Five dazzling new species of eyelash vipers discovered in Colombia and Ecuador

The groundbreaking discovery was made official in a study published in the open-access journal Evolutionary Systematics.

A group of scientists led by researchers of Khamai Foundation discovered five dazzling new species of eyelash vipers in the jungles and cloud forests of Colombia and Ecuador. This groundbreaking discovery was made official in a study published in the open-access journal Evolutionary Systematics.

Prior to this research, the captivating new vipers, now recognized as among the most alluring ever found, were mistakenly classified as part of a single, highly variable species spanning from Mexico to northwestern Peru. The decade-long study initiated with an unexpected incident wherein one of the authors was bitten by one of these previously undiscovered species.

 Distribution of the palm pitvipers of the Bothriechis schlegelii species complex, including the five new species described in Arteaga et al. 2014.

Eyelash vipers stand out due to a distinctive feature: a set of enlarged spine-like scales positioned atop their eyes. These “lashes” bestow upon the snakes a formidable and fierce appearance, yet the true purpose of this feature remains unknown. What is definite, however, is that certain populations exhibit longer, and more stylized eyelashes compared to others. The variations in the condition of the eyelashes led researchers to hypothesize the existence of undiscovered species.

The clue that led the researchers to suspect that there were new species of eyelash vipers was the fact that some populations in the cloud forests of Ecuador had almost no “lashes.” Photos by Lucas Bustamante and Jose Vieira.

Eyelash vipers are also famous for another feature: they are polychromatic. The same patch of rainforest may contain individuals of the turquoise morph, the moss morph, or the gold morph, all belonging to the same species despite having an entirely different attire. “No two individuals have the same coloration, even those belonging to the same litter (yes, they give birth to live young),” says Alejandro Arteaga, who led the study.

For some of the species, there is a “Christmas” morph, a ghost morph, and even a purple morph, with the different varieties sometimes coexisting and breeding with one another. The reason behind these incredible color variations is still unknown, but probably enables the vipers to occupy a wide range of ambush perches, from mossy branches to bright yellow heliconias.

Where do these new snakes live?

Three of the five new species are endemic to the eastern Cordillera of Colombia, where they occupy cloud forests and coffee plantations. One, the Rahim’s Eyelash-Pitviper, stands out for occurring in the remote and pristine Chocó rainforest at the border between Colombia and Ecuador, an area considered “complex to visit” due to the presence of drug cartels. The Hussain’s Eyelash-Pitviper occurs in the forests of southwestern Ecuador and extreme northwestern Peru. The researchers outline the importance of conservation and research in the Andes mountain range and its valleys due to its biogeographic importance and undiscovered megadiversity.

The Chocó rainforest is home to four vipers of the Bothriechis schlegelii species complex, including two new species discovered by Arteaga et al. 2024. Photo by Lucas Bustamante

What’s with the venom?

“The venom of some (perhaps all?) of the new species of vipers is considerably less lethal and hemorrhagic than that of the typical Central American Eyelash-Viper,” says Lucas Bustamante, a co-author of the study. Lucas was bitten in the finger by the Rahim’s Eyelash-Pitviper while taking its pictures during a research expedition in 2013. “I experienced intermittent local pain, dizziness and swelling, but recovered shortly after receiving three doses of antivenom in less than two hours after the bite, with no scar left behind,” says Bustamante.

Researcher Alejandro Arteaga examines the fangs of Central American Eyelash-Pitviper (Bothriechis nigroadspersus) in the Darién jungle of Panamá.

How threatened are these new species?

One of the study’s key conclusions is that four of the species in the group are facing a high risk of extinction. They have an extremely limited geographic range and 50% to 80% of their habitat has already been destroyed. Therefore, a rapid-response action to save the remaining habitat is urgently needed.

Red-wine morph of the Central American Eyelash-Pitviper (Bothriechis nigroadspersus), photographed in the Caribbean Island Escudo de Veraguas, off the coast of Panamá. Photo by Alejandro Arteaga

Who is honored with this discovery?

Two of the new species of vipers, the Rahim’s Eyelash-Pitviper (Bothriechis rahimi) and the Hussain’s Eyelash-Pitviper (B. hussaini), are named in honor of Prince Hussain Aga Khan and Prince Rahim Aga Khan, respectively, in recognition of their support to protect endangered global biodiversity worldwide through Focused On Nature (FON) and the Aga Khan Development Network. The Shah’s Eyelash-Pitviper (B. rasikusumorum) honors the Shah family, whereas the Klebba’s Eyelash-Pitviper (B. klebbai) and the Khwarg’s Eyelash-Pitviper (B. khwargi) honor Casey Klebba and Dr. Juewon Khwarg, respectively, for supporting the discovery and conservation of new species.

Turquoise morph of the Ecuadorian Eyelash-Pitviper (Bothriechis nitidus). This species is endemic to the Chocó rainforest in west-central Ecuador. Photo by Alejandro Arteaga

What is next?

