A provisional checklist of European butterfly larval foodplants

For the first time, a list of the currently accepted plant names utilised by 471 European butterfly larvae is presented, with references.

Guest blog post by Harry E. Clarke, Independent Researcher

5th instar Swallowtail larvae feeding on Milk-parsley.

Many books on butterflies publish lists of their larval foodplants. However, many of these lists of larval foodplants have been copied from previous lists, which in turn have been copied from previous lists. Consequently, errors have crept in, and many plant names have long been superseded. This can result in duplicates in the list, with the same plant being given two different names. Most plant lists do not include the authority, which can make it difficult or impossible to identify which plant is being referred to. Some of these plants may not be used by butterflies in Europe, but elsewhere in their range. Or the plants may have been used in breeding experiments, but not used by the butterflies in the wild.

Many of these publications providing the larval foodplants of butterflies only provide the binomial name, without specifying the author. This can create problems in knowing which species of plant is being used, as the same plant name has been used in the past by different authors to describe different species. In some cases, distribution can be used to determine the correct species, but plants can often have similar distributions. For example, in the World Checklist of Vascular Plants, there are 40 entries for the plant with the scientific name Centaurea paniculata, which refer to thirteen different accepted species, depending on authors, subspecies, and variety or form.

Not quite so simple: updating the current lists of larval foodplants

With climate change and habitat loss threatening numerous species, the conservation of butterflies (and other animals) is becoming more important. Whilst many factors determine the distribution of butterflies, such as temperature and rainfall, their survival depends solely on the kinds of plants their larvae eat. Accurate lists of larval foodplants are therefore important to find out where to direct limited conservation resources for the best result.

What started out as a straightforward job of updating the existing lists of larval foodplants with currently accepted names turned out to be a far bigger job. Many of the lists are incomplete, and may vary throughout the range of the butterfly. Here, errors have crept in too. Many references provide incomplete, unverifiable information. Many species of butterfly lay their eggs off-host, rather than on the host plant. For example, the Silver-washed Fritillary (Argynnis paphia)oviposits on tree trunks above where Viola species are growing. Consequently, oviposition records need to be treated with caution, depending on the species.

What do butterfly larvae eat, and why does it matter?

Butterfly larvae can be very fussy about which plants they can use. 20% of European butterfly larvae are monophagous, feeding on just one species of plant. 50% are oligophagous, feeding on a few different closely related plants, whilst 30% are polyphagous feeding on plants in many different families. The Holy Blue (Celastrina argiolus) can utilise plants in an astonishing 19 different families.

The oligophagous butterflies can be divided into two groups:

  • Oligophagous-monophagous (OM) – feeding on one plant species in one region, and another species in another region.
  • Oligophagous-polyphagous (OP) – feeding on several closely related species of plants throughout their range, usually in the same genus, or a closely related genus.
4th instar Small Tortoiseshell feeding on Common Nettle.

Plant preferences are only known for a few species of butterflies. For example, the English race of the Swallowtail (Papilio machaon) feeds on Milk-parsley (Peucedanum palustre), whereas in the rest of Europe it has been recorded on 62 other plants. The main larval foodplant of the Small Tortoiseshell (Aglais urticae) is Common Nettle(Urtica dioica), although it will occasionally use other plants.

The survivability of larvae on different plants is largely unknown, except in a few cases where the butterfly species has been studied in detail. There are plants that larvae may be able to eat, but that would likely not help them survive to pupation.

Two species are known to switch their larval foodplant during their second year of development. The Scarce Fritillary (Euphydryas maturna),for example, switches from Ash (Fraxinus excelsior) to Guelder-rose (Viburnum opulus). The Northern Grizzled Skipper (Pyrgus centaureae) switches from Dwarf birch (Betula nana) to Cloudberry (Rubus chamaemorus).

The most delicious plants

For the first time, a list of the current accepted plant names utilised by 471 European butterfly larvae is presented, with references. Where possible, errors in previous lists have been removed. The list of larval foodplants doubled compared to previous published lists. This has resulted in a list of 1506 different plant species in 72 different families. 86 plant records are only known at the generic level. Larval foodplants of 25 butterfly species are currently unknown, which are mostly the “Browns” (Satyrinae), which probably feed on grasses (Poaceae), or possibly sedges (Cyperaceae).

Whilst most plant families are utilised by less than six butterfly species, a few plant families are particularly favoured, with grasses (Poaceae) and legumes (Fabaceae) being the most popular. Similarly, most plant species are only utilised by a few butterfly species, but the fine grasses Sheep’s Fescue (Festuca ovina) and Red Fescue (Festuca rubra) are favoured by a large number of butterfly species.

Taxonomic splits create problems. Where cryptic species are allopatric, records can be allocated on the basis of their distribution. But where cryptic species are sympatric, this will require a resurvey to determine the larval foodplants. It cannot be assumed that two cryptic butterfly species use the same plants, as something has to become different for them to evolve into separate species.

