Venomous! New pit viper discovered in Jiuzhaigou National Nature Reserve, China

The discovery was published in the open-access journal ZooKeys as part of a new molecular phylogenetic analysis of the Asian pit vipers.

Jiuzhaigou National Nature Reserve, a World Heritage Site, lies in the transition zone from the eastern edge of the Qinghai-Tibet Plateau to the Sichuan Basin in Sichuan Province, China, and occupies an area of 651 km2. The reserve is covered with well-preserved original forests, and numerous alpine lakes. Beautiful and picturesque, it is home to some rare animals, such as the Giant Panda (Ailuropoda melanoleuca) and Golden Snub-nosed Monkey (Rhinopithecus roxellana).

Landscape in Jiuzhaigou National Park. Photo by Jie Du

The herpetological di­versity, in contrast to the mammals, is relatively low in the area due to the harsh alpine environment. To find out more about it, and to investigate the post-earthquake ecological system in the region, a group of researchers conducted a series of investigations in Jiuzhaigou National Nature Reserve. During their herpetological surveys, they collected some specimens of Gloydius, a genus of venomous pit vipers endemic to Asia,from Zharu Valley.

After running morphological and phylogenetic analyses, the scientists found out that these specimens in fact belonged to a yet-to-be-described species.

Holotype of Gloydius lateralis. Photo by Sheng-chao Shi

“The new species is morphologically similar, and phylogenetically closely related to G. swild, another recently described species from Heishui, Aba, Sichuan, but differs from it by having larger eyes (related to the head) and a continuous regular brown stripe on each dorsolateral side of the body,” explained the corresponding author, Dr Jingsong Shi.

“Thus, we named it after its unique color pattern: Gloydius lateralis.”

Holotype of Gloydius lateralis. Photo by Sheng-chao Shi

The newly described snake feeds on small mammals, such as mice, and “is active on sunny days by the roadside in a hot, dry valley”, the researchers write in their study, which was published in the open-access scientific journal ZooKeys.

“The discovery of G. lateralis provides new insights into the diversity and the distribution patterns of Asian pit vipers”, they write, suggesting that the formation of the Qinghai-Tibet Plateau might be one of the key factors to the geographical isolation of the alpine pit vipers in southwest China.

Jiuzhaigou National Nature Reserve, where G. lateralis was found, receives millions of tourists every year. “The only known habitat of the new species is Zharu Valley, and it is now under touristic development,” the researchers point out. “Thus, warning signs are still needed to remind visitors to watch out for the venomous pit viper, since this and another pit viper species, Protobothrops jerdo­nii, are often found in grass or bushes on both sides of roads.”

Snakes’ thermoregulation needs make them more prone to vehicle collisions, which is why the research team highlights the necessity to remind drivers to slow down in order to avoid road killings.

Original source:

Zhang M-H, Shi S-C, Li C, Yan P, Wang P, Ding L, Du J, Plenković-Moraj A, Jiang J-P, Shi J-S (2022) Exploring cryptic biodiversity in a world heritage site: a new pitviper (Squamata, Viperidae, Crotalinae) from Jiuzhaigou, Aba, Sichuan, China. ZooKeys 1114: 59–76. https://doi.org/10.3897/zookeys.1114.79709

Lizards go north: Balkan wall lizard population found all the way in the Czech Republic

The northernmost population of the Balkan lizard, recently discovered in the Czech Republic, has proven to be genetically unique and variable.

The Czech Republic is a zoologically well-studied area, and its reptile fauna is not very rich. Therefore, the recent discovery of a new reptile species for the country, the Balkan wall lizard (Podarcis tauricus), came as a big surprise. This lizard inhabits areas of the Central and Western Balkans as far as Crimea, with isolated areas of occurrence in Hungary and northern Romania, so how did it get as far north as the Czech Republic? Fortunately, the genetics in much of the lizard’s range are relatively well-studied. Finding out where lizards from the Czech Republic fit genetically could reveal the origins of this northernmost population.

Podarcis tauricus in the wild – Váté písky near Bzenec, Czech Republic.

An analysis published by Czech herpetologists in the journal Biodiversity Data Journal shows that the lizards from the Czech population are genetically variable; therefore, the population was not established by the introduction of a single gravid female.

Geographical distribution of Podarcis tauricus. The green arrow shows the northernmost known locality (Váté písky, Czech Republic).

