associated with the torrential streams and nearby clear water pools situated at high elevation. These frogs are susceptible to threats like habitat degradation, urbanization, and climate change. A recent study published in the-open access journal Biodiversity Data Journal reports that these endemic frogs do not show much movement within and outside their habitat.

Hazara Torrent Frog (Allopaa hazarensis). Photo by Herpetology Lab, Arid Agriculture University, Rawalpindi

“We have, for the first time, used radio-transmitters (VHF) on frogs endemic to Himalayan region to understand their ecology,” explains Dr. Muhammad Rais, Assistant Professor at the Herpetology Lab in the Arid Agriculture University, Rawalpindi, and lead author of the study. “Surprisingly, the Murree Hills Frog and Hazara Torrent Frog depend heavily for their survival on particular stream(s).”

“We suggest carrying out additional long term studies by incorporating multiple adjacent stream systems to better understand dispersal and colonization in these frogs,” he says in conclusion.

Research article:

Akram A, Rais M, Saeed M, Ahmed W, Gill S, Haider J (2022) Movement Paradigm for Hazara Torrent Frog Allopaa hazarensis and Murree Hills Frog Nanorana vicina (Anura: Dicroglossidae). Biodiversity Data Journal 10: e84365. https://doi.org/10.3897/BDJ.10.e84365

Striking new snake species discovered in Paraguay

Only known from three individuals, Phalotris shawnella is endemic to the Cerrado forests of the department of San Pedro in east Paraguay.

Distribution map.

A beautiful non-venomous snake, previously unknown to science, was discovered in Paraguay and described by researchers of the Paraguayan NGO Para La Tierra with the collaboration of Guyra Paraguay and the Instituto de Investigación Biológica del Paraguay. It belongs to the genus Phalotris, which features 15 semi-subterranean species distributed in central South America. This group of snakes is noted for its striking colouration with red, black, and yellow patterns.

Jean-Paul Brouard, one of the involved researchers, came across an individual of the new species by chance while digging a hole at Rancho Laguna Blanca in 2014. Together with his colleagues Paul Smith and Pier Cacciali, he described the discovery in the open-access scientific journal Zoosystematics and Evolution. The authors named it Phalotris shawnella, in honour of two children – Shawn Ariel Smith Fernández and Ella Bethany Atkinson – who were born in the same year as the Fundación Para La Tierra (2008). They inspired the founders of the NGO to work for the conservation of Paraguayan wildlife, in the hope that their children can inherit a better world.

Phalotris shawnella. Photo by Jean-Paul Brouard

The new Phalotris snake is particularly attractive and can be distinguished from other related species in its genus by its red head in combination with a yellow collar, a black lateral band and orange ventral scales with irregular black spots. Only known from three individuals, it is endemic to the Cerrado forests of the department of San Pedro in east Paraguay. Its known distribution consists of two spots with sandy soils in that department – Colonia Volendam and Laguna Blanca – which are 90 km apart. 

Phalotris shawnella. Photo by Jean-Paul Brouard

The extreme rarity of this species led the authors to consider it as “Endangered”, according to the conservation categories of the International Union for Conservation of Nature (IUCN), which means it is in imminent danger of extinction in the absence of measures for its protection.

Phalotris shawnella. Photo by Jean-Paul Brouard

This species can only be found in the famous tourist destination of Laguna Blanca, an area declared as an Important Area for the Conservation of Amphibians and Reptiles. 

Phalotris shawnella. Photo by Jean-Paul Brouard

“This demonstrates once again the need to protect the natural environment in this region of Paraguay,” the authors comment. “Laguna Blanca was designated as a Nature Reserve for a period of 5 years, but currently has no protection at all. The preservation of this site should be considered a national priority for conservation.”

