Misleading morphology: three European parasitoid wasp “species” are seasonal forms of just one

Through an examination of collections, both natural and experimental rearings, and DNA sequence data, three nominal species of ichneumon wasps, having very different morphologies and hitherto regarded as distinct, are shown to be seasonal forms of a single species, Scambus calobatus.

Three widely differing forms of European Scambus parasitoid wasps that had previously been regarded as distinct species are shown to be seasonal morphs of a single species. The collaboration involved National Museums Scotland (Mark Shaw), a private individual (Malcolm Jennings) as well as Imperial College London and the Natural History Museum (Donald Quicke). It was published in the Journal of Hymenoptera Research, an open access journal.

The findings depended on examination of museum collections with good data standards, targeted fieldwork to rear specimens from known hosts at different times of year, and experimental rearings of progeny from spring females through summer hosts. DNA sequence data provided confirmation that the rearing results were real, and not the result of overlooked contaminants.

The adults of these parasitoids paralyse their concealed hosts, which are small caterpillars or beetle larvae, before laying an egg beside the host. The host remains paralysed and is consumed by the resulting parasitoid larva, which then pupates and eventually becomes an adult, emerging from the same place. One morph (“S. planatus”: Fig. 1), which occurs in spring, has a robust head to accommodate the powerful muscles needed to chew out of acorns in which it has been a parasitoid of micromoth and weevil larvae attacked the previous autumn. Females of this morph live for several weeks, during which they become darker and their abdomen broadens considerably (“S. ventricosus”). Towards the middle of summer, this morph matures its eggs and parasitises micromoth larvae living in relatively soft silken retreats among foliage. Within a few weeks, adults of the next generation emerge from this substrate, having much less powerful heads (“S. calobatus”: Fig. 2), and these adults then seek tenanted acorns in which to oviposit in autumn. The spring-emerging and summer-emerging forms also differ in their ovipositor lengths. This life-cycle was confirmed experimentally by allowing the S. ventricosus morph, originating from acorns, to parasitise the summer hosts which then produced adults of the S. calobatus morph. Because S. calobatus is the oldest of the three names, this is the one that has to be used for this seasonally variable, but none-the-less single, species in the future.

“It was satisfying to be able to follow this hunch through to such a conclusive result” says the senior author Mark Shaw. “It shows the importance of good collections, careful field work, and focussed experimentation. Almost certainly there will be other similar cases.”

Original source:
Shaw MR, Jennings MT, Quicke DLJ (2011) The identity of Scambus planatus (Hartig, 1838) and Scambus ventricosus (Tschek, 1871) as seasonal forms of Scambus calobatus (Gravenhorst, 1829) in Europe (Hymenoptera, Ichneumonidae, Pimplinae, Ephialtini). Journal of Hymenoptera Research 23: 55-64. doi:10.3897/JHR.23.1974

Genetic study of cave millipedes reveals isolated populations and ancient divergence between species

Cave millipedes of the genus Tetracion are found on the southern Cumberland Plateau in Tennessee and Alabama, USA. New genetic analyses show that their populations are generally isolated and genetically distinct. Genetic divergence between two species of Tetracion suggests they diverged several million years ago. The study was published in the open access journal International Journal of Myriadopology.

This week the International Journal of Myriapodology published the first population genetic study of cave millipedes. This research highlights an important challenge in the conservation of cave biodiversity – that for many species caves are ‘islands’ of habitat that support isolated and genetically distinct populations.

The southern Cumberland Plateau in Tennessee and Alabama, USA is known for its high cave density. In addition, it has the highest cave biodiversity of any region in North America. Millipedes of the genus Tetracion range across this biodiversity hotspot. These millipedes, which can grow up to 8 cm in length, are common scavengers in cave communities. Like many cave animals, Tetracion millipedes have reduced pigmentation and non-functional eyes.

The authors used genetic techniques to compare Tetracion populations and species. They found that Tetracion populations were generally isolated from one another. In addition, divergence between Tetracion species was high, suggesting that members of the genus diverged several million years ago.