Khamai Foundation is setting up a reserve to protect a sixth new species that remained undescribed in the present study. “The need to protect eyelash vipers is critical, since unlike other snakes, they cannot survive without adequate canopy cover. Their beauty, though worthy of celebration, should also be protected and monitored carefully, as poachers are notorious for targeting charismatic arboreal vipers for the illegal pet trade of exotic wildlife,” warns Arteaga. Finally, he and his team encourage the support of research on the venom components of the new species of vipers. This will promote their conservation as well as help communities that regularly encounter eyelash pitvipers.

Original source:

Arteaga A, Pyron RA, Batista A, Vieira J, Meneses Pelayo E, Smith EN, Barrio Amorós CL, Koch C, Agne S, Valencia JH, Bustamante L, Harris KJ (2024) Systematic revision of the Eyelash Palm-Pitviper Bothriechis schlegelii (Serpentes, Viperidae), with the description of five new species and revalidation of three. Evolutionary Systematics 8(1): 15-64. https://doi.org/10.3897/evolsyst.8.114527

Follow Evolutionary Systematics on X and Facebook.

New coffee snake species discovered in Ecuador’s cloud forests

Found by biologist Alejandro Arteaga, this species lives in coffee plantations and is endemic to northwestern Ecuador

Researchers of Khamai Foundation and Liberty University have discovered a new species of coffee snake endemic to the cloud forests of northwestern Ecuador.

The new species is named Ninia guytudori, in honor of naturalist Guy Tudor, in recognition of the impact he has had on the conservation of South America’s birds through his artistry. Photo by Alejandro Arteaga.

Biologist Alejandro Arteaga first found the snake in Ecuador’s Pichincha province, while looking for animals to include in a book on the Reptiles of Ecuador.

“This is species number 30 that I have discovered, out of a target of 100,” he says.

Ninia guytudori from Santa Lucía Cloud Forest Reserve, Pichincha province. Photo by Jose Vieira

Like other coffee snakes, Tudors’s Coffee-Snake often inhabits coffee plantations, especially in areas where its cloud forest habitat has been destroyed. It is endemic to the Pacific slopes of the Andes in northwestern Ecuador, where it lives at elevations of between 1,000 and 1,500 m above sea level.

While it faces no major immediate extinction threats, some of its populations are likely to be declining due to deforestation by logging and large-scale mining.

Photo by Jose Vieira

The researchers hope that its discovery will highlight the importance of preserving the cloud forest ecosystem, and focus research attention on human-modified habitats that surround it such as coffee plantations and pastures.

Photographs of some specimens of Ninia guytudori: top, from Santa Lucía Cloud Forest Reserve, Pichincha province. Bottom, from Río Manduriacu Reserve, Imbabura province. Photos by Jose Vieira

The name of the new snake species honors Guy Tudor, “an all-around naturalist and scientific illustrator with a deep fondness for birds and all animals, in recognition of the impact he has had on the conservation of South America’s birds through his artistry,” the researchers write in their paper, which was recently published in Evolutionary Systematics.

“We are trying to raise funds for conservation through the naming of new species. This one helped us protect Buenaventura Reserve.

Research article:

Arteaga A, Harris KJ (2023) A new species of Ninia (Serpentes, Colubridae) from western Ecuador and revalidation of N. schmidti. Evolutionary Systematics 7(2): 317-334. https://doi.org/10.3897/evolsyst.7.112476

Follow Evolutionary Systematics on Facebook and X.

New reptile on the block: A new agamid lizard species discovered in China

Measuring less than 9 cm with an orange tongue, it inhabits subtropical and tropical forests, thriving in various landscapes including urban areas.

A new agamid joins Asia’s rich reptile fauna, officially described as new to science in the open-access journal ZooKeys.

Calotes wangi.

“From 2009 to 2022, we conducted a series of field surveys in South China and collected a number of specimens of the Calotes versicolor species complex, and found that the population of what we thought was Calotes versicolor in South China and Northern Vietnam was a new undescribed species and two subspecies,” says Yong Huang, whose team described the new species.

Calotes wangi hainanensis, a newly discovered subspecies of Calotes wangi.

Wang’s garden lizard (Calotes wangi) is less than 9 cm long, and one of its distinguishing features is its orange tongue.

Calotes wangi is found in subtropical evergreen broad-leaved forests and tropical monsoon forests in southern China and northern Vietnam, mostly in mountainous areas, hills and plains on forest edges, arable land, shrub lands, and even urban green belts. It is active at the edge of the forest, and when it is in danger, it rushes into bushes or climbs tree trunks to hide. Investigations found that the lizards lie on sloping shrub branches at night, sleeping close to the branches,” says Yong Huang.

Calotes wangi.

It is active from April to October every year, while in the tropics it is active from March to November or even longer, and eats a variety of insects, spiders, and other arthropods.

For now, the researchers estimate that the new species is not threatened, but they do note that in some areas its habitat is fragmented.

Images of Calotes wangi’s habitat.

“In addition, their bodies are used medicinally and the lizards are also eaten,” they write in their research paper.

This is why they suggest that the local government strengthen the protection of their ecological environment and pay close attention to the population dynamics.

Research article:

Huang Y, Li H, Wang Y, Li M, Hou M, Cai B (2023) Taxonomic review of the Calotes versicolor complex (Agamidae, Sauria, Squamata) in China, with description of a new species and subspecies. ZooKeys 1187: 63-89. https://doi.org/10.3897/zookeys.1187.110704

Follow ZooKeys on Facebook and X.