Looking forward

Future publications should ensure that old and ambiguous plant names are not used. Plant names should be specified with their full scientific name, as specified by the International Code of Nomenclature for algae, fungi, and plants. The World Checklist of Vascular Plants should be checked to ensure the currently accepted plant name is being used.

Fully documented records are needed of what larval foodplants butterfly larvae are utilising in the wild. To get a better understanding of usage, full details need to be recorded, including date, location, altitude, abundance, and larval stage. Abundance will help in the understanding of preferences. To allow records to be properly verified, evidence should be provided on how the larvae and plants were identified. Regional lists are also important – to help direct conservation efforts to the plants being used locally, rather than elsewhere. This list of larval foodplants is provided as a step towards a fully justified database, which will be updated as and when corrections are found. It highlights those 25 butterfly species whose larval foodplants are currently unknown.

4th instar Chequered Skipper (Carterocephalus palaemon) larvae feeding on Purple Moor-grass (Molinia caerulea).

Research article:

Clarke HE (2022) A provisional checklist of European butterfly larval foodplants. Nota Lepidopterologica 45: 139-167. https://doi.org/10.3897/nl.45.72017

First moth species on Alpenrose discovered

Discovery of the first moth species to mine the leaves of the highly poisonous Alpine rose

 Rust-red alpine rose, one of the most popular alpine plants. Photo by Ingrid Huemer

An Austrian-Swiss research team was able to find a previously unknown glacial relic in the Alps, the Alpine rose leaf-miner moth. It is the first known species to have its caterpillars specializing on the rust-red alpine rose, a very poisonous, widely distributed plant that most animals, including moths and butterflies, strictly avoid. The extraordinary record was just published in the peer-reviewed scientific journal Alpine Entomology.

Poisonous host plant

The rust-red alpine rose (Rhododendron ferrugineum) is among the best-known and most attractive plants due to its flowering splendor – at least for humans. It is, in fact, a highly poisonous plant, strictly avoided by grazing animals. For insects, the alpine rose is attractive at most as a nectar plant; insect larvae, on the other hand, develop on it only in exceptional cases. This also applies to Alpine butterflies and moths, which leave Alpine roses largely untouched despite their wide distribution. Therefore, the discovery of a highly specialized species in the Alps came as a complete surprise.

Chance find

Since alpine roses are unattractive to caterpillars and no insect the entire Alpine region was previously known to specialize on them, butterfly and moth experts had considered them rather uninteresting and ignored them in their research. The discovery of the alpine rose leaf-miner wasn’t the result of a targeted search: it was a pure stroke of luck.

During a cloudy spell in July this year, researchers surveying the butterflies in Ardez in the Engadine valley, Switzerland, happened to take a break exactly at an infested alpine rose bush. 

“The accidental sighting of the first caterpillar in an alpine rose leaf was an absolute adrenaline rush, it was immediately clear that this must be an extraordinary species,”

Peter Huemer, researcher and head of the natural sciences department of the Tyrolean State Museums

Peter Huemer, researcher and head of the natural sciences department of the Tyrolean State Museums, and Swiss butterfly and moth expert Jürg Schmid came back in late July and early August to look for caterpillars and pupae and find out more about this curious insect. The extended search yielded evidence of a stable population of a species that was initially a complete enigma. 

Life in the leaf

The alpine rose leaf-miner moth drills through the upper leaf skin and into the leaf interior immediately after the caterpillar hatches. The caterpillar then spends its entire life until pupation between the intact leaf skins, eating the leaf from the inside. Thanks to this behavior, the caterpillar is just as well protected from bad weather as from many predators such as birds, spiders, or some carnivore insects. The feeding trail, called a leaf mine, begins with a long corridor and ends in a large square-like mine section. The feces are deposited inside this mine. When the time comes for pupation, the caterpillar leaves the infested leaf and makes a typical web on the underside or a nearby leaf. With the help of several fine silk threads, it produces an elaborate “hammock”, in which the pupation finally takes place. In the laboratory, after about 10 days, the successful breeding to a moth succeeded, with a striking result.

Enigmatic glacial relic

Final instar larva of the alpine rose leaf-miner moth on Rhododendron ferrugineum in Ardez, Graubünden, Switzerland. Photo by Jürg Schmid

Huemer and Schmid were surprised to find out that the moths belonged to a species that was widespread in northern Europe, northern Asia and North America – the swamp porst leaf-miner butterfly Lyonetia ledi. By looking at its morphological features, such as wing color and pattern, and comparing its DNA barcodes to those of northern European specimens, they were able to confirm its identity.

Habitat of the alpine rose leaf-miner moth in Engadine/Switzerland with Rhododendron ferrugineum. Photo by Jürg Schmid

The Engadine population, however, is located more than 400 km away from the nearest other known populations, which are on the border of Austria and the Czech Republic. Furthermore, the species lives in northern Europe exclusively on swamp porst and Gagel bush – two shrubs that are typical for raised bogs and absent from the Alps. However, the researchers suggest that in earlier cold phases – some 22,000 years ago – the swamp porst and the alpine rose did share a habitat in perialpine lowland habitats north of the Alps. It is very likely that after the last cold period and the melting of the glaciers, some populations of the species shifted their host preference from the swamp porst to the alpine rose. The separation of the distribution areas of the two plants caused by subsequent warm phases inevitably led to the separation of the moth populations. 