Original Source:
Loria, S.F., K.S. Zigler and J.J. Lewis. 2011. Molecular phylogeography of the troglobiotic millipede Tetracion Hoffman, 1956 (Diplopoda: Callipodida: Abacionidae). International Journal of Myriapodology 5:35-48. doi: 10.3897/ijm.5.1891

Unknown species and larval stages of extremely long-legged beetles discovered by DNA test

The unknown larval stages and a new species of the curious Spider Water Beetles were described after their assignment by DNA sequences. These taxonomic works are groundwork for the development of water quality bioindicator systems in the tropics. This study of the AQUA Palawana biodiversity program in the Philippines was published in the journal ZooKeys.

The research program AQUA Palawana has been exploring the unique freshwater biodiversity of the Philippine Island and biosphere reserve of Palawan for more than a decade. Scientists from the Senckenberg Museum of Zoology Dresden and the Bavarian State Collections of Zoology in Munich have now described larvae and a new species of the curious Spider Water Beetles (Ancyronyx) from this biodiversity hotspot. Their study was realized in cooperation with the Palawan Council for Sustainable Development and the De La Salle University Manila.

The scientists conducting this study, Hendrik Freitag and Michael Balke, used mitochondrial DNA, which should be identical in all developmental stages in a species, to assign the previously unknown larval stages to adult imagines. This method was very useful because the outside appearance of immature and mature stages of holometabolous insects look completely different and would not allow an easy assignment to each other.

The studied insects of the genus Ancyronyx have extremely long legs, often accompanied by an eye-catching cross-like elytral colour pattern, so that they remind of spiders. In point of fact they are “Riffle Beetles” (Elmidae) that are able to breathe through a plastron, a microfilm of air around their body surface that is microscopically enlarged by setose structures. This enables them to remain permanently under water. Such beetles are often highly sensitive to water pollution and are therefore greatly valued as bioindicators. The researchers aim at providing basic knowledge and identification tools for tropical species that are potentially useful as freshwater bioindicators.

One of newly described Philippine species, Ancyronyx punkti – named after the German environmental NGO punkt e.V. – was recently chosen by BIOnet International for a campaign highlighting the relevance of taxonomy to society which was presented at the tenth COP meeting of the Convention on Biological Diversity in Nagoya, Japan 2010.

The new discoveries from the Philippines lead to the assumption that the region is the actual diversity centre of the genus. By now, ten of the 18 described species are known solely from the Philippines, of which most are endemic to the country or even to single islands.

Original source:
Freitag H, Balke M (2011) Larvae and a new species of Ancyronyx Erichson, 1847 (Insecta, Coleoptera, Elmidae) from Palawan, Philippines, using DNA sequences for the assignment of the developmental stages. ZooKeys 136: 47–82. doi: 10.3897/zookeys.136.1914

German translation.

Neue Art und bisher unbekannte Larvenstadien außergewöhnlich langbeiniger Käfer durch DNA-Test entdeckt

Durch molekulargenetische Methoden konnten bisher unbekannte Larvenstadien und eine seltene neue Art aus der Gattung der kuriosen Spinnenwasserkäfer entdeckt und wissenschaftlich beschrieben werden. Diese biologisch-systematische Studie ist Grundlage für die Entwicklung eines biologischen Indikatorsystems zur Bewertung der Wasserqualität in den Tropen. Die Arbeit im Rahmen des AQUA Palawana Forschungsprogrammes auf den Philippinen wurde jetzt von Wissenschaftlern aus Dresden und München in der Fachzeitschrift Zookeys veröffentlicht.

Seit über einem Jahrzehnt wird durch das Forschungsprogramm „AQUA Palawana” die einzigartige biologische Vielfalt der Süßwasserfauna im Biosphärenreservat der philippinischen Provinz Palawan erforscht. Forscher vom Senckenberg Museum für Tierkunde Dresden und der Zoologischen Staatssammlung München haben jetzt eine seltene unbekannte Art und erstmals Larvenstadien der ungewöhnlichen Spinnenwasserkäfer aus diesem sogenannten „Biodiversitäts-Hotspot“ wissenschaftlich beschrieben. Die Studie wurde in Kooperation mit dem Palawan Council for Sustainable Development und der De La Salle Universität Manila durchgeführt.

Die Biologen Hendrik Freitag und Michael Balke verglichen dabei mitochondriale DNA der Organismen, die sich während der Entwicklung vom Ei zum Käfer nicht verändert, während die verschiedenen Entwicklungsstadien äußerlich keinerlei Ähnlichkeit aufweisen, wie bei allen holometabolen Insekten. Diese Methode erwies sich als einfache Möglichkeit, larvale und adulte Stadien der selben Art eindeutig zuzuordnen.