Novel bacteria identification methods might help speed up disease diagnosis

The technique, applied on turtle skin in this study, allows for the rapid detection of Pseudomonas bacteria, which can cause various human diseases.

Why is it important to study bacteria?

Pseudomonas aeruginosa is a bacterial strain that can be responsible for several human diseases: the most serious include malignant external otitis, endophthalmitis, endocarditis, meningitis, pneumonia, and septicemia.

The environments in which these bacteria are most frequently found include soil, plants, and water. They can even be found on human and animal skin, without causing illness, in a process known as bacterial colonisation. Microbiological research can help establish the cause of certain infectious diseases, making it easier to choose the best treatment. This is why it is important to find a quick and easy way to identify these bacteria. A new study, published in the open-access journal BioRisk, explored this by applying spectroscopic techniques for quick analysis directly from an object, which, in this case, was turtle skin.

Sampling of biological material from turtle skin before further microbiological analysis and Raman spectroscopy. Credit Inta Umbraško

“Microbial organisms play key roles in animal health and ecology. The European pond turtle often lives in city Zoo gardens and private houses. Often, the most commonly found bacteria from turtle skin surfaces was Pseudomonas species,” says Aleksandrs Petjukevics of Daugavpils University, whose team conducted the study.

What is Raman spectroscopy?

“Classical microbiological research techniques have several disadvantages: first of all, it is a rather lengthy process. The minimum period is 3-4 days, but many days and even weeks may pass before the isolated pathogen is accurately identified, and it uses expensive chemicals and resources,” says Aleksandrs Petjukevics. As an alternative, spectrometry makes it possible to identify a prepared sample of a microorganism while reducing the identification time to 5-30 minutes.

Renishaw inVia Raman Microscope. Credit Inta Umbraško 

Raman spectra represent an ensemble of signals that arise from the molecular vibrations of individual cell components of gram-negative bacteria, integrating over proteins, lipids, and carbohydrates. “This non-destructive chemical analysis technique provides detailed information about chemical structure, phase and polymorphy, crystallinity, and molecular interactions. It is based on the interaction of light with the chemical bonds within a material,” he says.

Research results and implications

The study’s findings showed that Pseudomonas bacteria can be quickly identified using this detection technology, with excellent analytical and diagnostic sensitivity, making it a dependable technique.

Unlike other methods, this technique does not require long-term bacterial sample preparation and expensive reagents, which makes it promising for studying other strains of bacteria.

“This study demonstrated the ability to obtain fast and high-quality Raman spectra of bacterial cells using vibrational spectroscopy,” says Aleksandrs Petjukevics. “Raman spectroscopy can be considered an express method for identifying microorganisms. It holds great potential for future research involving different microorganisms.”

Research article: 

Petjukevičs A, Umbraško I, Škute N (2023) Prospects and possibilities of using Raman spectroscopy for the identification of Pseudomonas aeruginosa from turtle Emys orbicularis (Linnaeus, 1758) skin. BioRisk 21: 19-28. https://doi.org/10.3897/biorisk.21.111983

Psychedelic rock gecko among dozens of species in need of further conservation protection in Vietnam

Researchers recommend IUCN CPSG’s One Plan Approach to Conservation measures, which include both habitat conservation and increasing the number of threatened species in breeding stations and zoos. 

Endangered psychedelic rock gecko (Cnemaspis psychedelica)
Photo by Thomas Ziegler. Licence: CC-BY.

Further conservation measures are required to protect Vietnamese reptiles, such as the psychedelic rock gecko (Cnemaspis psychedelica), from habitat loss and overharvesting, concludes a new report, published in the open-access scientific journal Nature Conservation.

Having identified areas of high reptile diversity and large numbers of endangered species, the study provides a list of the 50 most threatened species as a guide for further research and conservation action in Vietnam. 

The study, based on the bachelor thesis of Lilli Stenger (University of Cologne, Germany), recommends IUCN CPSG’s One Plan Approach to Conservation measures, which, next to improved habitat conservation, also involves increasing the number of threatened species in breeding stations and zoos to maintain populations suitable for restocking. 

Co-authors of the report are Anke Große Hovest (University of Cologne, Germany), Truong Quang Nguyen (Vietnam Academy of Science and Technology), Cuong The Pham, (Vietnam Academy of Science and Technology), Anna Rauhaus (Cologne Zoo, Germany), Minh Duc Le (Vietnam National University), Dennis Rödder (Leibniz Institute for the Analysis of Biodiversity Change, Germany) and Thomas Ziegler (University of Cologne and Cologne Zoo, Germany).

“Modern zoos, as well as local facilities, can play a crucial role in not only conducting or financially supporting in situ conservation projects, that is to say in nature, but also by protecting species from extinction through maintaining ex situ assurance colonies to reinforce in situ conservation programs,”

said Prof. Dr. Thomas Ziegler, Vietnam conservation team member and coordinator from Cologne Zoo, Germany.
Endangered Truong Son pit viper or Quang Binh pit viper (Trimeresurus truongsonensis).
Photo by Thomas Ziegler. Licence: CC-BY.