The population also has genetic “markers” not yet found elsewhere, although it is clearly related to populations from the Central and Western Balkans and Hungary. These findings suggest that this could be an original, possibly relict population.

Haplotype network, designed from 24 haplotypes of the cytb locus from 167 individuals of Podarcis tauricus and Podarcis gaigeae (Psonis et al. 2017; this study). Colours correspond to the country of the specimen’s geographical origin and each circle corresponds to a haplotype. The circle size is proportional to the number of individuals with the same haplotype. The number of individuals per haplotype is indicated. Due to the unequal size of cytb sequences from Psonis et al. (2017), only a fragment of 257 bp which was common for all 167 sequences was used for the haplotype network reconstruction. For this region of cytb locus, the sequences of our individuals from Czech Republic are identical to 18 individuals from Albania, Hungary, Kosovo and Serbia.

However, we cannot rule out recent introductions or spontaneous northward dispersal of the lizard associated with global climate change. Exotic species of animals and plants appear in the Czech Republic through various routes and tracing their origin is not always easy. Both intentional and unintentional introductions have been recorded for some reptiles, while some previously southern vertebrate and invertebrate species spread to the north spontaneously.

The first genetic data on the origin of the northernmost population of the Balkan wall lizard suggest that the lizard can spread to the north naturally; however, further investigations are needed to support this tentative conclusion. 

Research article:

Rehák I, Fischer D, Kratochvíl L, Rovatsos M (2022) Origin and haplotype diversity of the northernmost population of Podarcis tauricus (Squamata, Lacertidae): Do lizards respond to climate change and go north? Biodiversity Data Journal 10: e82156. https://doi.org/10.3897/BDJ.10.e82156

Endemic frogs in Himalayan region exhibit site fidelity

The Murree Hills Frog and Hazara Torrent Frog show minimum movement out of their habitat, which makes them more unique from an ecology and conservation perspective

Amongst tetrapods, amphibians entail the highest number of threatened and data deficient species, which has put them in the limelight of research in animal ecology and conservation. Endemic species have evolved and adapted to a particular set of environmental conditions. Hence, these are more vulnerable to environmental changes and are susceptible to population declines because of their restricted distribution ranges.

Murree Hills Frog (Nanorana vicina). Photo by Herpetology Lab, Arid Agriculture University, Rawalpindi

The Murree Hills Frog and Hazara Torrent Frog are endemic to Pakistan and South Asian countries. They are associated with the torrential streams and nearby clear water pools situated at high elevation. These frogs are susceptible to threats like habitat degradation, urbanization, and climate change. A recent study published in the-open access journal Biodiversity Data Journal reports that these endemic frogs do not show much movement within and outside their habitat.

Hazara Torrent Frog (Allopaa hazarensis). Photo by Herpetology Lab, Arid Agriculture University, Rawalpindi

“We have, for the first time, used radio-transmitters (VHF) on frogs endemic to Himalayan region to understand their ecology,” explains Dr. Muhammad Rais, Assistant Professor at the Herpetology Lab in the Arid Agriculture University, Rawalpindi, and lead author of the study. “Surprisingly, the Murree Hills Frog and Hazara Torrent Frog depend heavily for their survival on particular stream(s).”

“We suggest carrying out additional long term studies by incorporating multiple adjacent stream systems to better understand dispersal and colonization in these frogs,” he says in conclusion.

Research article:

Akram A, Rais M, Saeed M, Ahmed W, Gill S, Haider J (2022) Movement Paradigm for Hazara Torrent Frog Allopaa hazarensis and Murree Hills Frog Nanorana vicina (Anura: Dicroglossidae). Biodiversity Data Journal 10: e84365. https://doi.org/10.3897/BDJ.10.e84365

Striking new snake species discovered in Paraguay

Only known from three individuals, Phalotris shawnella is endemic to the Cerrado forests of the department of San Pedro in east Paraguay.

Distribution map.

A beautiful non-venomous snake, previously unknown to science, was discovered in Paraguay and described by researchers of the Paraguayan NGO Para La Tierra with the collaboration of Guyra Paraguay and the Instituto de Investigación Biológica del Paraguay. It belongs to the genus Phalotris, which features 15 semi-subterranean species distributed in central South America. This group of snakes is noted for its striking colouration with red, black, and yellow patterns.