Die untersuchten Insekten aus der Gattung Ancyronyx haben außergewöhnlich lange Beine, oft  in Kombination mit auffälligen kreuzartigen Mustern auf den Flügeldecken und erinnern daher spontan an Spinnen. Tatsächlich handelt es sich jedoch um Klauenkäfer (Elmidae), die sich permanent in strömendem Wasser aufhalten und durch ihr Plastron – eine durch mikroskopisch-kleine Strukturen vergrößerte Oberfläche  – aus dem Wasser lebenswichtigen Sauerstoff aufnehmen. Sie reagieren generell  sehr empfindlich auf Wasserverschmutzung und eignen sich daher als Indikatorarten für die biologische Gewässergütebewertung. Die Wissenschaftler wollen mit ihrer Arbeit Grundlagen schaffen, die mittelfristig eine Etablierung von Gewässerbewertungssystemen in den Tropen ermöglicht, wie sie in Mitteleuropa längst Standard sind.

Die Forschungsergebnisse legen weiterhin nahe, dass die südostasiatische Inselregion das Zentrum der Artenvielfalt dieser Tiergattung darstellt. Zehn der derzeit bekannten 18 Arten kommen ausschließlich auf den Philippinen vor, und sind teilweise sogar auf einzelnen Inseln endemisch.

Die neu beschriebene Klauenkäfer-Art Ancyronyx punkti aus Palawan – so benannt nach dem im Umweltschutz engagierten Verein „punkt e.V.“ – wurde kürzlich von der Initiative „BIOnet International“ für eine Kampagne ausgewählt. Auf der Nagoya-Konferenz 2010 zum Übereinkommen über die biologische Vielfalt wurde dabei auf die gesellschaftliche Relevanz taxonomischer Grundlagenforschung aufmerksam gemacht.

Originalquelle:
Freitag H, Balke M (2011) Larvae and a new species of Ancyronyx Erichson, 1847 (Insecta, Coleoptera, Elmidae) from Palawan, Philippines, using DNA sequences for the assignment of the developmental stages. ZooKeys 136: 47–82. doi: 10.3897/zookeys.136.1914

English translation.

Data publishing in Pensoft journals integrated with the Dryad Data Repository

The data publishing workflow of eight journals published by Pensoft has now been integrated with the Dryad Digital Repository, facilitating data archiving for data files associated with articles in these journals. The workflow is highly automated thanks to a new module of the online editorial management platform,  Pensoft Journal System (PJS). The integrated journals are ZooKeys, PhytoKeys, MycoKeys, BioRisk, NeoBiota, Nature Conservation, Comparative Cytogenetics and  International Journal of Myriapodology.

Upon acceptance of a manuscript in any of these Pensoft journals, the article submission metadata are sent automatically to Dryad, creating a provisional record for the article data. In another automated message, the authors are invited to archive the data files underpinning that particular article, using the provisional record in Dryad to expedite the data upload process. Upon publication, the article metadata and all the associated data files will be available on the Dryad website. Currently, Dryad and Pensoft are exploring the possibilities for a more automated workflow of notification and status changes, from the accepted manuscript through to the published article, enabling the complete bibliographic information about the published article to be available in Dryad on the day of publication.

“We are glad to welcome Pensoft Publishers to the Dryad Consortium, which already includes journals like The American Naturalist, The Biological Journal of the Linnean Society, Evolution, Journal of Evolutionary Biology, Molecular Biology and Evolution, Molecular Ecology, Systematic Biology, and many others. Pensoft is an innovator in academic publishing and their journals are widely respected, especially within the biodiversity community,” said Dr Todd Vision from the University of North Carolina at Chapel Hill, project director of Dryad.

“The integration with Dryad is the second step in our data publishing strategy published in March 2011, after the successful completion of the “data paper” project through the Integrated Publishing Toolkit (IPT) of the Global Biodiversity Information Facility (GBIF).  While the GBIF IPT will publish mostly species occurrence data described with rich metadata, Dryad will serve as a repository for all kinds of biological data. The combination between the two data portals is a truly exciting perspective!” adds Dr Lyubomir Penev, managing director of Pensoft Publishers.

