EIVE 1.0 – The largest system of ecological indicator values in Europe

EIVE 1.0 is the most comprehensive system of ecological indicator values of vascular plants in Europe to date. It can be used as an important tool for continental-scale analyses of vegetation and floristic data.

Guest blog post by Jürgen Dengler, Florian Jansen & François Gillet

Geographic coverage of the 31 ecological indicator value systems that entered the calculation of the consensus system of EIVE 1.0 (image from the original article).

It took seven years and hundreds of hours of work by an international team of 34 authors to develop and publish the most comprehensive system of ecological indicator values (EIVs) of vascular plants in Europe to date.

EIVE 1.0 is now available as an open access database and described in the accompanying paper (Dengler et al. 2023).

EIVE 1.0 provides the five most-used ecological indicators, M – moisture, N – nitrogen, R – reaction, L – light and T – temperature, for a total of 14,835 vascular plant taxa in Europe, or between 13,748 and 14,714 for the individual indicators. For each of these taxa, EIVE contains three values: the EIVE niche position indicator, the EIVE niche width indicator and the number of regional EIV systems on which the assessment was based. Both niche position and niche width are given on a continuous scale from 0 to 10, not as categorical ordinal values as in the source systems.

Evidently, EIVE can be an important tool for continental-scale analyses of vegetation and floristic data in Europe.

It will allow to analyse the nearly 2 million vegetation plots currently contained in the European Vegetation Archive (EVA; Chytrý et al. 2016) in new ways.

Since EVA apart from elevation, slope inclination and aspect hardly contains any in situ measured environmental variables, the numerous macroecological studies up to date had to rely on coarse modelled environmental data (e.g. climate) instead. This is particularly problematic for soil variables such as pH, moisture or nutrients, which can change dramatically within a few metres.

Here, the approximation of site conditions by mean ecological indicator values can improve the predictive power substantially (Scherrer and Guisan 2019). Likewise, in broad-scale vegetation classification studies, mean EIVE values per plot would allow a better characterisation of the distinguished vegetation units. Lastly, one should not forget that most countries in Europe do not have a national EIV system, and here EIVE could fill the gap.

Violin plots showing largely continuous value distributions of the niche position and niche width values of the five indicators in EIVE 1.0 (image from the original article).

Almost on the same day as EIVE 1.0 another supranational system of ecological indicator values in Europe has been published by Tichý et al. (2023) with a similar approach.

Thus, it will be important for vegetation scientists in Europe to understand the pros and cons of both systems to allow the wise selection of the most appropriate tool:

  • EIVE 1.0 is based on 31 regional EIV systems, while Tichý et al. (2023) uses 12.
  • Both systems provide indicator values for moisture, nitrogen/nutrients, reaction, light and temperature, while Tichý et al. (2023) additionally has a salinity indicator.
  • Tichý et al. (2023) aimed at using the same scales as Ellenberg et al. (1991), which means that the scales vary between indicators (1–9, 0–9, 1–12), while EIVE has a uniform interval scale of 0–10 for all indicators.
  • Only EIVE provides niche width in addition to niche position. Niche width is an important aspect of the niche and might be used to improve the calculation of mean indicator values per plot (e.g. by weighting with inverse niche width).
  • The taxonomic coverage is larger in EIVE than in Tichý et al. (2023): 14,835 vs. 8,908 accepted taxa and 11,148 vs. 8,679 species.
  • EIVE provides indicator values for accepted subspecies, while Tichý et al. (2023) is restricted to species and aggregates. Separate indicator values for subspecies might be important for two reasons: (a) subspecies often strongly differ in at least one niche dimension; (b) many of the taxa now considered as subspecies have been treated at species level in the regional EIV systems.
  • Tichý et al. (2023) added 431 species not contained in any of the source systems based on vegetation-plot data from the European Vegetation Archive (EVA; Chytrý et al. 2016) while EIVE calculated the European indicator values only for taxa occurring at least in one source system. 
  • While both systems present maps that suggest a good coverage across Europe, Tichý et al. (2023)’s source systems largely were from Central Europe, NW Europe and Italy, but, unlike EIVE, these authors did not use source systems from the more “distal” parts of Europe, such as Sweden, Faroe Islands, Russia, Georgia, Romania, Poland and Spain, and they used only a small subset of indicators of the EIV systems of Ukraine, Greece and the Alps.
  • In a validation with GBIF-derived data on temperature niches, Dengler et al. (2023) showed that EIVE has a slightly stronger correlation than Tichý et al. (2023)’s indicators (r = 0.886 vs. 0.852).
The correlation of EIVE-T values of species with GBIF-derived temperature niche data was high and even higher when restricting the calculation to those species whose consensus value was based on at least four sources (image from the original article).