The scientists identified 484 reptile species known to Vietnam, aiming to provide a baseline to authorities, conservationists, rescue centers, and zoos, so they can follow up with appropriate conservation measures for endangered species. They note that the number is likely to go up, as the country is regarded as a top biodiversity hotspot, and the rate of new reptile species discoveries remains high.

According to the IUCN Red List, 74 of the identified species are considered threatened with extinction, including 34 endemic species. For more than half of Vietnam’s endemic reptiles (85 of 159), the IUCN Red List status is either missing or outdated, and further research is imperative for these species, the researchers say.

Vietnam has a high level of reptile diversity and an outstanding number of endemic species. The species richness maps in the study revealed the Central Annamites in central Vietnam to harbor the highest endemic species diversity (32 species), which highlights it as a site of particular importance for reptile conservation. Alarmingly, a protected area analysis showed that 53 of the 159 endemic species (33.2%) including 17 threatened species, have been recorded exclusively from unprotected areas, such as the Psychedelic Rock Gecko.

The Critically Endangered Annam pond turtle (Mauremys annamensis) is one of the most endangered turtle species in Vietnam and in the world. It is not known from any protected area. Despite likely being extinct in the wild,  ex situ conservation programs have been implemented in time with a high number of individuals being kept and bred in zoos and stations and now ready for restocking actions.
Photo by Thomas Ziegler. Licence: CC-BY.

In General, Vietnam is considered a country with high conservation priority due to habitat loss and overharvesting for trade, traditional medicine and food.

Globally, reptiles are considered a group of special conservation con­cern, as they play an important role in almost all ecosystems and often have relatively small distri­bution ranges, making them especially vulnerable to human threats.

***

Original source:

Stenger L, Große Hovest A, Nguyen TQ, Pham CT, Rauhaus A, Le MD, Rödder D, Ziegler T (2023) Assessment of the threat status of reptile species from Vietnam – Implementation of the One Plan Approach to Conservation. Nature Conservation 53: 183 221. https://doi.org/10.3897/natureconservation.53.106923

***

Follow Nature Conservation on Facebook and Twitter.

Comprehensive review of Burmese python science released

A USGS-led publication offers a new look at the constrictor that has invaded southern Florida.

The U.S. Geological Survey has released a comprehensive synthesis of Burmese python science, showcasing results from decades of USGS-funded research on python biology and potential control tools. The giant constrictor now represents one of the most challenging invasive species management issues worldwide.

Occurrence records were obtained from a large geospatial database of invasive species reports (Early Detection & Distribution Mapping System) submitted by both researchers and the public. The map illustrates the chronology of python removals across southern Florida and represents the best professional estimate of the invasion front, which is not exact and will change over time.

“For the first time, all the science on python ecology and potential control tools has been consolidated into one document, allowing us to identify knowledge gaps and important research areas to help inform future python management strategies. This synthesis is a major milestone for Burmese python research; six years in the making, it represents the consensus of the scientific community on the python invasion,” said USGS Ecologist Jacquelyn Guzy, lead author for the publication.

Burmese pythons were confirmed to have an established breeding population in Everglades National Park in 2000. The population has since expanded and now occupies much of southern Florida. They consume a wide range of animals and have altered the food web and ecosystems across the Greater Everglades.

The synthesis, which pulled together the expertise of scientists and managers nationwide, provides a breakdown of 76 prey species found in python digestive tracts, which primarily included mammals and birds, as well as two reptile species, American alligator and Green iguana. However, as the scientists noted, the number of animals may increase as the python population expands to new areas.

It also reports new findings including a summary of body sizes of pythons measured by state and federal agencies between 1995 and 2022, as well as descriptions of length-mass relationships, the estimated geographic spread of pythons over time, and a comprehensive assessment of all control tools explored to date.

Illustration by Natalie Claunch demonstrates typical features of the Burmese python.

One of the hallmark issues of the Burmese python invasion has been the difficulty of visually detecting or trapping pythons in an immense natural landscape, Guzy said. Pythons do not readily enter any type of trap, occupy vast stretches of inaccessible habitat, and camouflage extremely well within the subtropical Florida environment.

“Extremely low individual python detection rates hamper our ability to both estimate python abundance and expand control tools across the extensive natural landscape” says USGS Research Ecologist Kristen Hart, an author of the publication.

Because the Burmese python has spread throughout southern Florida, eradication of the population across the landscape is not possible with existing tools, the publication states. However, researchers at USGS and partner institutions are exploring potential novel techniques such as genetic biocontrol, that may one day provide an avenue towards larger-scale population suppression.

In the meantime, important areas of research according to the publication include reproductive life history and estimation of demographic vital rates such as survival, to help managers evaluate and refine existing control tools. With improved control tools managers may be able to reduce population expansion and minimize the future impact of pythons on the environment.

The USGS python research over the past decades has been largely supported by the USGS Greater Everglades Priority Ecosystem Sciences (GEPES) Program with additional support from the USGS Biothreats and Invasive Species program.