Extinction risk

The Alpine Rose Leaf-miner Moth is so far only known from the Lower Engadine. It lives in a steep, north-exposed, spruce-larch-pine forest at about 1,800 m above sea level. The high snow coverage in winter and the largely shady conditions in summer mean that alpine roses don’t get to bloom there. The scientists suspect that the moth species can still be discovered in places with similar conditions in the northern Alps, such as in neighboring Tyrol and Vorarlberg. Since the moth is likely nocturnal and flies late in the year, probably hibernating in the adult stage, the search for the caterpillars and pupae is more promising. However, the special microclimate of the Swiss location does not suggest that this species, which has so far been overlooked despite 250 years of research, is widespread. On the contrary, there are legitimate concerns that it could be one of the first victims of climate change.

Research article:

Huemer P, Schmid J (2021) Relict populations of Lyonetia ledi Wocke, 1859 (Lepidoptera, Lyonetiidae) from the Alps indicate postglacial host-plant shift to the famous Alpenrose (Rhododendron ferrugineum L.). Alpine Entomology 5: 101-106. https://doi.org/10.3897/alpento.5.76930

New alpine moth solves a 180-year-old mystery

Butterflies and moths (order Lepidoptera) are one of the most diverse animal groups. To date, scientists have found as many as 5,000 species from the Alps alone. Having been a place of intensive research interest for 250 years, it is considered quite a sensation if a previously unknown species is discovered from the mountain range these days. This was the case when a Swiss-Austrian team of researchers described a new species of alpine moth in the open-access, peer-reviewed journal Alpine Entomology, solving a 180-year-old mystery.

Decades of research work

Initially, the team – Jürg Schmid, a full-time dentist, author and passionate butterfly and moth researcher from Switzerland, and Peter Huemer, head of the natural science collections of the Tyrolean State Museums in Innsbruck and author of more than 400 publications, needed a lot of patience.

Habitat of Dichrorampha velata. Photo by Jürg Schmid

Almost thirty years ago, in the 1990s, the two researchers independently discovered the same moth species. While they found it was similar to a moth of the leaf-roller family Tortricidae and commonly named as Dichrorampha montanana which had been known to science since 1843, it was also clearly different. Wing pattern and internal morphology of genitalia structures supported a two-species hypothesis. Moreover, the two were found at the same time in the same places – a further indication that they belong to separate species. Extensive genetic investigations later confirmed this hypothesis, but the journey of presenting a new species to science was far from over.

The Hidden Alpine Moth

To “baptise” a new species and give it its own name, scientists first have to check that it hasn’t already been named. This prevents the same species from having two different names, and essentially means looking at descriptions of similar species and comparing the new one against them to prove it is indeed unknown to science. In the case of this new moth, there were six potentially applicable older names that had to be ruled out before it could be named as new.

Dichrorampha velata. Photo by Jürg Schmid

Intensive and time-consuming research of original specimens in the nature museums of Paris, Berlin, Frankfurt and London eventually led to the finding that all six ancient names actually referred to one and the same species – Dichrorampha alpestrana, which has been known since 1843 and had to be adopted as the valid older name for Dichrorampha montanana as having been described a couple of months earlier. Similarly, all other available names proved to belong to Dichrorampha alpestrana. The species discovered by Schmid and Huemer, however, was different, not yet named, and could finally be described as new to science. The authors chose to name it Dichrorampha velata – the Latin species name means “veiled” or “hidden,” pointing to the complicated story behind its discovery.

Lots of unanswered questions

The Hidden Alpine Moth is a striking species with a wingspan of up to 16 mm and a characteristic olive-brown color of the forewings with silvery lines. It belongs to a group of mainly diurnal moths and is particularly common locally in colorful mountain flower meadows. For now, we know that its distribution extends at least from Salzburg and Tyrol through southern Switzerland and the Jura to the French and Italian Alps, with isolated finds known from the Black Forest in Germany, but the researchers believe it might have a wider range in Central Europe.

The biology of the new species is completely unknown, but Huemer and Schmid speculate that its caterpillars may live in the rhizome of yarrow or chrysanthemums like other species of the same genus. As with many other alpine moths, there is a strong need for further research, so we can get a better understanding of this fascinating insect.

Original source:

Schmid J, Huemer P (2021) Unraveling a complex problem: Dichrorampha velata sp. nov., a new species from the Alps hitherto confounded with D. alpestrana ([Zeller], 1843) sp. rev. = D. montanana (Duponchel, 1843) syn. nov. (Lepidoptera, Tortricidae). Alpine Entomology 5: 37-54. https://doi.org/10.3897/alpento.5.67498

Development anomalies recorded for the first time in a rare tiger moth

The Menetries’ tiger moth (Arctia menetriesii) is one of the rarest and most poorly studied Palaearctic moth species. Even though its adult individuals are large and brightly coloured, they are difficult to spot, because they aren’t attracted to light, they’re not active at night, and they fly reluctantly. Currently, the species only inhabits two countries – Finland and the Russian Federation, and is included in the Red Lists of both, as Data Deficient in the former and Vulnerable in the latter.