How did EIVE manage to integrate all EIV systems in Europe that contained at least one of the selected indicators for vascular plants, while Tichý et al. (2023) used only a small subset?

This difference is mainly due to a more complex workflow in EIVE (which also was one of the reasons why the preparation took so long). First, Tichý et al. (2023) restricted their search to EIV systems and indicators that had the same number of categories as the “original” Ellenberg system.

Second, from these they discarded those that showed a too low correlation with Ellenberg. By contrast, EIVE’s workflow allowed the use of any system with an ordinal (or even metric) scale, irrespective of the number of categories or the initial match with Ellenberg et al. (1991).

EIVE also did not treat one system (Ellenberg) as the master to assess all others but considered each of them equally valid. While indeed the individual EIV systems are often quite inconsistent, i.e. even if they refer to Ellenberg, the same value of an indicator in one system might mean something different in another system, our iterative linear optimisation enabled us to adjust all 31 systems for the five indicators to a common basis.

This in turn allowed deriving EIVE as the consensus system of all the source systems. The fact that in our validation of the temperature indicator, EIVE performed better than Tichý et al. (2023) and much better than most of the regional EIV systems might be attributable to the so-called wisdom of the crowd, going back to the statistician Francis Galton who found that averaging numerous independent assessments (even by laymen) of a continuous quantity can leads to very good estimates of the true value. 

Apart from the indicator values themselves, EIVE has a second main feature that might not be so obvious at first glance, but which actually took the EIVE team, including several taxonomists, more time than the workflow to generate the indicator values themselves: the taxonomic backbone. EIVE for vascular plants is fully based on the taxonomic concept (including the synonymic relationships) of the Euro+Med Plantbase.

However, since Euro+Med lacks an important part of taxa that are frequently recorded in vegetation plots, to make our backbone fully usable to vegetation science, we expanded it beyond Euro+Med to something called “Euro+Med augmented”. We particularly added hybrids, neophytes and aggregates, three groups of plants hitherto only very marginally covered in Euro+Med. All additions were done by experts consistently with the taxonomic concept of Euro+Med and are fully documented. Likewise, many additional synonym relationships had to be added that were missing in Euro+Med.

Finally, we implemented the so-called “concept synonymy” (see Jansen and Dengler 2010), which allows the assignment of the same name from different sources to different accepted names (“taxonomic concepts”). This applies mainly to nested taxa that are treated at different levels in different sources, e.g. once as species with several subspecies, once as aggregate with several species. However, there are also some cases of misapplied names (i.e. names that were not used in agreement with their nomenclatural type in certain EIV systems). Such cases generally cannot be solved by the various tools for automatic taxonomic cleaning, but require experts who make a case-by-case decision.

The whole taxonomic workflow of EIVE is fully transparent with an R code that “digests”:

(a) the names as they are in the source systems,

(b) the official Euro+Med database and

(c) tables that document our additions and modifications (with reasons and references).

This comprehensive documentation will allow continuous and efficient improvement in the future, be it because of taxonomic novelties adopted in Euro+Med or because EIVE’s experts decide to change certain interpretations. That way, “Euro+Med augmented” and the accompanying R-based workflow can also be a valuable tool for other projects that wish to harmonise plant taxonomic information from various sources at a continental scale, e.g. in vegetation-plot databases such as GrassPlot (Dengler et al. 2018) and EVA (Chytrý et al. 2016).

The publication of EIVE 1.0 is not the endpoint, but rather a starting point for future developments in a community-based approach.

Together with interested colleagues from outside, the EIVE core team plans to prepare better and more comprehensive releases of EIVE in the future, including updates to its taxonomic backbone.

Future releases of EIVE will be published in fixed versions, typically together with a paper that describes the changes in the content.

As steps for the next two years, we anticipate that we will first add further taxa (bryophytes, lichens, macroalgae) and some additional indicators, both of which are relatively easy with our established R-based workflow. Then we plan EIVE 2.0 that will use the approx. 2 million vegetation plots in EVA (Chytrý et al. 2016) to re-calibrate EIVE for all taxa (see http://euroveg.org/requests/EVA-data-request-form-2022-02-10-Dengleretal.pdf).