Research article:

Guzy JC, Falk BG, Smith BJ, Willson JD, Reed RN, Aumen NG, Avery ML, Bartoszek IA, Campbell E, Cherkiss MS, Claunch NM, Currylow AF, Dean T, Dixon J, Engeman R, Funck S, Gibble R, Hengstebeck KC, Humphrey JS, Hunter ME, Josimovich JM, Ketterlin J, Kirkland M, Mazzotti FJ, McCleery R, Miller MA, McCollister M, Parker MR, Pittman SE, Rochford M, Romagosa C, Roybal A, Snow RW, Spencer MM, Waddle JH, Yackel Adams AA, Hart KM (2023) Burmese pythons in Florida: A synthesis of biology, impacts, and management tools. NeoBiota 80: 1-119. https://doi.org/10.3897/neobiota.80.90439

Story originally published by the USGS. Republished with permission.

New species from a new country: A newly described gecko from Timor-Leste, the 4th youngest country in the world

For the first time, a new species of bent-toed gecko was described from the country, hinting at the unexplored diversity in the region.

Nestled amongst a chain of islands in the southern reaches of Southeast Asia, Timor-Leste occupies the eastern half of the island of Timor, the largest of the Lesser Sunda Islands that also include Bali and Komodo, the latter of which is home to the Komodo Dragon. In May 2002, Timor-Leste (officially the Democratic Republic of Timor-Leste) became the first sovereign nation in the 21st century and is currently the 4th youngest country in the world.

A view from the road between Dili and Baucau, Timor-Leste. Photo by Graham Crumb shared under a CC BY-SA 2.0 license.

Even though the country lies in the highly biodiverse region of Wallacea, its biodiversity is relatively poorly known, partly because decades of pre-independence violence and conflict have hindered biological surveys. In August 2022, a partnership between the Lee Kong Chian Natural History Museum (Singapore), Conservation International, and the Ministry of Agriculture and Fisheries of Timor-Leste conducted preliminary biological surveys across the eastern part of the island. The surveys specifically targeted remote and underexplored areas, such as the isolated mountain of Mundo Perdido (“Lost World” in Portuguese) and Nino Konis Santana National Park (NKS)—the first and largest national park in Timor-Leste.   

An aerial view of Nino Konis Santana National Park, Timor-Leste. Photo by UN Photo/Martine Perret under a CC BY-NC-ND 2.0 license

NKS is an enormous park that covers 1,236 square kilometers of land and is mainly characterized by lowland tropical forests. In it, there are several limestone caves of archaeological importance,  and it was in one of those caves that a new gecko species was found.

While surveying the Lene Hara cave during the day, a member of the research team caught a glimpse of a lizard scurrying on the ground before disappearing into a crevice. Dr. Chan Kin Onn, a herpetologist at the Lee Kong Chian Natural History Museum and the lead author of a study published in ZooKeys, sprung into action. Soon, he found himself wedged into a tight crevice in hopes of capturing the lizard.

Lene Hara cave, where the new species was found. Photo by Tan Heok Hui

“I couldn’t get to the lizard because the crack was too narrow, but I saw the rear half of its body and could tell that it was a bent-toed gecko from the genus Cyrtodactylus. New species of bent-toed geckos are being discovered all across Southeast Asia and due to the remoteness of the cave, the potential for this gecko to be a new species was high,” explained Dr. Chan.

Several hours later, under the cover of darkness, the team was back in the cave, this time equipped with flashlights. “Bent-toed geckos are usually nocturnal and can be skittish during the day. Our best chance at capturing them would be at night,” says Dr. Chan.True enough, after just one hour of looking, they collected ten specimens. A few weeks later, the gecko from Lena Hara cave was confirmed to be a new species based on DNA analysis and external morphological characteristics.

The new species of bent-toed gecko, Cyrtodactylus santana. Photo by Chan Kin Onn

The new species is named Cyrtodactylus santana, in reference to Nino Konis Santana National Park. The park’s name honors Nino Konis Santana, a freedom fighter who led the Falintil militia against the Indonesian occupation of Timor-Leste.

Even though past surveys have documented several populations of bent-toed geckos in Timor-Leste, none of them had been identified to the species level and thus, remain unnamed. Cyrtodactylus santana is the first bent-toed gecko in Timor-Leste formally described as a species.

The expedition also discovered several interesting plants and crabs that are currently being examined, all of which have the potential to be new species. “We have barely scratched the surface of Timor-Leste’s biodiversity. New discoveries can have profound impacts, because Timor-Leste is a substantial landmass bounded by deep sea trenches and is located at the fringe of the Wallacean Biodiversity Hotspot and Weber’s Line, a transitional zone between Oriental and Australasian fauna” remarked the researchers. Understanding the biodiversity of Timor-Leste could provide key insights into the divergence, evolution, and distribution of species, they believe.

Research article:

Chan KO, Grismer LL, Santana F, Pinto P, Loke FW, Conaboy N (2023) Scratching the surface: a new species of Bent-toed gecko (Squamata, Gekkonidae, Cyrtodactylus) from Timor-Leste of the darmandvillei group marks the potential for future discoveries. ZooKeys 1139: 107-126. https://doi.org/10.3897/zookeys.1139.96508

Follow ZooKeys on Twitter and Facebook.