Jean-Paul Brouard, one of the involved researchers, came across an individual of the new species by chance while digging a hole at Rancho Laguna Blanca in 2014. Together with his colleagues Paul Smith and Pier Cacciali, he described the discovery in the open-access scientific journal Zoosystematics and Evolution. The authors named it Phalotris shawnella, in honour of two children – Shawn Ariel Smith Fernández and Ella Bethany Atkinson – who were born in the same year as the Fundación Para La Tierra (2008). They inspired the founders of the NGO to work for the conservation of Paraguayan wildlife, in the hope that their children can inherit a better world.

Phalotris shawnella. Photo by Jean-Paul Brouard

The new Phalotris snake is particularly attractive and can be distinguished from other related species in its genus by its red head in combination with a yellow collar, a black lateral band and orange ventral scales with irregular black spots. Only known from three individuals, it is endemic to the Cerrado forests of the department of San Pedro in east Paraguay. Its known distribution consists of two spots with sandy soils in that department – Colonia Volendam and Laguna Blanca – which are 90 km apart. 

Phalotris shawnella. Photo by Jean-Paul Brouard

The extreme rarity of this species led the authors to consider it as “Endangered”, according to the conservation categories of the International Union for Conservation of Nature (IUCN), which means it is in imminent danger of extinction in the absence of measures for its protection.

Phalotris shawnella. Photo by Jean-Paul Brouard

This species can only be found in the famous tourist destination of Laguna Blanca, an area declared as an Important Area for the Conservation of Amphibians and Reptiles. 

Phalotris shawnella. Photo by Jean-Paul Brouard

“This demonstrates once again the need to protect the natural environment in this region of Paraguay,” the authors comment. “Laguna Blanca was designated as a Nature Reserve for a period of 5 years, but currently has no protection at all. The preservation of this site should be considered a national priority for conservation.”

Research article:

Smith P, Brouard J-P, Cacciali P (2022) A new species of Phalotris (Serpentes, Colubridae, Elapomorphini) from Paraguay. Zoosystematics and Evolution 98(1): 77-85. https://doi.org/10.3897/zse.98.61064

Simplified method to survey amphibians will aid conservation

Researchers developed a method to determine which amphibians inhabit a specific area. The new technique will resolve some of the issues with conventional methods, such as capture and observational surveys.

Ryukyu Sword Tailed Newt, or Firebellied Newt. Photo by Neil Dalphin via Creative Commons CC0.

An international collaborative research group of members from seven institutions has developed a method to determine which amphibians (frogs, newts and salamanders) inhabit a specific area. Their work was published in the open-access, peer-reviewed journal Metabarcoding and Metagenomics (MBMG).

To do so, the scientists amplified and analysed extra-organismal DNA (also known as environmental DNA or eDNA) found in the water. This DNA ends up in the water after being expelled from the amphibian’s body along with mucus and excrement. 

The research group included Postdoctoral Researcher Sakata K. Masayuki and Professor Minamoto Toshifumi (Kobe University), Associate Professor Kurabayashi Atsushi (Nagahama Institute of Bio-Science and Technology), Nakamura Masatoshi (IDEA Consultants, Inc.) and Associate Professor Nishikawa Kanto (Kyoto University). 

The newly developed technique will resolve some of the issues with conventional methods, such as capture and observational surveys, which require a specialist surveyor who can visually identify species. Conventional surveys are also prone to discrepancies due to environmental factors, such as climate and season.

The researchers hope that the new method will revolutionise species monitoring, as it will enable anyone to easily monitor the amphibians that inhabit an area by collecting water samples.  

While monitoring in general is crucial to conserve the natural ecosystems, the importance of surveying amphibians is even more pressing, given the pace of their populations’ decline.

Amongst major obstacles to amphibian monitoring, however, are the facts that they are nocturnal; their young (e.g. tadpoles) and adults live in different habitats; and that specialist knowledge is required to capture individuals and identify their species. These issues make it particularly difficult to accurately survey amphibians in a standardised way, and results of individual efforts often contradict each other.

On the other hand, eDNA analysis techniques have already been established in programmes targeted at monitoring fish species, where they are already commonplace. So, the researchers behind the present study joined forces to contribute towards the development of a similar standardised analysis method for amphibians.