Research article:

Smith P, Brouard J-P, Cacciali P (2022) A new species of Phalotris (Serpentes, Colubridae, Elapomorphini) from Paraguay. Zoosystematics and Evolution 98(1): 77-85. https://doi.org/10.3897/zse.98.61064

Simplified method to survey amphibians will aid conservation

Researchers developed a method to determine which amphibians inhabit a specific area. The new technique will resolve some of the issues with conventional methods, such as capture and observational surveys.

Ryukyu Sword Tailed Newt, or Firebellied Newt. Photo by Neil Dalphin via Creative Commons CC0.

An international collaborative research group of members from seven institutions has developed a method to determine which amphibians (frogs, newts and salamanders) inhabit a specific area. Their work was published in the open-access, peer-reviewed journal Metabarcoding and Metagenomics (MBMG).

To do so, the scientists amplified and analysed extra-organismal DNA (also known as environmental DNA or eDNA) found in the water. This DNA ends up in the water after being expelled from the amphibian’s body along with mucus and excrement. 

The research group included Postdoctoral Researcher Sakata K. Masayuki and Professor Minamoto Toshifumi (Kobe University), Associate Professor Kurabayashi Atsushi (Nagahama Institute of Bio-Science and Technology), Nakamura Masatoshi (IDEA Consultants, Inc.) and Associate Professor Nishikawa Kanto (Kyoto University). 

The newly developed technique will resolve some of the issues with conventional methods, such as capture and observational surveys, which require a specialist surveyor who can visually identify species. Conventional surveys are also prone to discrepancies due to environmental factors, such as climate and season.

The researchers hope that the new method will revolutionise species monitoring, as it will enable anyone to easily monitor the amphibians that inhabit an area by collecting water samples.  

While monitoring in general is crucial to conserve the natural ecosystems, the importance of surveying amphibians is even more pressing, given the pace of their populations’ decline.

Amongst major obstacles to amphibian monitoring, however, are the facts that they are nocturnal; their young (e.g. tadpoles) and adults live in different habitats; and that specialist knowledge is required to capture individuals and identify their species. These issues make it particularly difficult to accurately survey amphibians in a standardised way, and results of individual efforts often contradict each other.

On the other hand, eDNA analysis techniques have already been established in programmes targeted at monitoring fish species, where they are already commonplace. So, the researchers behind the present study joined forces to contribute towards the development of a similar standardised analysis method for amphibians.

First of all, the researchers designed multiple methods for analysing the eDNA of amphibians and evaluated their performance to identify the most effective method. Next, they conducted parallel monitoring of 122 sites in 10 farmlands across Japan using the developed eDNA analysis along with the conventional methods (i.e. capture surveys using a net and observation surveys). 

As a result, the newly developed method was able to detect all three orders of amphibians: Caudata (the newts and salamanders), Anura (the frogs), and Gymnophiona (the caecilians). 

Furthermore, this novel eDNA analysis method was able to detect more species across all field study sites than the conventional method-based surveys, indicating its effectiveness.

Research Background

Amphibian biodiversity is continuing to decline worldwide and collecting basic information about their habitats and other aspects via monitoring is vital for conservation efforts. Traditional methods of monitoring amphibians include visual and auditory observations, and capture surveys.

However, amphibians tend to be small in size and many are nocturnal. The success of surveys varies greatly depending on the climate and season, and specialist knowledge is required to identify species. Consequently, it is difficult to monitor a wide area and assess habitats. The last decade has seen the significant development of environmental DNA analysis techniques, which can be used to investigate the distribution of a species by analysing external DNA (environmental DNA) that is released into the environment along with an organism’s excrement, mucus and other bodily fluids. 

The fundamentals of this technique involve collecting water from the survey site and analysing the eDNA contained in it to find out which species inhabit the area. In recent years, the technique has gained attention as a supplement for conventional monitoring methods. Standardised methods of analysis have already been established for other species, especially fishes, and diversity monitoring using eDNA is becoming commonplace. 