Additional Information: Dryad documentation.

Contact Person: Peggy Schaeffer, Communications Coordinator, Dryad +1-919-491-4513

Funding information: Dryad is supported in part by a grant from the U.S. National Science Foundation (NSF) and by the National Evolutionary Synthesis Center (NSF awards DBI-0743720 and DBI-0905606).

NeoBiota Issue 10 generates a lot of interest

We are pleased to announce publishing of issue 10 of NeoBiota. It contains intriguing research and commentary papers. Two of the papers enjoyed also much additional interest thanks to the posted press releases:

Market transactions and economics in general affect biological invasions (downloaded by 2643 science journalists and media since 7 Oct 2011!)
Prague’s 88 nature reserves threatened by invasive plant species (downloaded by 1468 science journalists and media since 7 Oct 2011!)

Also, two important online databases on biological invasions (DAISIE and invasive.org) have been automatically connected to taxon names mentioned in the NeoBiota papers. For example, if one clicks on the species’ name Polycnemum arvense mentioned in the paper of Jarošík et al. (doi: 10.3897/neobiota.10.1262), then a dynamically created online taxon profile is created:

http://ptp.pensoft.eu/external_details.php?type=1&query=Polycnemum%20arvense

On the left bar of the profile, one can see the the logos and names of DAISIE and Invasive.org. If they are shown in bold font, this means they contain data on that taxon. If then you click on the links the program sends you direct to the species pages (or search links to them) on both sides:

DAISIE:
http://ptp.pensoft.eu/externalLink.php?taxon_name=Polycnemum%20arvense&url=http%3A%2F%2Fwww.europe-aliens.org%2FspeciesSearch.do%3FspeciesPhrase%3DPolycnemum%2520arvense

Invasive.org:
http://www.invasive.org/search/results.cfm?cx=004971884014326696348:lwck86z8tsg&ie=UTF-8&cof=FORID:10&ie=UTF-8&q=Polycnemum%20arvense&sa=GO&siteurl=www.invasive.org%2Fspecies.cfm#145

Ingolf Kuehn (Editor-in-Chief)
NeoBiota Editorial Office

Prague’s eighty-eight nature reserves threatened by invasive plant species

Cities are generally regarded as hostile for wildlife, and urbanization as a dramatic form of destruction of natural habitats. Still, they are far from dead zones. Their biodiversity may even exceed that of surrounding landscapes. A new study – published in the open access journal Neobiota – found that much of the biodiversity in the nature reserves in the Czech capital Prague is due to invasive species, thus threatening local species.

“This is definitely the case of the city of Prague, Czech Republic”, says the lead author Prof. Vojtěch Jarošík of a new study published in the open access journal NeoBiota. “Prague contains spectacular natural features, rarely seen in other metropolitan areas of comparable size, protected in 88 nature reserves. Our analyses build on systematic surveys of vascular plants flora, carried out in these reserves in the late 1980s/ early 1990s. The reserves are important sanctuaries, hosting more than half of the plant species occurring in the Czech Republic.”

“On the other hand, it is alien species that contribute to this remarkably high species richness”, adds the Prof.  Petr Pyšek. “It has been repeatedly documented that urban environment and life style promote introductions of alien species. The conservation in cities focuses on the diversity of native species, and urban areas are therefore the place where these ‘two diversities’ come to a sharp conflict, resulting from the discrepancy between human efforts to protect natural biodiversity and, at the same time, by human activities that create ideal environment for invasions by alien species. Nature reserves in large urban agglomerations are therefore seen as a testing ground for exploring the patterns of resistance of natural vegetation against penetration of alien plants.”

The study found that archaeophytes, i.e. alien species introduced since the beginning of Neolithic agriculture at around 1500 A. D., are affected positively by the extent of arable land that was in place at the time of the reserve establishment at low altitudinal ranges. Though it may be questioned whether species of alien origin should be a part of red lists, endangered archaeophytes are perceived by botanists as elements of local nature, typical of traditional cultural landscapes in Europe and considered as species of cultural and historical importance. This suggests that for endangered archaeophytes it might have been difficult to adapt to changing agricultural practices, and shrubland might act as a refugium for them.