First of all, the researchers designed multiple methods for analysing the eDNA of amphibians and evaluated their performance to identify the most effective method. Next, they conducted parallel monitoring of 122 sites in 10 farmlands across Japan using the developed eDNA analysis along with the conventional methods (i.e. capture surveys using a net and observation surveys). 

As a result, the newly developed method was able to detect all three orders of amphibians: Caudata (the newts and salamanders), Anura (the frogs), and Gymnophiona (the caecilians). 

Furthermore, this novel eDNA analysis method was able to detect more species across all field study sites than the conventional method-based surveys, indicating its effectiveness.

Research Background

Amphibian biodiversity is continuing to decline worldwide and collecting basic information about their habitats and other aspects via monitoring is vital for conservation efforts. Traditional methods of monitoring amphibians include visual and auditory observations, and capture surveys.

However, amphibians tend to be small in size and many are nocturnal. The success of surveys varies greatly depending on the climate and season, and specialist knowledge is required to identify species. Consequently, it is difficult to monitor a wide area and assess habitats. The last decade has seen the significant development of environmental DNA analysis techniques, which can be used to investigate the distribution of a species by analysing external DNA (environmental DNA) that is released into the environment along with an organism’s excrement, mucus and other bodily fluids. 

The fundamentals of this technique involve collecting water from the survey site and analysing the eDNA contained in it to find out which species inhabit the area. In recent years, the technique has gained attention as a supplement for conventional monitoring methods. Standardised methods of analysis have already been established for other species, especially fishes, and diversity monitoring using eDNA is becoming commonplace. 

However, eDNA monitoring of amphibians is still at the development stage. One reason for this is that the proposed eDNA analysis method must be suitable for the target species or taxonomic group, and there are still issues with developing and implementing a comprehensive method for detecting amphibians. If such a method could be developed, this would make it possible for monitoring to be conducted even by people who do not have the specialised knowledge to identify species nor surveying experience.

Hopefully, this would be established as a unified standard for large-scale monitoring surveys, such as those on a national scale. This research group’s efforts to develop and evaluate analysis methods will hopefully lay the foundations for eDNA analysis to become a common tool for monitoring amphibians, as well as fish. 

***

Follow Metabarcoding and Metagenomics (MBMG) journal on Twitter and Facebook.

***

Research article: 

Sakata MK, Kawata MU, Kurabayashi A, Kurita T, Nakamura M, Shirako T, Kakehashi R, Nishikawa K, Hossman MY, Nishijima T, Kabamoto J, Miya M, Minamoto T (2022) Development and evaluation of PCR primers for environmental DNA (eDNA) metabarcoding of Amphibia. Metabarcoding and Metagenomics 6: e76534. https://doi.org/10.3897/mbmg.6.76534

Snake photo posted on Instagram leads to the discovery of a new species from the Himalayas

An image on Instagram prompted the discovery of a new species of Kukri snake from Himachal Pradesh, India. Intrigued by a post shared by a master student, the research team found and examined more specimens to discover they belonged to a yet undescribed species. Their study, published in the open-access journal Evolutionary Systematics, highlights how little we still know about the biodiversity in the Western Himalayas.

Virender Kumar Kharadwaj

Intrigued by a photo shared on Instagram, a research team from India discovered a previously unknown species of kukri snake.

Staying at home in Chamba because of the COVID-19 lockdown, Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar, started exploring his backyard, photographing everything he found there and posting the pictures online. His Instagram account started buzzing with the life of the snakes, lizards, frogs, and insects he encountered.

One of those photos – a picture of a kukri snake – popped up in the feed of Zeeshan A. Mirza (National Centre for Biological Sciences, Bangalore) and immediately caught his attention. After a chat with Harshil Patel (Veer Narmad South Gujarat University, Surat), he decided to get in touch with Virendar and find out more about the sighting.

The snake, which Virendar encountered along a mud road on a summer evening, belongs to a group commonly known as Kukri snakes, named so because of their curved teeth that resemble the Nepali dagger “Kukri”. 

At first sight, the individual that Virendar photographed looked a lot like the Common Kukri snake (Oligodon arnensis). However, a herpetologist could spot some unique features that raised questions about its identity. 

Kukri snake

Virendar uploaded the photo on 5 June 2020, and by the end of the month, after extensively surveying the area, he found two individuals – enough to proceed with their identification. However, the COVID-19 pandemic slowed down the research work as labs and natural history museums remained closed. 