We invite you to get into contact with us if you have:

(a) a new or overlooked indicator value system for any taxonomic group in Europe and adjacent areas (including comprehensive datasets of measured environmental data in vegetation plots);

(b) suggestions for improvements of our taxonomic backbone;

(c) a paper idea in the EIVE context that you would like to realise together with the EIVE core team (since everything is OA, you can, of course, use EIVE 1.0 for any possible purpose without notifying us as long as you cite EIVE properly).

Last but not least, any test of the validity and performance of EIVE, alone or in comparison with Tichý et al. (2023), with in situ measured environmental variables, locally or even continentally, would be most welcome.

***

This Behind the paper post refers to the article Ecological Indicator Values for Europe (EIVE) 1.0 by Jürgen Dengler, Florian Jansen, Olha Chusova, Elisabeth Hüllbusch, Michael P. Nobis, Koenraad Van Meerbeek, Irena Axmanová, Hans Henrik Bruun, Milan Chytrý, Riccardo Guarino, Gerhard Karrer, Karlien Moeys, Thomas Raus, Manuel J. Steinbauer, Lubomir Tichý, Torbjörn Tyler, Ketevan Batsatsashvili, Claudia Bita-Nicolae, Yakiv Didukh, Martin Diekmann, Thorsten Englisch, Eduardo Fernandez Pascual, Dieter Frank, Ulrich Graf, Michal Hájek, Sven D. Jelaska, Borja Jiménez-Alfaro, Philippe Julve, George Nakhutsrishvili, Wim A. Ozinga, Eszter-Karolina Ruprecht, Urban Šilc, Jean-Paul Theurillat, and François Gillet published in Vegetation Classification and Survey (https://doi.org/10.3897/VCS.98324).

***

Follow the Vegetation Classification and Survey journal on Facebook and Twitter.

***

Brief personal summaries: 

Jürgen Dengler is a Professor of Vegetation Ecology at the Zurich University of Applied Science (ZHAW) in Wädenswil, Switzerland. Among others, he cofounded the European Vegetation Database (EVA), the global vegetation-plot database “sPlot” and the “GrassPlot” database of the Eurasian Dry Grassland Group. His major research interests are grassland ecology, grassland conservation, biodiversity patterns, macroecology, vegetation change, broad-scale vegetation classification, methodological developments in vegetation ecology and ecoinformatics.

Florian Jansen is a Professor of Landscape Ecology at the University of Rostock, Germany. His research interests are vegetation ecology and dynamics, mire ecology including greenhouse gas emissions, and numerical ecology with R. He (co-)founded the German Vegetation Database vegetweb.de, the European Vegetation Database (EVA), and the global vegetation-plot database “sPlot”. He wrote the R package eHOF for modelling species response curves along one-dimensional ecological gradients.

François Gillet is an Emeritus Professor of Community Ecology at the University of Franche-Comté in Besançon, France. His major research interests are vegetation diversity, ecology and dynamics, grassland and forest ecology, integrated synusial phytosociology, numerical ecology with R, dynamic modelling of social-ecological systems.

***

References: 

Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., Landucci, F., Schaminée, J.H.J., Aćić, S., (…) & Yamalov, S. 2016. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science 19: 173–180.

Dengler J, Wagner V, Dembicz I, García-Mijangos I, Naqinezhad A, Boch S, Chiarucci A, Conradi T, Filibeck G, … Biurrun I (2018) GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands. Phytocoenologia 48: 331–347.

Dengler, J., Jansen, F., Chusova, O., Hüllbusch, E., Nobis, M.P., Van Meerbeek, K., Axmanová, I., Bruun, H.H., Chytrý, M., (…) & Gillet, F. 2023. Ecological Indicator Values for Europe (EIVE) 1.0. Vegetation Classification and Survey 4: 7–29.

Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1–248.

Jansen F, Dengler J (2010) Plant names in vegetation databases – a neglected source of bias. Journal of Vegetation Science 21: 1179–1186.

Midolo, G., Herben, T., Axmanová, I., Marcenò, C., Pätsch, R., Bruelheide, H., Karger, D.N., Acic, S., Bergamini, A., Bergmeier, E., Biurrun, I., Bonari, G., Carni, A., Chiarucci. A., De Sanctis, M., Demina, O., (…), Dengler, J., (…) & Chytrý, M. 2023. Disturbance indicator values for European plants. Global Ecology and Biogeography 32: 24–34.