However, eDNA monitoring of amphibians is still at the development stage. One reason for this is that the proposed eDNA analysis method must be suitable for the target species or taxonomic group, and there are still issues with developing and implementing a comprehensive method for detecting amphibians. If such a method could be developed, this would make it possible for monitoring to be conducted even by people who do not have the specialised knowledge to identify species nor surveying experience.

Hopefully, this would be established as a unified standard for large-scale monitoring surveys, such as those on a national scale. This research group’s efforts to develop and evaluate analysis methods will hopefully lay the foundations for eDNA analysis to become a common tool for monitoring amphibians, as well as fish. 

***

Follow Metabarcoding and Metagenomics (MBMG) journal on Twitter and Facebook.

***

Research article: 

Sakata MK, Kawata MU, Kurabayashi A, Kurita T, Nakamura M, Shirako T, Kakehashi R, Nishikawa K, Hossman MY, Nishijima T, Kabamoto J, Miya M, Minamoto T (2022) Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia. Metabarcoding and Metagenomics 6: e76534. https://doi.org/10.3897/mbmg.6.76534

Snake photo posted on Instagram leads to the discovery of a new species from the Himalayas

An image on Instagram prompted the discovery of a new species of Kukri snake from Himachal Pradesh, India. Intrigued by a post shared by a master student, the research team found and examined more specimens to discover they belonged to a yet undescribed species. Their study, published in the open-access journal Evolutionary Systematics, highlights how little we still know about the biodiversity in the Western Himalayas.

Virender Kumar Kharadwaj

Intrigued by a photo shared on Instagram, a research team from India discovered a previously unknown species of kukri snake.

Staying at home in Chamba because of the COVID-19 lockdown, Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar, started exploring his backyard, photographing everything he found there and posting the pictures online. His Instagram account started buzzing with the life of the snakes, lizards, frogs, and insects he encountered.

One of those photos – a picture of a kukri snake – popped up in the feed of Zeeshan A. Mirza (National Centre for Biological Sciences, Bangalore) and immediately caught his attention. After a chat with Harshil Patel (Veer Narmad South Gujarat University, Surat), he decided to get in touch with Virendar and find out more about the sighting.

The snake, which Virendar encountered along a mud road on a summer evening, belongs to a group commonly known as Kukri snakes, named so because of their curved teeth that resemble the Nepali dagger “Kukri”. 

At first sight, the individual that Virendar photographed looked a lot like the Common Kukri snake (Oligodon arnensis). However, a herpetologist could spot some unique features that raised questions about its identity. 

Kukri snake

Virendar uploaded the photo on 5 June 2020, and by the end of the month, after extensively surveying the area, he found two individuals – enough to proceed with their identification. However, the COVID-19 pandemic slowed down the research work as labs and natural history museums remained closed. 

Upon the reopening of labs, the team studied the DNA of the specimens and found out they belonged to a species different from the Common Kukri snake. Then, they compared the snakes’ morphological features with data from literature and museums and used micro computed tomography scans to further investigate their morphology. In the end, the research team were able to confirm the snakes belonged to a species previously unknown to science.

The discovery was published in a research paper in the international peer-reviewed journal Evolutionary Systematics. There, the new species is described as Oligodon churahensis, its name a reference to the Churah Valley in Himachal Pradesh, where it was discovered. 

What’s even more interesting is that the exploration of your own backyard may yield still undocumented species… if one looks in their own backyard, they may end up finding a new species right there.

Zeeshan A. Mirza

“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” comments Zeeshan A. Mirza.

“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”

“Compared to other biodiversity hotspots, the Western Himalayas are still poorly explored, especially in terms of herpetological diversity, but they harbor unique reptile species that we have only started to unravel in the last couple of years,” Mirza adds.

Research article:

Mirza ZA, Bhardwaj VK, Patel H (2021) A new species of snake of the genus Oligodon Boie in Fitzinger, 1826 (Reptilia, Serpentes) from the Western Himalayas. Evolutionary Systematics 5(2): 335-345. https://doi.org/10.3897/evolsyst.5.72564