Upon the reopening of labs, the team studied the DNA of the specimens and found out they belonged to a species different from the Common Kukri snake. Then, they compared the snakes’ morphological features with data from literature and museums and used micro computed tomography scans to further investigate their morphology. In the end, the research team were able to confirm the snakes belonged to a species previously unknown to science.

The discovery was published in a research paper in the international peer-reviewed journal Evolutionary Systematics. There, the new species is described as Oligodon churahensis, its name a reference to the Churah Valley in Himachal Pradesh, where it was discovered. 

What’s even more interesting is that the exploration of your own backyard may yield still undocumented species… if one looks in their own backyard, they may end up finding a new species right there.

Zeeshan A. Mirza

“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” comments Zeeshan A. Mirza.

“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”

“Compared to other biodiversity hotspots, the Western Himalayas are still poorly explored, especially in terms of herpetological diversity, but they harbor unique reptile species that we have only started to unravel in the last couple of years,” Mirza adds.

Research article:

Mirza ZA, Bhardwaj VK, Patel H (2021) A new species of snake of the genus Oligodon Boie in Fitzinger, 1826 (Reptilia, Serpentes) from the Western Himalayas. Evolutionary Systematics 5(2): 335-345. https://doi.org/10.3897/evolsyst.5.72564

Herpetozoa renews contract with Pensoft for another 5 years

Herpetozoa, the peer-reviewed scientific journal of the Austrian Herpetological Society, renewed its contract with Pensoft, re-signing with the scholarly publisher for another five years. Published since 1988, the journal offers a venue for research articles, short contributions and reviews dealing with all aspects of the study of amphibians and reptiles.

Herpetozoa, the peer-reviewed scientific journal of the Austrian Herpetological Society, renewed its contract with Pensoft, re-signing with the scholarly publisher for another five years. Published since 1988, the journal offers a venue for research articles, short contributions and reviews dealing with all aspects of the study of amphibians and reptiles.

Enticed by the opportunities that open access publishing offers, and looking to improve its visibility, Herpetozoa first came to Pensoft in 2019. The move equipped the journal with a brand new website and a full suite of publishing services tailored to the needs of biodiversity-themed academic publications available from ARPHA, Pensoft’s self-developed publishing platform. 

In ARPHA’s fast-track publishing system, each manuscript is carried through all stages, from submission and reviewing to dissemination and archiving, without ever leaving the platform’s collaboration-friendly online environment. In addition, semantic enhancements, automated data export to aggregators, web-service integrations with major indexing databases, and a variety of publishing formats ensure that all articles are easy to find, access, and use by both humans and machines.

The journal also makes use of ARPHA Preprints, another service developed by Pensoft to streamline public access to the latest scientific findings. The platform allows authors to submit a preprint in a matter of seconds along with their manuscript, with no need to upload any additional files. Following a quick in-house screening, the preprint is then made available on ARPHA Preprints in a few days’ time. Once the associated paper is published, a two-way link between the article and the preprint is established via CrossRef.

In the past three years, we saw Herpetozoa publish some quite peculiar discoveries that were quick to attract the attention of the global media. Such was the case of a set of first-of-their-kind observations of kukri snakes gutting toads and eating their organs while still alive. At the same time, the journal doesn’t fail to bring public attention to urgent conservation and biodiversity loss issues like reptile poaching in Pakistan, as well as innovative methods to monitor delicate amphibians in a non-invasive manner.

Pakistan’s amphibians need more research efforts and better protection

In Pakistan, amphibians have long been neglected in wildlife conservation, management decisions and research agendas. To counter this, scientists have now published the first comprehensive study on all known amphibian species in the country in the open-access scholarly journal ZooKeys. The little we currently know about the occurrence of the chytrid fungus, which has already eradicated many amphibian species globally, is a grim example of how urgent it is to acquire further information.

Amphibians are bioindicators of an ecosystem’s health and may also serve as biological control of crop and forest pests. The First Herpetological Congress, organized in 1989, presented alarming findings about the decline in amphibian populations. Currently, amphibians include the highest percentage of threatened species (>40%), as well as the highest number of data deficient species (>1500 species). The little we currently know about the occurrence of the chytrid fungus, which has already eradicated many amphibian species globally, is a grim example of how urgent it is to acquire further information.