Scherrer D, Guisan A (2019) Ecological indicator values reveal missing predictors of species distributions. Scientific Reports 9: Article 3061.

Tichý, L, Axmanová, I., Dengler, J., Guarino, R., Jansen, F., Midolo, G., Nobis, M.P., Van Meerbeek, K., Aćić, S., (…) & Chytrý, M. 2023. Ellenberg-type indicator values for European vascular plant species. Journal of Vegetation Science 34: e13168.

🥳 Here goes THE title in our New Species Showdown!

From the kingdom of plants, welcome the all-time crowd-favourite species ever described in a Pensoft journal!

Which one is the species that springs to mind when you think about the most awesome discoveries in recent times?

In an age where we more than ever need to appreciate and preserve the magnificent biodiversity inhabiting the Earth, we decided to go for a lighter and fun take on the work of taxonomists that often goes unnoticed by the public. 

From the ocean depths surrounding Indonesia to the foliage of the native forests of Príncipe Island and into the soils of Borneo, we started with 16 species described as new to science in journals published by Pensoft over the years. 

Out of these most amazing creatures, over the past several weeks we sought to find who’s got the greatest fandom by holding a poll on Twitter (you can follow it further down here or via #NewSpeciesShowdown).

Grand Finale – here comes the champion!

Truly, we couldn’t have a more epic final!

The two competitors come from two kingdoms, two opposite sides of the globe, and the “pages” of two journals, namely PhytoKeys and Evolutionary Systematics.

While we need to admit that we ourselves expected to crown an animal as the crowd-favourite, we take the opportunity to congratulate the botanists amongst our fans for the well-deserved win of Nepenthes pudica (see the species description)!

Find more about the curious one-of-a-kind pitcher plant in this blog post, where we announced its discovery following the new species description in PhytoKeys in June 2022:

Back then, N. pudica gave a good sign about its worldwide web appeal, when it broke the all-time record for online popularity in a competition with all plant species described in PhytoKeys over the journal’s 22-year history of taxonomic papers comrpising over 200 issues.

What’s perhaps even more curious, is that there is only one species EVER described in a Pensoft-published journal that has so far triggered more tweets than the pitcher plant, and that species is the animal that has ended up in second place in the New Species Showdown: a tiny amphibian living in Peru, commonly known as the the Amazon Tapir Frog (Synapturanus danta). Which brings us once again to the influence of botanists in taxonomic research.

Read more about its discovery in the blog post from February 2022:

Another thing that struck us during the tournament was that there was only one species described in our flagship journal in systematic journal ZooKeys: the supergiant isopod Bathynomus raksasa, that managed to fight its way to the semi-finals, where it lost against S. danta.

This makes us especially proud with our diverse and competitive journal portfolio full of titles dedicated to biodiversity and taxonomic research!

The rules

Twice a week, @Pensoft would announce a match between two competing species on Twitter using the hashtag #NewSpeciesShowdown, where everyone could vote in the poll for their favourie.

Disclaimer

This competition is for entertainment purposes only. As it was tremendously tough to narrow the list down to only sixteen species, we admit that we left out a lot of spectacular creatures.

To ensure fairness and transparency, we made the selection based on the yearly Altmetric data, which covers articles in our journals published from 2010 onwards and ranks the publications according to their online mentions from across the Web, including news media, blogs and social networks. 

We did our best to diversify the list as much as possible in terms of taxonomic groups. However, due to the visual-centric nature of social media, we gave preference to immediately attractive species.

All battles:

(in chronological order)