Oldest Pterodactylus fossil found in Germany

The fossil, just described in a study in the journal Fossil Record, is about one million years older than other Pterodactylus specimens.

Pterosaurs, the flying reptiles of the dinosaur era, originated in the Late Triassic (227 million years ago) and became extinct at the end-Cretaceous extinction event (66 million years ago). With wing spans ranging from 1 to 12 meters, they dominated the world’s skies for more than 160 million years.

The first described and named pterosaur – and namesake of the whole group – is Pterodactylus from the famous Solnhofen Limestone of Bavaria, southern Germany. Originally described in 1784 by the Italian naturalist Cosimo Alessandro Collini, the fossil was considered to be an aquatic animal for 25 years, before Georges Cuvier found out it was a flying reptile belonging to a new, previously unrecognized group.

The oldest specimen of this iconic pterosaur was recently found near Painten, a small town in the southern part of the Franconian Alb in central Bavaria. The fossil, described in a study in the journal Fossil Record, is about one million years older than other Pterodactylus specimens.

The specimen was unearthed in 2014 during excavations in an active limestone quarry. It took more than 120 hours of meticulous mechanical work using pneumatic tools and needles before the researchers could study it. The research team behind the discovery are Felix Augustin, Andreas Matzke, Panagiotis Kampouridis and Josephina Hartung from the University of Tübingen (Germany) and Raimund Albersdörfer from the Dinosaurier Museum Altmühltal (Germany).

“The rocks of the quarry, which yielded the new Pterodactylus specimen, consist of silicified limestone that has been dated to the upper Kimmeridgian stage (around 152 million years ago)”, explains Felix Augustin of the University of Tübingen, who is the lead author of the study. “Previously, Pterodactylus had only been found in younger rocks of southern Germany belonging to the Tithonian stage that follows after the Kimmeridgian”.

The specimen is a complete, well-preserved skeleton of a small-sized individual. “Only a very small portion of the left mandible as well as of the left and right tibia is missing. Otherwise, the skeleton is nearly perfectly preserved with every bone present and in its roughly correct anatomical position”, the researchers write in their study.

With a 5-cm-long skull, the Painten Pterodactylus represents a rare “sub-adult” individual. “Generally, the Pterodactylus specimens are not evenly distributed across the full size range but predominantly fall into distinct size-classes that are separated by marked gaps. The specimen from Painten is a rare representative of the first gap between the small and large sizes,” explains Augustin. “The Painten Pterodactylus was of an intermediate, and rarely found, ontogenetic age at the time of its death, between two consecutive year-classes.”

The Painten quarry has yielded many other “exquisitely preserved fossils”, including ichthyosaurs, turtles, marine and terrestrial crocodile-relatives, and dinosaurs.  Many of them, like this new pterosaur specimen, are on display in the new Dinosaurier Museum Altmühltal in Denkendorf (Bavaria, Germany).

Research article:

Augustin FJ, Kampouridis P, Hartung J, Albersdörfer R, Matzke AT (2022) The geologically oldest specimen of Pterodactylus: a new exquisitely preserved skeleton from the Upper Jurassic (Kimmeridgian) Plattenkalk deposits of Painten (Bavaria, Germany). Fossil Record 25(2): 331-343. https://doi.org/10.3897/fr.25.90692

Follow Fossil Record on Facebook and Twitter.

Interview: description of two African shovel-snout snakes from Angola

The small number of collected samples, coupled with the animals’ curious skull structure and anomalous ecology, has puzzled scientists for decades.

Recently, our journal ZooKeys published a paper describing two new species of African Shovel-snout snakes: Prosymna confusa, endemic to dry habitats in southwestern Angola, and P. lisima, associated with the Kalahari sands.

We interviewed the authors of the study to find out how they made this discovery and what it means for biodiversity. Werner Conradie (South Africa), the leader of the project, collected most of the specimens and did all the morphological examinations and taxonomy work. Chad Keates (South Africa) conducted the molecular analysis, Javier Lobon-Roviara (Spain) did the CT-scanning skull reconstruction, and Ninda Baptista (Angola) performed fieldwork.

Interview with Werner Conradie, Chad Keates, Ninda L. Baptista, and Javier Lobón-Rovira

Why has the taxonomy of African Shovel-snout snakes been so complicated?

While widespread, the group is infrequently encountered, resulting in a relatively low number of samples being collected through time. This, coupled with the animals’ curious skull structure and anomalous ecology, has puzzled scientists for decades. While we finally seem to have a grip on the higher-level taxonomy (their relatedness to other snakes), their relations among each other remain incomplete. One thing is for sure, the next few years will likely result in the discovery and description of many more.

Live P. confusa. Photo by Bill Branch

Please walk us through your research process.

Similar to solving a puzzle, the process starts off by acquiring the pieces. The pieces come in the form of samples, collected by us and by scientists, accessioned in museums all over the world. Once all the pieces are in one place, it becomes our job to piece them all together and build a picture of the taxonomy of the group. We start in the corners, ironing out our hypotheses. Once we have the outline, a theory of the species composition of the group, we get to work building the puzzle using evidence from multiple different species concepts.