Asian Common Toad. Photo by Herpetology Lab, Arid Agriculture University Rawalpindi

Researchers just published the first comprehensive study on all known amphibian species of Pakistan in the open-access journal ZooKeys. In it, they report 21 species from the country, providing their identification key and photographic guide. However, as many of Pakistan’s potential amphibian habitats are difficult to access and study, especially the high-altitude northern and arid western mountains, it is highly likely that a lot of species are yet to be discovered.

Burrowing Frog (in amplexus). Photo by Herpetology Lab, Arid Agriculture University Rawalpindi

In particular, the authors point out that habitats facing destruction, urbanization, pollution, unsustainable utilization and other human-caused threats need to be put on high priority, so that suitable conservation strategies can be devised. This way, amphibian populations would be better controlled with less financial, administrative, and human resources.

So far, amphibians have been excluded from all current legislative and policy decisions in the country. Likewise, they are not protected under any law. Hence, the legislation pertaining to rare and endemic species needs to be updated. Schedule III, which includes protected species, provincial and federal wildlife laws, and CITES appendices are in particular need of revision.

Common Skittering Frog. Photo by Herpetology Lab, Arid Agriculture University Rawalpindi

Currently, wildlife conservation projects in Pakistan mainly focus on carnivores, ungulates and birds. Therefore, the authors of the study propose adopting an inclusive wildlife conservation approach in Pakistan. This approach would advocate the integration of poorly documented taxa, such as amphibians, in wildlife conservation and management projects. It is by highlighting the significance of their existence and the intrinsic values of all wildlife species that local ecosystems can remain healthy in the long run.

“There is also a dire need to change social attitudes towards the appreciation and significance of amphibians in our society. This could be achieved by initiating community awareness, outreach and school classrooms, and through citizen science programs,” add the researchers.

Research article:
Rais M, Ahmed W, Sajjad A, Akram A, Saeed M, Hamid HN, Abid A (2021) Amphibian fauna of Pakistan with notes on future prospects of research and conservation. ZooKeys 1062: 157-175. https://doi.org/10.3897/zookeys.1062.66913

Two new pit vipers discovered from Qinghai-Tibet Plateau

Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper (Gloydius lipipengi) from Zayu, Tibet, and the Glacier pit viper (G. swild) found west of the Nujiang River and Heishui, Sichuan, east of the Qinghai-Tibet Plateau. Our team of researchers from the Institute of Vertebrate Paleontology and Paleoanthropology at the Chinese Academy of Sciences and Bangor University published the discovery in the open-access journal ZooKeys. In this study, we performed a new molecular phylogenetic analysis of the Asian pit vipers.

Guest blog post by Jingsong Shi

Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper (Gloydius lipipengi) from Zayu, Tibet, and the Glacier pit viper (G. swild) found west of the Nujiang River and Heishui, Sichuan, east of the Qinghai-Tibet Plateau. Our team of researchers from the Institute of Vertebrate Paleontology and Paleoanthropology at the Chinese Academy of Sciences and Bangor University published the discovery in the open-access journal ZooKeys. In this study, we performed a new molecular phylogenetic analysis of the Asian pit vipers.

Glacier pit viper (Gloydius swild)

The Nujiang pit viper has a greyish brown back with irregular black ring-shaped crossbands, wide, greyish-brown stripes behind the eyes, and relativity short fangs, while the Glacier pit viper is blueish-grey, with zigzag stripes on its back, and has relatively narrow stripes behind its eyes.

Nujiang pit viper (Gloydius lipipengi)

Interestingly, the Glacier pit viper was found under the Dagu Holy-glacier National Park: the glacier lake lies 2000 meters higher than the habitat of the snakes, at more than 4,880 m above sea level. This discovery suggests that the glaciers might be a key factor to the isolation and speciation of alpine pit vipers in southwest China.

The stories behind the snakes’ scientific names are interesting too: with the new species from Tibet, Gloydius lipipengi, the name is dedicated to my Master’s supervisor, Professor Pi-Peng Li from the Institute of Herpetology at Shenyang Normal University, just in time for Li’s sixtieth birthday. Prof. Li has devoted himself to the study of the herpetological diversity of the Qinghai-Tibet Plateau, and it was under his guidance that I became an Asian pit viper enthusiast and professional herpetological researcher. 

Gloydius swild, the new species from Heishui, Sichuan, is in turn named after the SWILD Group, which studies the fauna and biodiversity of southewst China. They discovered and collected the snake during an expedition to the Dagu Holy-glacier.