Live male adult of Arctia menetriesii. Photo by Evgeny Koshkin

For 13 years, researcher Evgeny Koshkin of the Institute of Water and Ecology Problems of the Far Eastern branch of the Russian Academy of Sciences kept searching for the elusive Menetries’ tiger moth in its habitat in the Bureinsky Nature Reserve, 400 km north of Khabarovsk, Russia, but he only ever found it in 2018, in what was the first record of this species in 34 years in this region. That’s how rare it is.

Eggs of Arctia Menetrisii. Photo by Evgeny Koshkin

After collecting eggs from a female moth, Koshkin documented the species’ biology under laboratory conditions and described its immature stages in the open-access, peer-reviewed scientific journal Nota Lepidopterologica. For the first time, detailed photographs of all developmental stages of this species have been published. 

In laboratory conditions, the development cycle of the Menetries’ tiger moth from egg laying to an adult individual lasts between 72 and 83 days. Out of the 105 eggs that the female moth laid in captivity, however, only 13 transformed into adults, and out of those, only four were able to spread their wings. In the last larval instar, about 75% of the larvae died immediately before pupation, and a number of metamorphosis anomalies were observed in the ones that survived.

Metamorphosis anomalies in Arctia menetriesii (L-R): lethal larva-pupa intermediate; female emerged from larva-pupa intermediate – head and thorax left covered with the larval cuticle; female emerged from larva-pupa intermediate – larval cuticle removed; pupa with insignificant anomalies; pupa with severe anomalies. Photos by Evgeny Koshkin

This is the first time that such anomalies and morphological defects of pupae are documented in the Menetries’ tiger moth, and it is possible that they occur in a similar way in nature. Some metamorphosis anomalies manifested as larva-pupa intermediates due to disrupted molting, and pupae with severe anomalies produced adults that were unable to inflate their wings.

Seventh instar larva of Arctia Menetresii. Photo by Evgeny Koshkin

It is possible that the diet of the laboratory-reared larvae might have had something to do with the high mortality rate before pupation and the metamorphosis anomalies during it. Some of the larvae were fed on Aconitum leaves and larch needles during certain periods of their lives, and it is possible that toxic compounds found in these plants might have impacted their health and development. More research on larval diet would be needed, however, to confirm or reject this hypothesis.

Original source:

Koshkin ES (2021) Life history of the rare boreal tiger moth Arctia menetriesii (Eversmann, 1846) (Lepidoptera, Erebidae, Arctiinae) in the Russian Far East. Nota Lepidopterologica 44: 141-151. https://doi.org/10.3897/nl.44.62801

Carried with the wind: mass migration of Larch Budmoth to the Russian High Arctic

Live Larch Budmoth walking on tundra, Vize Island, air temperature +3C, 30.07.2020. Photo by Dr Maria Gavrilo

Arctic habitats have fascinated biologists for centuries. Their species-poor insect faunas, however, provide little reward for entomologists – scientists who study insects – to justify spending several weeks or even months in the hostile environments of tundra or polar deserts. As a result, data on insects from the High Arctic islands are often based on occasional collecting and remain scarce.

Vize Island has uniform flatland landscape with lichen-moss vegetation typicalfor High-Arctic islands. Photo by Dr Maria Gavrilo

Vize Island, located in the northern part of the Kara Sea, is one of the least studied islands of the Russian High Arctic in terms of its biota. Scientists Dr Maria V. Gavrilo of the Arctic and Antarctic Research Institute in Russia and Dr Igor I. Chupin of the Institute of Systematics and Ecology of Animals in Russia visited this ice-free lowland island in the summer of 2020. 

“Our expedition studied the ecology of Ivory Gull”, Maria Gavrilo says, “but we also looked for other wildlife.” Because of the lack of data, scientists appreciate any observation on insects they can get from the High Arctic.

On the island, the team found hundreds of small moths. They were identified by Dr Mikhail V. Kozlov of the University of Turku, Finland, as Larch Budmoths – the first and only terrestrial invertebrate to ever be observed and collected on Vize Island. Their observations are published in the open-access, peer-reviewed journal Nota Lepidopterologica.

Live Larch Budmoth walking on tundra, Vize Island, air temperature +3C, 30.07.2020. The scientists believe that this moth arrived on the island two weeks earlier after travelling with the winds some 1200 km across the Arctic ocean. Photo by Dr Maria Gavrilo 

The scientists first observed live and freshly dead moths on the sandy banks of a pond near the meteorological station. Then, they saw hundreds of them at the sandy bottom of a river valley with shallow streams. Moths, single or in groups, were mostly found at the water’s edge, along with some fine floating debris. Despite extremely low daily temperatures (+2-5°C), flying moths were also spotted on several occasions.