We use genetics, morphology, ecology, and skull osteology and through fitting these concepts together we start to see our species and the boundaries between them. Large chunks of the puzzle begin to take shape, revealing our picture with ever-increasing clarity. As we find, orientate, and fit the last pieces of our puzzle through the creation and completion of the manuscript, we finish the puzzle and in doing so provide you with the complete picture: the updated taxonomy of Angolan shovel-snout snakes.

When did you realize you were dealing with new-to-science species?

It’s hard to pinpoint exactly, but the idea grew from the moment Werner Conradie picked up the first snake whilst on the first expedition with the Okavango Wilderness Project, back in 2016. Funded by National Geographic and managed by the Wild Bird Trust, this paper would not be possible without them, because without the transport and logistical support, most of our dataset would never have been found.

What makes these new species unique?

With the aid of modern nano computerised tomography scanning technology, we observed that one of the new species has a well-developed postorbital bone. We still don’t know the purpose of this postorbital bone and why it is absent in the others. We believe it might serve as additional muscle attachment points that aids them on feeding on different kinds of lizard eggs than the others.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

This is also the first new species of Shovel-snouted snake described in nearly 30 years.

In the late 1980’s Zimbabwean herpetologist, Donald Broadley noted that eastern populations of the Angolan Shovel-snouted snake may be a different species. It took nearly 50 years before more material was collected and with the aid of modern technology, like genetic analysis and CT-scanning, we could show he was correct and described it as a new species.  

What can you tell us about their appearance and behavior?

The Shovel-snouted snakes are unique snakes with a beak-like snout that allow them to dig into sandier soils. Thus most of the time they are below the surface and only come out after heavy rains. They also possess unique backward pointed lancet-shaped teeth that they use for cutting open lizard eggs. These snakes specialize in feeding mostly on soft-shell lizard eggs. They find a freshly laid clutch of eggs and one by one, they swallow them whole. They cut them laterally so that the yolk can be released.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

Do they interact with people?

These snakes may be encountered by people tending to their lands or crossing the road, but, for the most part, they are incredibly secretive. Because of their ability to burrow in soft soils, these animals are infrequently encountered, only forced to the surface during heavy rain and by the urge to breed and to feed. If encountered, however, these snakes pose absolutely no harm, as they possess no venom. When threatened, these animals may wind themselves into a tight coil to protect their heads.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

What is the ecological role of these snakes?

Much like most small vertebrates, these animals form an important component of the food web. They consume lizard eggs, exerting a regulatory force on newborn lizards, and serve as food for larger snakes, rodents, and birds. Animals like these form the bedrock of any healthy ecosystem as they contribute to energy exchanges and the flow of nutrients down and up and down again.

Bonus question: how did you get involved in herpetology?

Everyone in the group has a soft spot for reptiles and amphibians’. Irrespective of our contrasting upbringing and our nation of origin, we all came to herpetology independently. While it is hard to unpack the moment that we all fell in love with these weird and wonderful creatures, one thing is for sure, it’s a lifetime commitment.

About the Authors

Werner Conradie holds a Masters in Environmental Science (M. Env. Sc.) and has 17 years of experience with southern African herpetofauna, with his main research interests focusing on the taxonomy, conservation, and ecology of amphibians and reptiles. Werner has published numerous principal and collaborative scientific papers, and has served on a number of conservation and scientific panels, including the Southern African Reptile and Amphibian Relisting Committees. He has undertaken research expeditions to many African countries including Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa, Zambia, and Zimbabwe. Werner is currently the Curator of Herpetology at the Port Elizabeth Museum (Bayworld), South Africa.

Chad Keates is a post-doctoral fellow at the African herpetology lab at Port Elizabeth museum (Nelson Mandela University, based in the SAIAB Genetics Platform). Having recently completed his PhD in Zoology, Chad’s research focusses are African herpetofauna and their evolutionary and ecological structuring. In Chad’s short professional career, he has published several principal and collaborative peer-reviewed scientific papers and book chapters. Chad is also a strong advocate for reptile and amphibian awareness and regularly conducts walks, talks and presentations as well as produces numerous popular scientific outputs on the subject. He has undertaken numerous expeditions to many African countries such as Angola, Zambia and South Africa with a variety of both professional and scientific organisations.

Ninda Baptista is an Angolan biologist, holds an MSc degree in Conservation Biology from the University of Lisbon, and is currently enrolled for a PhD in Biodiversity, Genetics and Evolution in the University of Porto, addressing the diversity of Angolan amphibians. Over the last 12 years she has worked on environmental consulting, research and in-situ conservation projects in Angola, including priority areas for conservation such as Kumbira, Mount Moco and the Humpata plateau. She conducted herpetological surveys throughout the country and created a herpetological collection (Colecção Herpetológica do Lubango), currently deposited in Instituto Superior de Ciências da Educação da Huíla (ISCED – Huíla). Ninda is an author of scientific papers and book chapters on Angolan herpetology and ornithology. She also works on scientific outreach, producing magazine articles, books for children and posters about the country’s biodiversity in collaboration with Fundação Kissama.