A misty morning near the habitat of Glacier pit viper.

We are equally impressed by the sceneries we encountered during our field work: throughout our journey, we got to look at sacred, crystal-like glacier lakes embraced by the mountains, morning mist falling over the village, and colorful broadleaf-conifer forests. During our expedition, we met a lot of hospitable Tibetan inhabitants and enjoyed their kindness and treats, which made the expedition all the more unforgettable.

Research article:

Shi J-S, Liu J-C, Giri R, Owens JB, Santra V, Kuttalam S, Selvan M, Guo K-J, Malhotra A (2021) Molecular phylogenetic analysis of the genus Gloydius (Squamata, Viperidae, Crotalinae), with description of two new alpine species from Qinghai-Tibet Plateau, China. ZooKeys 1061: 87-108. https://doi.org/10.3897/zookeys.1061.70420

New beautiful, dragon-like species of lizard discovered in the Tropical Andes

Enyalioides feiruzae is a colourful, highly variable new species of lizard discovered in the upper basin of the Huallaga River in central Peru. The authors, having searched for amphibians and reptiles in the area between 2011 and 2018, have now finally described this stunning reptile as new to science in the open-access journal Evolutionary Systematics. In fact, E. feiruzae is the fourth herp species discovered by the team in this biologically underresearched part of Peru.

The Huallaga River in the Andes of central Peru extends for 1,138 km, making it the largest tributary of the Marañón River, the spinal cord of the Amazon River. This basin harbours a great variety of ecosystems, including the Peruvian Yunga ecoregion, which is considered a shelter of endemic birds, mammals, reptiles and amphibians.

Closeup of a male of Enyalioides feiruzae. Photo by Pablo J. Venegas

How is it possible, then, that this corner of the Tropical Andes remains poorly known to biologists to this day? The main reason is indeed a quite simple one and it lies in the civil wars with terrorist organisations and drug traffickers that were going on in the region in the 1980s, disrupting biological studies. 

It wasn’t until the late 1990s that the Peruvian government was able to liberate the area, and that’s when, little by little, some biologists began to venture back to the Huallaga Valley. However, forest destruction by coca plantations during the internal war, which eventually led to the construction of a hydroelectric power plant, left the Huallaga valley highly fragmented, making for an even more urgent need for biodiversity research in the area.

An adult female of Enyalioides feiruzae. Photo by Pablo J. Venegas

A new species of wood lizard, Enyalioides feiruzae, was recently confirmed from the premontane forest of the Huallaga river basin, and described in the open-access, peer-reviewed scientific journal Evolutionary Systematics. It took the researchers seven years of field surveys to formally describe it. To do so, they had first to spend plenty of nights in the forests, in order to pick by hand lizards that were sleeping on bushes 20–150 cm above the ground.

The Feiruz wood lizards – especially the males – come in a stunning variety of colours. Males can have brownish turquoise, gray, or greenish brown backs traced with pale lines. Females, in turn, can be greenish brown or floury brown, with faint dark brown lines on their back, limbs and tail, and spots on the sides.

The researchers believe E. feiruzae might have established as a separate species after it got geographically separated from a very similar lizard, E. rudolfarndti, possibly as a result from tectonic activity and climatic oscillations that occurred from the Late Oligocene to the Early Miocene.

The Feiruz wood lizard was named after – you guessed it – Feiruz – “a female green iguana, muse and lifelong friend”. The owner of Feiruz the iguana, Catherine Thomson, supported the authors’ efforts in taxonomic research and nature conservation.

The habitat of the E. feiruzae is very fragmented by croplands and pastures for cattle ranching, and for now we only know of a single protected population in the Tingo Maria National Park. Much more remains to be discovered about the size and distribution of E. feiruzae populations and their ability to survive and adapt in a fragmented landscape.

The new species belongs to the genus Enyalioides, which contains sixteen species. More than half of the known Enyalioides species have been described in the last two decades, largely due to the recent surveys of remote places in the Tropical Andes from Ecuador and Peru.

Original source:

Venegas PJ, Chávez G, García-Ayachi LA, Duran V, Torres-Carvajal O (2021) A new species of wood lizard (Hoplocercinae, Enyalioides) from the Río Huallaga Basin in Central Peru. Evolutionary Systematics 5(2): 263-273. https://doi.org/10.3897/evolsyst.5.69227