On average, four dead moths per 10 square meters were counted along the sandy river bed during a survey on 19.07.2020. Photo by Dr Maria Gavrilo 

The larvae of Larch Budmoth feed on the needles of different coniferous trees. Because Vize Island is located 1000 km north of the tree limit, the scientists can be sure about the migratory origin of the moths observed on Vize Island. They were likely transported there on 12–14 July 2020 by strong winds coming from the continent. The nearest potential source population of Larch Budmoth is located in the northern part of the Krasnoyarsk Region, which means they travelled at least 1200 km.

“The Arctic islands will be colonised by forest insects as soon as changing environmental conditions allow the establishment of local populations.”

Dr Mikhail V. Kozlov, University of Turku

Importantly, some moths remained alive and active for at least 20 days after their arrival, which means that long-distance travel did not critically deplete resources stored in their bodies. The current changes in climate are making it easier for more southerly insects to invade species-poor areas in the High Arctic islands – provided they can reach them and survive there.

“The successful arrival of a large number of live moths from continental Siberian forests to Vize Island has once more demonstrated the absence of insurmountable barriers to initial colonisation of High Arctic islands by forest insects”, concludes Mikhail Kozlov, who has studied Arctic insects for decades. “The Arctic islands will be colonised by forest insects as soon as changing environmental conditions allow the establishment of local populations.”

***

Original source:

Gavrilo MV, Chupin II, Kozlov MV (2021) Carried with the wind: mass occurrence of Zeiraphera griseana (Hübner, 1799) (Lepidoptera, Tortricidae) on Vize Island (Russian High Arctic). Nota Lepidopterologica 44: 91–97. https://doi.org/10.3897/nl.44.63662

Over a century later, the mystery of the Alfred Wallace’s butterfly is solved

An over a century-long mystery has been surrounding the Taiwanese butterfly fauna ever since the “father of zoogeography” Alfred Russel Wallace described a new species of butterfly: Lycaena nisa, whose identity was only re-examined in a recent project looking into the butterflies of Taiwan. Based on the original specimens, in addition to newly collected ones, Dr Yu-Feng Hsu of the National Taiwan Normal University resurrected the species name and added two new synonyms to it.

Described by the “father of zoogeography” and co-author of the theories of evolution and natural selection, the species hasn’t been reexamined since 1866

An over a century-long mystery has been surrounding the Taiwanese butterfly fauna ever since the “father of zoogeography” Alfred Russel Wallace, in collaboration with Frederic Moore, authored a landmark paper in 1866: the first to study the lepidopterans of the island. 

Back then, in their study, Moore dealt with the moths portion and Wallace investigated the butterflies. Together, they reported 139 species, comprising 93 nocturnal 46 diurnal species, respectively. Of the latter, five species were described as new to science. Even though the correct placements of four out of those five butterflies in question have been verified a number of times since 1886, one of those butterflies: Lycaena nisa, would never be re-examined until very recently. 

In a modern-day research project on Taiwanese butterflies, scientists retrieved the original type specimen from the Wallace collection at The History Museum of London, UK. Having also examined historical specimens housed at the Taiwan Agricultural Research Institute, in addition to newly collected butterflies from Australia and Hong Kong, Dr Yu-Feng Hsu of the National Taiwan Normal University finally resolved the identity of the mysterious Alfred Wallace’s butterfly: it is now going by the name Famegana nisa (comb. nov.), while two other species names (Lycaena alsulus and Zizeeria alsulus eggletoni) were proven to have been coined for the same butterfly after the original description by Wallace. Thereby, the latter two are both synonymised with Famegana nisa.


Type specimen of Famegana nisa, collected by Wallace in 1866 (upper side).
Credit: Dr Yu-Feng Hsu (courtesy of NHM)
License: CC-BY 4.0

Despite having made entomologists scratch their heads for over a century, in the wild, the Wallace’s butterfly is good at standing out. As long as one knows what else lives in the open grassy habitats around, of course. Commonly known as ‘Grass Blue’, ‘Small Grass Blue’ or ‘Black-spotted Grass Blue’, the butterfly can be easily distinguished amongst the other local species by its uniformly grayish white undersides of the wings, combined with obscure submarginal bands and a single prominent black spot on the hindwing. 

However, the species demonstrates high seasonal variability, meaning that individuals reared in the dry season have a reduced black spot, darker ground colour on wing undersides and more distinct submarginal bands in comparison to specimens from the wet season. This is why Dr Yu-Feng Hsu notes that it’s perhaps unnecessary to split the species into subspecies even though there have been up to four already recognised.

Type specimen of Famegana nisa, collected by Wallace in 1866 (bottom side).
Credit: Dr Yu-Feng Hsu (courtesy of NHM)
License: CC-BY 4.0

***

Alfred Russel Wallace, a British naturalist, explorer, geographer, anthropologist, biologist and illustrator, was a contemporary of Charles Darwin, and also worked on the debates within evolutionary theory, including natural selection. He also authored the famed book Darwinism in 1889, which explained and defended natural selection. 