Round 1
The first tie of the New Species Showdown was between the olinguito: Bassaricyon neblina (see species description) and the “snow-coated” tussock moth Ivela yini (see species description).
In the second battle, we faced two marine species discovered in the Indian Ocean and described in ZooKeys. The supergiant isopod B. raksasa (see species description) won against the Rose Fariy Wrasse C. finifenmaa (see species description) with strong 75%.
In the third battle, we faced two frog species: the tapir ‘chocolate’ frog described in Evolutionary Systematics (see species description) winning against the ‘glass frog’ described in Zookeys (see species description) with 73%.
With 62% of the votes, the two-species tournament saw the Harryplax severus crab grab the win against another species named after a great wizard from the Harry Potter universe: the Salazar’s pit viper, which was described in the journal Zoosystematics and Evolution in 2020. The “unusual” crustacean was described back in 2017 in ZooKeys. As its species characters matched no genus known to date, the species also established the Harryplax genus.
With the fifth battle in the New Species Showdown taking us to the Kingdom of Plants, we enjoyed a great battle between the first pitcher plant found to grow its pitchers underground to dine (see the full study) and the Demon’s orchid, described in 2016 from a single population spread across a dwarf montane forest in southern Colombia (read the study). Both species made the headlines across the news media around the world following their descriptions in our flagship botany journal PhytoKeys.
Next, we saw the primitive dipluran Haplocampa wagnelli (read its species description in Subterranean Biology) – a likely survivor of the Ice Age thanks to the caves of Canada – win the public in a duel against Xuedytes bellus (described in ZooKeys in 2017), also known as the Most cave-adapted trechine beetle in the world!
We had a close battle between the Principe Scops-owl Otus bikegila (see species description published in our ZooKeys earlier in 2022) and the blue-tailed Monitor lizard Varanus semotus (also first ‘known’ from the pages of ZooKeys, 2016). Being adorable species, but also ‘castaways’ on isolated islands in the Atlantic, they made great sensations upon their discovery. In fact, the reptile won with a single vote!
In the last battle of Round 1, the ‘horned’ tarantula C. attonitifer claimed the victory with a strong (80%) advantage from its competitor with a rebel name: the freshwater crayfish C. snowden (species description in ZooKeys from 2015). Described in African Invertebrates in 2019, the arachnid might be one amongst many ‘horned’ baboon spiders, yet there was something quite extraordinary about its odd protuberance. Furthermore, it came to demonstrate how little we know about the fauna of Angola:  a largely underexplored country located at the intersection of several ecoregions.
Round 2 – Quarter-finals
In the first quarter-final round, in the close battle, the isopod ’emerged’ from the ocean depths of Indonesia B. raksasa (species description in Zookeys from 2020) claimed the victory with just a few votes difference (58%!) from its competitor: lovely olinguito B. neblina, also described in Zookeys but back in 2013.
In the second round of the quarter-final, the tapir ‘chocolate’ frog S. danta (described in Evolutionary Systematics this year) claimed the victory with a significant advantage (69%) over its competitor crab H. severus described in Zookeys in 2017.
The third battle in Round 2 secured a place at the semi-finals for the only plant to get this far in the New Species Showdown. If you are dedicated to the mission of proving the plant kingdom superior: keep supporting Nepenthes pudica in the semi-finals and beyond!
In the meantime, read the full description of the species, published in our PhytoKeys in June.
The last quarter-final send the Angolan ‘horned’ tarantula to the next round. Described in African Invertebrates in 2019, its discovery would have likely remained a secret had it not been for the local tribes who provided the research team with crucial information about the curious arachnid.
Round 3 – Semi-finals
Curiously enough, by winning against the ‘supergiant’ isopod B. raksasa – also known around the Internet as the ‘Darth Vader of the seas’ – the Amazonian anuran S. danta outcompetes the last species in the New Species Showdown representing our flagship taxonomy journal: ZooKeys.

The charming anuran was described in February 2022 in Evolutionary Systematics, a journal dedicated to whole-organism biology that we publish on behalf of the Leibniz Institute for the Analysis of Biodiversity Change (LIB).
In a dramatic turn of events, the tight match between the Angolan tarantula C. attonitifer , whose ‘horn’ protruding from its back surprised the scientists because of its unique structure and soft texture, and the first pitcher plant whose ‘traps’ can be found underground in Borneo, ended up with the news that the New Species Showdown will be concluding with a battle between the kingdoms Animalia and Plantae! What a denouement!

The record-breaking plant was described in June 2022 in PhytoKeys: a journal launched by Pensoft in 2010 with the mission to introduce fast, linked and open publishing to plant taxonomy.
THE FINAL
And here we were at the finish line.
But why did we hold the tournament right now?

If you have gone to the Pensoft website at any point in 2022, visited our booth at a conference, or received a newsletter from any of our journals, by this time, you must be well aware that in 2022 – more precisely, on 25 December – we turned 30. And we weren’t afraid to show it!

Pensoft’s team happy to showcase the 30-year story of the company at various events this year.
Left: Maria Kolesnikova at the annual Biodiversity Information Standards (TDWG 2022) conference, hosted by Pensoft in Sofia, Bulgaria. Right: Iva Boyadzhieva at the XXVI International Congress of Entomology (ICE 2022) in Helsinki, Finland.