Forty-six of the 155 neophyte species (introduced after 1500 A.D.) recorded in the reserves are classified as invasive. The reserves thus harbour 67% of the 69 invasive neophytes recorded in the country, and particularly warning is that among the most invasive species are many shrubs and trees, life forms that are known to account for widespread invasions with high impacts. The results thus strongly suggest that in Prague’s nature reserves there is a warning potential for future invasions.

Original Source:
Jarošík V, Pyšek P, Kadlec T (2011) Alien plants in urban nature reserves: from red-list species to future invaders? NeoBiota 10: 27-46. doi: 10.3897/neobiota.10.1262

Market transactions and economics in general affect biological invasions

Biological invasions, i.e. the spread of introduced, non-native species, not only serve as ecological model systems, but also bring out the importance of economic activities on ecological processes. Two recent books have shown the extent and variety of the interaction of economics with invasion science and also the variety of approaches to tackling these problems.

Three researchers, lead by Mark Williamson from the University of York, England, argue in the latest issue of the open access journal NeoBiota that the ecological and economic dimensions of the problem of invasive species are connected at different levels. Many of the changes that lead ecosystems to be more vulnerable to the impact of invasive species are direct consequences of economic behaviour. This is because these impacts are externalities of the market transactions; they are not taken seriously by those making the transactions perhaps because they are not held legally responsible for the impacts nor are the markets directly affected by these impacts. Instead these impacts are often borne by those who receive little or no benefit from the market transactions.

Furthermore, Williamson, Meyerson & Auge point out that biological invasions are good models for studying more general processes in ecology. In particular, the behaviour of ecosystems that are not in or close to equilibrium can be studied easily in biological invasions. On the one hand, biological invasions help us to understand mechanisms of spread, which is  important for native weedy species and colonization of new habitats, much better. On the other hand, they serve as a study system on how ecosystem functions. This knowledge is crucial to predict impacts of Global Change on ecosystem services beneficial to society.

Original Source:
Williamson M, Meyerson LA, Auge H (2011) Invasion science, ecology and economics: seeking roads not taken. NeoBiota 10: 1-5. doi: 10.3897/neobiota.10.2194

A new species of fossil silky lacewing insects that lived more than 120 million years ago

A team of researchers from the Capital Normal University in Beijing (China) and the Institute of Biology and Soil Sciences in Vladivostok (Russia) has discovered a remarkable silky lacewing insect from the Mesozoic of China. The study has been published recently in the open access journal ZooKeys and is available for free download.

The extant silky lacewings (the family Psychopsidae) may be recognized by their broad wing shape, dense venation, spectacularly patterned and hairy wings. Today, this family is very small, restricted only to southern Africa, southeastern Asia and Australia, but in the Mesozoic, it was much more widely distributed.

The new fossil silky lacewing – Undulopsychopsis alexi – was found from in the Yixian Formation of western Liaoning Province, one of the most productive Mesozoic fossil-bearing horizons in China. The species is characterized by the undulate wing margin, a unique condition amongst known Psychopsidae, and a number of unusual characters of the wing venation.

"The most important trait of this fossil is that it shares the features of two different families of neuropteran insects, the extant Psychopsidae (known also from the Mesozoic) and the extinct Mesozoic Osmylopsychopidae", said the author Vladimir Makarkin.

This discovery is expected to shed light on the evolutionary history of lacewings related to the family Psychopsidae.

Original source:
Peng Y, Makarkin V, Wang X, Ren D (2011) A new fossil silky lacewing genus (Neuroptera, Psychopsidae) from the Early Cretaceous Yixian Formation of China. ZooKeys 130: 217-228. doi: 10.3897/zookeys.130.1576

Earliest psychomyiid caddisfly fossils, from 100-million-year-old Burmese amber

The examination of insects in Burmese amber by researchers at the University of Cologne, Germany and National Museums Scotland revealed a new genus of caddisfly, which has been named Palerasnitsynus.

The discovery, based on two specimens, constitute the first record of the living family Psychomyiidae in Burmese amber and the oldest known member of this family in the fossil record. Burmese amber is 100 million years old, from the Cretaceous Period, so this discovery adds to our understanding of the caddisfly fauna in that part of the world at that time.

Original source:
Wichard, W., Ross, E. & Ross, A.J. (2011) Palerasnitsynus gen. n. (Trichoptera: Psychomyiidae) from Burmese amber. 130 : 323-330, doi: 10.3897/zookeys.130.1449