While Darwin and Wallace did exchange ideas, often challenging each other’s conclusions, they worked out the idea of natural selection each on their own. In his part, Wallace insisted that there was indeed a strong reason why a certain species would evolve. Unlike Darwin, Wallace argued that rather than a random natural process, evolution was occurring to maintain a species’ fitness to the specificity of its environment. Wallace was also one of the first prominent scientists to voice concerns about the environmental impact of human activity.

***

Original source: 

Hsu Y-F (2020) The identity of Alfred Wallace’s mysterious butterfly taxon Lycaena nisa solved: Famegana nisa comb. nov., a senior synonym of F. alsulus (Lepidoptera, Lycaenidae, Polyommatinae). ZooKeys 966: 153-162. https://doi.org/10.3897/zookeys.966.51921

Contact: 

Dr Yu-Feng Hsu, National Taiwan Normal University
Email: t43018@ntnu.edu.tw 

New subspecies of the rarest Palaearctic butterfly found in the Arctic Circle of Yakutia

An isolated population of the rarest Palaearctic butterfly species: the Arctic Apollo (Parnassius arcticus), turned out to be a new to science subspecies with distinct looks as well as DNA. Named Parnassius arcticus arbugaevi, the butterfly is described in a recent paper, published in the peer-reviewed, open-access scientific journal Acta Biologica Sibirica

“Thanks to the field studies of our colleague and friend Yuri Bakhaev, we obtained unique butterfly specimens from the Momsky Range in North-Eastern Yakutia. This mountain range, which is about 500 km long, has until now been a real ‘blank spot’ in terms of biodiversity research,”

explains the lead author of the study, Dr Roman Yakovlev, affiliated with Tomsk State University and Altai State University.

“With the kind permission of Mikhail Ivanov, Director of the Momsky National Park, entomological collections were carried out in various parts of the park. Hard-to-reach areas were visited with the help of inspector Innokenty Fedorov,”

he adds.

Then, amongst the specimens, the scientists spotted butterflies that at first they thought to be the rarest species for the entire Palaearctic: the Arctic Apollo, a species endemic to Russia and North-Eastern Yakutia, which had only been known from the Suntar-Khayata and Verkhoyansk mountains. 

Later, however, the team noticed that the curious specimens were larger on average, had more elongated wings compared to the Arctic Apollo, and were also missing the distinct dark spot on the wings. At that moment, they thought they were rather looking at a species currently unknown to science, and belonging to the Parnassius tenedius species group.

Eventually, following in-depth morphological and molecular genetic analyses, the scientists concluded that the population from the Momsky Range was in fact a new subspecies of the Arctic Apollo and can be distinguished by a number of external and DNA differences. They named the new subspecies Parnassius arcticus arbugaevi after German Arbugaev, Director of the ecological-ethnographic complex Chochur Muran, who provided comprehensive assistance to one of the co-authors of the study, Yu.I. Bakhaev, in his research in Yakutia. 

The new subspecies inhabits dry scree slopes with poor vegetation at an elevation of 1,400 m. So far, it is only known from the type locality, Momsky Range, North-Eastern Yakutia, where butterflies can be seen from early June to July. The wingspan in males range between 39 and 45 mm.

“Thus, we obtained significant new data on the distribution and taxonomy of one of the rarest butterflies in the North Palaearctic,”

say the researchers in conclusion.

Original source:

Yakovlev RV, Shapoval NA, Bakhaev YI, Kuftina GN, Khramov BA (2020) A new subspecies of Parnassius arcticus (Eisner, 1968) (Lepidoptera, Papilionidae) from the Momsky Range (Yakutia, Russia). Acta Biologica Sibirica 6: 93-105. https://doi.org/10.3897/abs.6.e55925

Scientists unravel the evolution and relationships for all European butterflies in a first

For the first time, a complete time-calibrated phylogeny for a large group of invertebrates is published for an entire continent. A German-Swedish team of scientists provide a diagrammatic hypothesis of the relationships and evolutionary history for all 496 European species of butterflies currently in existence. Their study provides an important tool for evolutionary and ecological research, meant for the use of insect and ecosystem conservation.

For the first time, a complete time-calibrated phylogeny for a large group of invertebrates is published for an entire continent. 

The figure shows the relationships of the 496 extant European butterfly species in the course of their evolution during the last 100 million years.
Image by Dr Martin Wiemers

In a recent research paper in the open-access, peer-reviewed academic journal ZooKeys, a German-Swedish team of scientists provide a diagrammatic hypothesis of the relationships and evolutionary history for all 496 European species of butterflies currently in existence. Their study provides an important tool for evolutionary and ecological research, meant for the use of insect and ecosystem conservation.

In order to analyse the ancestral relationships and history of evolutionary divergence of all European butterflies currently inhabiting the Old continent, the team led by Martin Wiemers – affiliated with both the Senckenberg German Entomological Institute and the Helmholtz Centre for Environmental Research – UFZ, mainly used molecular data from already published sources available from NCBI GenBank, but also contributed many new sequences, some from very local endemics for which no molecular data had previously been available.

