“Oscar describes Oscar”: Interview with Oscar Lasso-Alcalá, Pt 3

“This is why Mikolji’s Oscar is a highly appreciated species in the aquarium hobby. It is more than just a fish in an aquarium when it is considered a true pet.”

In this last part, we talked with ichthyologist Oscar Miguel Lasso-Alcalá about what makes Astronotus mikoljii – a new to science cichlid species that he recently described in ZooKeys – so special.

Find Part 1 and Part 2 of the interview.

What makes this species so charismatic and loved by aquarists and ichthyologists?

I already spoke about my experience as an aquarist from an early age, where the qualities of the species of the Astronotus genus, known as Oscars are highlighted.

Different varieties and color patterns have been obtained from them through selective breeding, or genetic manipulation, which are called living modified organisms (LMOs) or genetically modified organisms (GMOs).

However, the true lovers of nature, the aquarians of the “Biotope Aquarium” movement  and the like, prefer pure specimens to manipulated or artificially modified ones. This is why Mikolji’s Oscar is a highly appreciated species in the aquarium hobby. It is more than just a fish in an aquarium since it is considered a true pet.

For ichthyologists, it is remarkably interesting and at the same time very challenging to study a genus like Astronotus, which already has only three described species (Astronotus ocellatus, A. cassiprinnis and A. mikoljii).

This is an unusual situation, which, as we have reported, requires an integrative approach and the work and experience of different specialists for its study. With all certainty, as in the case of Mikolji’s Oscar, other species of the genus Astronotus remain to be studied and described, and we hope that we will have the fortune to participate with our experience in these new works.

Local people have long known this species. What role does it have in their lives?

It is important to clarify that Astronotus mikoljii is a new species for science, but it is not a “new species” for people who already knew it locally under the name of Pavona, Vieja, or Cupaneca in Venezuela or Pavo Real, Carabazú, Mojarra and Mojarra Negra in Colombia. Nor for the aquarium trade, where it was known by the common name of Oscar and scientific name of Astronotus ocellatus, or, to a lesser degree, as Astronotus cassiprinnis.

This species has been of great food importance for thousands of years for at least nine indigenous ethnic groups.

Much less is it a new species for the nine thousand-year-old indigenous ethnic groups that share their world with the habitat of this fish, who baptized it with some 14 different names, known in their languages as mijsho (Kariña), boisikuajaba (Warao), hácho (Pumé = Yaruro), phadeewa, jadaewa (Ye’Kuana = Makiritare), perewa, parawa (Eñepá = Panare), yawirra (Kúrrim = Kurripako), kohukohurimï, kohokohorimï, owënawë kohoromï” (Yanomami = Yanomamï), eba (Puinave), Itapukunda (Kurripako), uan (Tucano).

Hence, the importance of scientific names, since the same species can have multiple common names, in the same language or in multiple languages.

It is important to note that very few studies that describe new species for science include the common names of the species, as given by the indigenous ethnic groups or natives of the regions, where the species live.

This species has been of great food importance for thousands of years for at least nine indigenous ethnic groups, and for more than 500 years to the hundreds of human communities of locals who inhabit the Orinoco River basin in Venezuela and Colombia. In our studies, in the plains of Orinoco from 30 years ago, we were able to verify its consumption, as well as high gastronomic value, due to its pleasant taste and enhanced texture.

However, due to my imprint as an aquarist, I have not wanted to consume it on the different occasions that it was offered to me, because it is very difficult to eat the beloved pets that we had in our childhood.

Why is this fish important to people and to ecosystems?

It is especially important to highlight that the Astronotus mikoljii species plays a very important role in the ecosystem, due to its biological and ecological background.

Although it can feed from different sources, it is a fundamentally carnivorous species, and therefore, it “controls” other species in the ecosystem.

Without Mikolji’s Oscar, the aquatic ecosystem would lose one of its fundamental links and the delicate balance of its functioning, because the species it feeds on could increase their populations uncontrollably, becoming veritable pests. This would put in great danger the entire future of the aquatic ecosystem of the Orinoco River basin and the permanence of other species of ecological importance.

In addition, it would surely affect other species used by man, both those of commercial importance (sold as food or as ornamental species), and for the subsistence fishing of native and indigenous inhabitants.

Mikolji’s Oscar, although a carnivorous species, also has its natural predators, for example piranhas and other predatory fish. For this reason, it evolved with an ocellus, or false eye, at the base of the caudal fin, to confuse its predators and guarantee its survival. Obviously, this species will be compromised if we don’t learn about it, use its populations wisely and preserve it in the long term.