Javier Lobón-Rovira is PhD student at Cibio, Portugal, working to unveil evolutionary pattern in southern Africa gekkonids. As Biologist he has worked in different conservation projects and groups around the globe, including reptiles and amphibians at Veragua Rainforest Foundation, Costa Rica or big mammals in Utah, USA. However, as photographer, he has collaborated with different Conservation NGOs in Africa, America and Europe and manage to publish on International Journals as National Geographic, Africa Geographic or Nature’s Best Magazine. 

Read the study:

Conradie W, Keates C, Baptista NL, Lobón-Rovira J (2022) Taxonomical review of Prosymna angolensis Boulenger, 1915 (Elapoidea, Prosymnidae) with the description of two new species. ZooKeys 1121: 97-143. https://doi.org/10.3897/zookeys.1121.85693

Follow ZooKeys on Facebook and Twitter.

Celebrating World Lizard day with amazing discoveries

This August 14, we’re looking back to the most impressive lizard discoveries we’ve witnessed throughout the years.

World Lizard Day is a great way to raise awareness of these curious reptiles and their conservation needs; it is also a good excuse to look at pretty lizard pictures! Today, we’re doing a bit of both.

At Pensoft, we’ve published many new lizard species, some of them rare and truly fascinating. This August 14, we’re looking back to the most impressive lizard discoveries we’ve witnessed throughout the years.

The Dracula lizard

This beautiful lizard, described in 2018, comes from the Andean slopes of southwestern Colombia and northwestern Ecuador. It inhabits evergreen low montane forests, and is only known from a relatively small territory of approximately 1582 km2. Its prey most often consists of insects, spiders and worms.

Contrary to what you might think, this species was not named after the eponymous vampire count, but rather after some beautiful tropical flowers.

The specific epithet dracula refers to the Dracula Reserve, which is located within the lizard’s distribution and near its type locality. The Reserve protects an area with a high diversity of orchids of the genus Dracula.

Published in ZooKeys.

The tiny chameleon

This lizard friend, known as Brookesia tedi, is less than 3 cm long! It is more than ten times smaller than the longest known chameleon, Furcifer oustaleti. Its size makes it difficult to find, and as a result, challenging to study. Its description, published in 2019, helped resolve a 50-year old identity question.

Living at 1300 m above sea level on the Marojejy massif in northeastern Madagascar, Brookesia tedi lives is brown in colour, its tail and the back of its head grey.

The researchers consider it Vulnerable but worry that improper protection on Marojejy, as well as fires, could rapidly drive the species to becoming Critically Endangered.

Published in Zoosystematics and Evolution.

The charismatic wood lizard

Enyalioides feiruzae is a colourful and highly variable lizard – especially its males, who can have brownish turquoise, gray, or greenish brown backs traced with pale lines. Females, in turn, can be greenish brown or floury brown, with faint dark brown lines on their back, limbs and tail, and spots on the sides. The team behind its discovery spent seven years in the area searching for amphibians and reptiles before describing it.

The species comes from the Tropical Andes, and more specifically – from the Huallaga River basin, an area which is still poorly studied because for a long time it was disturbed by civil wars.

The Feiruz wood lizard was named after another reptile, Feiruz the iguana – “muse and lifelong friend”.

The spotted monitor lizard

Mussau is a small island in northeastern Papua New Guinea. The top predator on it? A lizard.

Varanus semotus has been isolated from related species for an estimated one to two million years, with its closest relatives several hundred kilometers away.

Even so, science discovered it only recently.

The one-meter-long lizard has a black body with yellow and orange markings and a pale yellow tongue, with a turquoise to blue tail. These animals “will eat just about anything they can catch and kill,” study author Valter Weijola told the Washington Post.

As the only large terrestrial generalist predator and scavenger on the island, Varanus semotus may fill an important ecological function, making it of particular conservation concern.

Published in ZooKeys.

The black iguana

What makes Iguana melanoderma so distinct is its black color; in fact, it only gets blacker with age. The species was discovered in Saba and Montserrat islands, the Lesser Antilles (Eastern Caribbean), to which it is endemic.

However, it is threatened by unsustainable harvesting (including pet trade), and competition and hybridization from invasive alien iguanas from South and Central America.

A greater focus on biosecurity, the minimization of hunting, and habitat conservation, would help its conservation, the researchers write in their paper.

In Saba, Iguana melanoderma lives on cliffs, in trees and bushes, in shrublands, and deciduous woodlands. It lives in a foggy and cool environment up to about 500 m a.s.l. and sunbathes as soon as the sun rises.

Published in ZooKeys.

Bonus: Illegal lizard trade might be closer than you think

Dubbed “miniature Godzilla” and “the Holy Grail of Herpetology,” the earless monitor lizard is endemic to Borneo. Legally, it can neither be traded within Indonesia, Malaysia and Brunei, nor exported out of them.

Even so, reptile enthusiasts and unscrupulous traders have long been smuggling small numbers of earless monitor lizards, eventually bringing them to Europe.

A new study reported that accredited zoos have acquired individuals of the protected lizard, without any evidence of legal export.

“Zoos that continue to obtain animals that have been illegally acquired, directly or indirectly, are often fuelling the illegal wildlife trade, supporting organised crime networks and possibly contributing to the decline in some species,” Vincent Nijman, author of the study, told us.

Published in Nature Conservation.