The phylogenetic tree also includes butterfly species that have only recently been discovered using molecular methods. An example is this Blue (Polyommatus celina), which looks similar to the Common Blue. It used to be mistaken for the Common Blue in the Canary Islands and the southwestern part of the Mediterranean Region.
Photo by Dr Martin Wiemers

Butterflies, the spectacular members of the superfamily Papilionoidea, are seen as an important proponent for nature conservation, as they present an excellent indicator group of species, meaning they are capable of inferring the environmental conditions of a particular habitat. All in all, if the local populations of butterflies are thriving, so is their habitat.

Furthermore, butterflies are pollinating insects, which are of particular importance for the survival of humans. There is no doubt they have every right to be recognised as a flagship invertebrate group for conservation.

While many European butterflies are seriously threatened, this one: Madeiran Large White (Pieris wollastoni) is already extinct. The study includes the first sequence of this Madeiran endemic which was recorded in 1986 for the last time. The tree demonstrates that it was closely related to the Canary Island Large White (Pieris cheiranthi), another threatened endemic butterfly, which survives only on Tenerife and La Palma, but is already extinct on La Gomera.
Photo by Dr Martin Wiemers

In recent times, there has been a steady increase in the molecular data available for research, however, those would have been only used for studies restricted either to a selected subset of species, or to small geographic areas. Even though a complete phylogeny of European butterflies was published in 2019, also co-authored by Wiemers, it was not based on a global backbone phylogeny and, therefore, was also not time-calibrated.

In their paper, Wiemers and his team point out that phylogenies are increasingly used across diverse areas of macroecological research, such as studies on large-scale diversity patterns, disentangling historical and contemporary processes, latitudinal diversity gradients or improving species-area relationships. Therefore, this new phylogeny is supposed to help advance further similar ecological research.

The study includes molecular data from 18 localised endemics with no public DNA sequences previously available, such as the Canary Grayling (Hipparchia wyssii), which is only found on the island of Tenerife (Spain).
Photo by Dr Martin Wiemers

Original source: 

Wiemers M, Chazot N, Wheat CW, Schweiger O, Wahlberg N (2020) A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938: 97-124. https://doi.org/10.3897/zookeys.938.50878

New species of moths discovered in the Alps named after three famous alpinists

David Lama (1990 – 2019), a legendary alpinist, recognised by the study’s author also for his commitment to conservation.
Photo by MoserB / Copyrighted free use

The discovery of new, still unnamed animal species in a well-researched European region like the Alps is always a small sensation. All the more surprising is the description of a total of three new to science species previously misidentified as long-known alpine moths.

During a genetic project of the Tyrolean State Museums in Innsbruck (Austria), Austrian entomologist and head of the Natural Science Collections Peter Huemer used an integrative research approach that relies on molecular methods to study four European moths. Despite having been known for decades, those species remained quite controversial, because of many unknowns around their biology.

At the end, however, it turned out that the scientist was not dealing with four, but seven species. The three that were not adding up were indeed previously unknown species. Therefore, Huemer described the moths in a paper in the open-access, peer-reviewed journal Alpine Entomology. Curiously, all three species were given the names of legendary alpinists: Reinhold Messner, Peter Habeler and David Lama.

Habitat of Caryocolum lamai (Lama’s Curved-horn moth), Italy, Alpi Cozie, Colle Valcavera.
Photo by Peter Huemer

Tribute to three legends in alpinism

“The idea to name the new species in honour of three world-renowned climbers was absolutely no coincidence,”

explains Huemer.

One of the newly described species, Caryocolum messneri, or Messner’s Curved-horn moth, is dedicated to Reinhold Messner. Messner is a famous alpinist who was the first to reach Mount Everest without additional oxygen, but also the first climber to ascend all fourteen peaks over 8,000 metres. For decades, he has been inspiring followers through lectures and books. His is also the Messner Mountain Museum project, which comprises six museums located at six different locations in South Tyrol, northern Italy, where each has the task to educate visitors on “man’s encounter with mountains” by showcasing the science of mountains and glaciers, the history of mountaineering and rock climbing, the history of mythical mountains, and the history of mountain-dwelling people.

“So what could have been a better fit for a name for the species that flutters on the doorstep of his residence, the Juval Castle in South Tyrol?”

says Huemer.

The second new species, Caryocolum habeleri, or Habeler’s Curved-horn moth, honours another extraordinary mountaineer: Peter Habeler. Having joined Messner on his expedition to Mount Everest, he also climbed this mountain without additional oxygen in a first for history. Another achievement is his climbing the famous Eiger North Face in mere 10 hours. Additionally, together with the study’s author, he sits on the advisory board of the nature conservation foundation “Blühendes Österreich“. However, the species’ name is also a nod to Peter Habeler’s cousin: Heinz Habeler, recognised as “the master of butterfly and moth research in Styria”. His collection is now housed in the Tyrolean State Museums.

The third alpinist, whose name is immortalised in a species name, is David Lama, specially recognised by Huemer for his commitment to conservation. Once, in order to protect endangered butterflies along the steep railway embankments in Innsbruck, Lama took care to secure volunteers in a remarkable action. Nevertheless, Lama earned his fame for his spectacular climbing achievements. His was the first free ascent of the Compressor route on the south-eastern flank of Cerro Torre.