***

Photos by Ivan Mikolji.

***

You can find Part 1 and Part 2 of the interview with Oscar.

***

Follow the ZooKeys journal on Twitter and Facebook.

Scientific divers from the California Academy of Sciences discover new species of dazzling, neon-colored fish

Post originally published by the California Academy of Sciences

Named for Aphrodite, Greek goddess of love and beauty, a new species of fish enchants Academy scientists

On a recent expedition to the remote Brazilian archipelago of St. Paul’s Rocks, a new species of reef fish—striped a vivid pink and yellow—enchanted its diving discoverers from the California Academy of Sciences.

First spotted at a depth of 400 feet beneath the ocean’s surface, this cryptic fish inhabits rocky crevices of twilight zone reefs and is found nowhere else in the world. Upon discovery, the deep-diving team was so captivated by their finned find that they didn’t notice a massive sixgill shark hovering above them in an exciting moment captured on camera. The new fish description published today in Zookeys.

“This is one of the most beautiful fishes I’ve ever seen,” says Dr. Luiz Rocha, the Academy’s Curator of Fishes and co-leader of the Hope for Reefs initiative. “It was so enchanting it made us ignore everything around it.”

The sixgill shark stretched nearly ten feet long and cruised overhead as Rocha and post-doctoral fellow Dr. Hudson Pinheiro delicately collected the fish for further study back at the Academy. Behind the camera, the team’s diving officer Mauritius Bell enthusiastically announced the behemoth visitor to the duo, but to no avail. Aptly named, Tosanoides aphrodite enchanted its discoverers much like Aphrodite, Greek goddess of love and beauty, enchanted the ancient Greek gods.

“Fishes from the twilight zone tend to be pink or reddish in color,” says Pinheiro. “Red light doesn’t penetrate to these dark depths, rendering the fishes invisible unless illuminated by a light like the one we carry while diving.”

Back at the Academy, laboratory and collections manager Claudia Rocha helped the diving duo describe the new species: Males are outfitted with alternating pink and yellow stripes while females sport a solid, blood-orange color. Using a microscope, the team counted fins and measured spine length; DNA analysis revealed the new species is the first Atlantic-dwelling member of its genus.

Male specimen of the new species (Tosanoides aphrodite). Photo by LA Rocha.

The new denizen of the deep is a remarkable testament to the vast ocean habitats that still remain unexplored. Rocha and Pinheiro are part of a deep-diving research team that ventures to twilight zone reefs—mysterious coral habitats stretching across a narrow band of ocean 200 – 500 feet beneath the surface. In these deep reefs, animals live in partial darkness—beyond recreational diving limits, yet above the deep trenches patrolled by submarines and ROVs. As part of its Hope for Reefs initiative, the Academy team and their collaborators are exploring this unknown frontier with the help of high-tech equipment like closed-circuit rebreathers that allow scientists to extend their research time underwater.

Nearly 600 miles offshore the coast of Brazil, St. Paul’s Rocks is so remote that it required the team to utilize the research vessel M/V Alucia as their homebase to explore the archipelago. The rocky outcroppings are extensions of the Mid-Atlantic Ridge—an active, tectonic plate boundary—puncturing the ocean’s surface. Given the region’s unique geology and isolated location, many of the species that live there are found nowhere else on Earth. Through their research, the Hope for Reefs team is finding that twilight zone habitats also host many location-specific species.

In a recent landmark paper, the team found that twilight zone reefs are unique ecosystems bursting with life and are just as vulnerable to climate change threats as their shallow counterparts. Their findings upended the long-standing assumption that species might migrate between habitats to avoid human-related stressors. As documented in the footage from this new fish’s discovery, a piece of fishing line can be seen streaming behind the sixgill shark—evidence that human impacts extend to depth too.

“In a time of global crisis for coral reefs, learning more about unexplored reef habitats and their colorful residents is critical to our understanding of how to protect them,” says Rocha. “We aim to highlight the ocean’s vast and unexplored wonders and inspire a new generation of sustainability champions.”

 

Research article:

Pinheiro HT, Rocha C, Rocha LA (2018) Tosanoides aphrodite, a new species from mesophotic coral ecosystems of St. Paul’s Rocks, Mid Atlantic Ridge (Perciformes, Serranidae, Anthiadinae). ZooKeys 786: 105-115. https://doi.org/10.3897/zookeys.786.27382