Indeed, 30 is not that big of a number, as many of us adult humans can confirm. Yet, we take pride in reminiscing about what we’ve done over the last three decades. 

The truth is, 30 years ago, we wouldn’t have been able to picture this day, let alone think that we’d be sharing it with all of you: our journal readers, authors, editors and reviewers, collaborators in innovation, project partners, and advisors. 

Long story short, we wanted to do something special and fun to wrap up our anniversary year. While we have been active in various areas, including development of publishing technology concerning open and FAIR access and linkage for research outcomes and underlying data; and multiple EU-supported scientific projects, we have always been associated with our biodiversity journal portfolio.

Besides, who doesn’t like to learn about the latest curious creature that has evaded scientific discovery throughout human history up until our days? 😉

Now, follow the #NewSpeciesShowdown to join the contest!

Digitising beans to feed the world

In 2018, NHM London’s digitisation team started a project to digitise non-type herbarium material from the legume family. A recent data paper in the Biodiversity Data Journal reports on the outcomes.

You can find the original blog post by the Natural History Museum of London, reposted here with minor edits.

Legumes are a group of plants that include soybeans, peas, chickpeas, peanuts and lentils. They are a significant source of protein, fibre, carbohydrates, and minerals in our diet and some, like the cowpea, are resistant to droughts.

In 2018, the Natural History Museum of London’s (NHM London) digitisation team started a project in collaboration with project leader Royal Botanic Gardens Kew and the Royal Botanic Garden Edinburgh.

The project’s outcomes were published in a data paper in the Biodiversity Data Journal. Within the project, the digitisation team aimed to collectively digitise non-type herbarium material from the legume family. This includes rosewood trees (Dalbergia), padauk trees (Pterocarpus) and the Phaseolinae subtribe that contains many of the beans cultivated for human and animal food.

This project was made possible through the Department for Environment Food & Rural Affairs (DEFRA)-allocated Official Development Assistance (ODA) funding, distributed by the UK government in its “global efforts to defeat poverty, tackle instability and create prosperity in developing countries”.

AfricanGuinea, Ethiopia, Sudan, Kenya, Uganda, Tanzania, Mozambique, Malawi and Madagascar
AsianBangladesh, Myanmar, Nepal, New Guinea and India
Southern and Central AmericanGuatemala, Honduras, El Salvador, Nicaragua, Bolivia, Argentina and Brazil
ODA-listed Countries

The legume groups: Dalbergia, Pterocarpus and Phaseolinae,were chosen for digitisation to support the development of dry beans as a sustainable and resilient crop, and to aid conservation and sustainable use of rosewood and padauk trees. Some of these beans, especially cow pea and pigeon pea, are sustainable and resilient crops, as they can be grown in poor-quality soils and are drought stress resistant. This makes them particularly suitable for agricultural production where the growing of other crops would be difficult.

Digitally discoverable herbarium specimens can provide important information about the distribution of individual species, as well as highlighting which species occur naturally together.

While there have been collaborative efforts between herbaria in the past, these have tended to prioritise digitisation of type specimens: the example specimens for which a species is named.

Types are important to identification, but being individual specimens, they don’t offer insights into species distribution over time. By focusing on the non-types across the world and over the last 200 years, we have released a brand-new resource to the global scientific community.

Searching for beans

This collection was digitised by creating an inventory record for each specimen, attaching images of each herbarium sheet, and then transcribing more data and georeferencing the specimens, providing an accurate locality in space and time for their collection. 

We originally had four months and three members of staff to digitise over 11,000 specimens. The Covid-19 lockdown was ironically rather lucky for this project as it enabled us to have more time to transcribe and georeference all of the records. 

say the researchers behind the digitisation project.
Map showing breakdown of records by country.

“We were able to assign country-level data to 10,857 out of the total number of 11,222 records. We were also able to transcribe the collectors’ names from the majority of our specimen labels (10,879 out of 11,222). Only 770 out of the 2,226 individuals identified during this project collected their specimens in ODA listed countries. The highest contributors were: Richard Beddome (130 specimens), Charles Clarke (110), Hans Schlieben (98) and Nathaniel Wallich (79). The breakdown of records by ODA country can be seen in the chart below. “

Map showing breakdown of records by country and pie chart showing distribution by ODA listed countries.