“Unfortunately, David lost his life far too soon in a tragic avalanche accident on 16 April 2019 in Banff National Park, Canada. Now, Caryocolum lamai (Lama’s Curved-horn moth) is supposed to make him ‘immortal’ also in the natural sciences,”

says Huemer.

Many unresolved questions

The newly described moth species are closely related and belong to the genus Caryocolum of the so-called Curved-horn moths (family Gelechiidae).

A Curved-horn moth of the genus Caryocolum feeding on a carnation plant. This genus feeds exclusively on plants in the carnation family (Caryophyllaceae).
Photo by P. Buchner / Tiroler Landesmuseen

As caterpillars, the species of this genus live exclusively on carnation plants. Even though the biology of the new moths is still unknown, because of their collection localities, it could be deduced that plants such as the stone carnation are likely their hosts. All species are restricted to dry and sunny habitats and sometimes inhabit altitudes of up to 2,500 m. So far, they have only been observed with artificial light at night.

While Messner’s Curved-horn moth occurs from northern Italy to Greece, the area of Habeler’s Curved-horn Moth is limited to the regions between southern France, northern Switzerland and southeastern Germany. On the other hand, Caryocolum lamai, only inhabits a small area in the western Alps of Italy and France.

Research on alpine butterflies and moths has been an important scientific focus at the Tyrolean state museums for decades. In 30 years, Peter Huemer discovered and named over 100 previously unknown to science species of lepidopterans. All these new discoveries have repeatedly shown the gaps in the study of biodiversity, even in Central Europe.

“How could we possibly protect a species that we don’t even have a name for is one of the key questions for science that derives from these studies,”

says Huemer in conclusion.

###

Original source:

Huemer P (2020) Integrative revision of the Caryocolum schleichi species group – a striking example of a temporally changing species concept (Lepidoptera, Gelechiidae). Alpine Entomology 4: 39-63. https://doi.org/10.3897/alpento.4.50703

New to science New Zealand moths link mythological deities to James Cameron’s films

In an unexpected discovery from New Zealand, two species of narrowly distributed moths were described as new species. Interestingly, both Arctesthes titanica and Arctesthes avatar were named after mythological deities and top-grossing blockbusters by famous filmmaker James Cameron: Titanic and Avatar, respectively.


The newly described moth species Arctesthes avatar in its natural habitat (South Island, New Zealand). Photo by Brian Patrick.

In an unexpected discovery from the South Island (New Zealand), two species of narrowly distributed macro-moths were described as new species. Interestingly, both Arctesthes titanica and Arctesthes avatar were named after mythological deities and top-grossing blockbusters by famous filmmaker James Cameron: Titanic and Avatar, respectively.

Each of the newly described species are believed to be restricted to only a couple of subalpine/alpine localities. Therefore, they are particularly vulnerable to extinction and need to be “considered of very high priority for conservation”, point out New Zealand scientists Brian Patrick (Wildland Consultants Ltd), Hamish Patrick (Lincoln University) and Dr Robert Hoare (Manaaki Whenua-Landcare Researchin their paper in the open-access journal Alpine Entomology.


Male (left) and female (right) specimens of the newly described moth species Arctesthes titanica. Photo by Birgit Rhode.

Because of its relatively large size, one of the new discoveries: A. titanica, was named in reference to the Titans: the elderly gods in Greek mythology and the legendary, if ill-fated, record-breaking passenger ship ‘Titanic’, which became the subject of the famous 1997 American epic romance and disaster film of the same name. Unfortunately, the moth’s small wetland habitat is located in an area that is currently facing a range of damaging farming practices, such as over-sowing, grazing, stock trampling and vehicle damage.

On the other hand, A. avatar received its name after Forest & Bird, the New Zealand conservation organisation that was behind the 2012 BioBlitz at which the new species was collected, ran a public competition where “the avatar moth” turned up as the winning entry. The reference is to the indigenous people and fauna in Avatar. Just like them, the newly described moth is especially vulnerable to habitat change and destruction. In addition, the study’s authors note that the original avatars came from Hindu mythology, where they are the incarnations of deities, including Vishnu, for example, who would transform into Varaha the boar.

In conclusion, the scientists point out that future studies to monitor and further understand the fauna of New Zealand are of crucial importance for its preservation:

“Quantitative studies as well as work on life histories and ecology are particularly needed. Already one formerly common endemic geometrid species, Xanthorhoe bulbulata, has declined drastically and is feared possibly extinct: its life history and host-plant have never been discovered. Without further intensive study of the fauna of modified and threatened New Zealand environments, we will be unable to prevent other species slipping away.”

###

Original source:

Patrick BH, Patrick HJH, Hoare RJB (2019) Review of the endemic New Zealand genus Arctesthes Meyrick (Lepidoptera, Geometridae, Larentiinae), with descriptions of two new range-restricted species. Alpine Entomology 3: 121-136. https://doi.org/10.3897/alpento.3.33944