From our data, we can see the peak decade of collection was the 1930s, with almost half (4,583 specimens or 49,43%) collected between 1900 and 1950 (Fig. 10).

This peak can be attributed to three of our most prolific collectors: Arthur Kerr, John Gossweiler and Georges Le Testu, all of whom were most active in the 1930s. The oldest specimen (BM013713473) was collected by Mark Catesby (1683-1749) in the Bahamas in 1726.

they explain.

An interesting, but perhaps unsurprising, finding is that our collection is strongly male-dominated.

There are only two women (Caroline Whitefoord and Ynes Mexia) in the list of our top 50 plant collectors and they are not close to the most prolific collectors.

We identified more women in the rest of our records, but their contribution is on average less than 25 specimens per person in the dataset consisting of more than 10,000 specimens. In contrast, the top five male collectors contributed 10% of our collection. 

they continued

Releasing Rosewoods

Both the Pterocarpus and Dalbergia genera include species that are used as expensive good quality timber that is prone to illegal logging. Many species such as Pterocarpus tinctorius are also listed on the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. By releasing this new resource of information on all these plants from three of the biggest herbaria in the world, we can share this datа with the people who are taking care of biodiversity in these countries. The data can be used to identify hotspots, where the tree is naturally growing and protect these areas. These data would also allow much closer attention to be paid to areas that could be targets for illegal logging activity.

Pterocarpus tinctorius is a species of padauk tree that is listed as endangered on the IUCN Red List.
Cowpea (Vigna unguiculata) is a food and animal feed crop grown in the semi-arid tropics.

The ODA-listed countries are economically impoverished and disproportionately prone to be disadvantaged with the changing climate whether from flood or drought or increase in temperature.

Using data to identify good, nutritious plant species that can be grown in such conditions can therefore benefit local communities, potentially reducing dependence on imports, aid and on less resilient crops. 

the team adds in conclusion.

***

This dataset is now openly available on the Museum’s Data Portal and a data paper about this work has been released in the Biodiversity Data Journal.

***

Stay in touch with the Digitisation team by following us on Instagram and Twitter

Don’t forget to also follow the Biodiversity Data Journal on Twitter and Facebook.

Flora of Cameroon: Annonaceae Vol 45 available in print, as well as Open Access format with PhytoKeys

While every Flora publication is an incredibly valuable scientific resource, Vol. 45 is the first in the series to be made available in digital format, following its publication in the open-access journal PhytoKeys

The 45th volume of the Flora of Cameroon pilots a novel “Flora” section in the journal to promote accessibility and novelty in plant taxonomy

Dedicated to Annonaceae, the 45th volume of the Flora of Cameroon is the result of over 15 years of work on the systematics of this major pantropical group, commonly known as the Custard apple family or the Soursop family, and its diversity in one of the most biodiverse African countries, whose flora has remained understudied to this date.

In their publication, the authors: Thomas L. P. Couvreur, Léo-Paul M. J. Dagallier, Francoise Crozier, Jean-Paul Ghogue, Paul H. Hoekstra, Narcisse G. Kamdem, David M. Johnson, Nancy A. Murray and Bonaventure Sonké, describe 166 native taxa representing 163 species in 28 native genera, including 22 species known solely from Cameroon. The team also provides keys to all native genera, species, and infraspecific taxa, while a detailed morphological description and a distributional map are provided for each species.

Specimen of Uvariastrum zenkeri from Cameroon. Photo by Thomas L.P. Couvreur.

Amongst the findings featured in the paper is the discovery of a previously unknown species of a rare tree that grows up to 6 metres and is so far only known from two localities in Cameroon. As a result of their extensive study, the authors also report that the country is the one harbouring the highest number of African species for the only pantropical genus of Annonaceae: Xylopia.

While every Flora publication presents an incredibly valuable scientific resource due to its scale and exhaustiveness, what makes Volume 45 of the Flora of Cameroon particularly special and important is that it is the first in the series to be made available in digital format, following its publication in the peer-reviewed, open-access journal PhytoKeys

Available in the open-access scholarly journal PhytoKeys, the latest volume of the Flora of Cameroon features perks like displaying occurrences of treated taxa side-by-side when reading the publication in HTML.

As such, it is not only available to anyone, anywhere in the world, but is also easily discoverable and minable online, as it benefits from the technologically advanced publishing services provided by the journal that have been specially designed to open up biodiversity data. While the full-text publication is machine-readable, hence discoverable by search algorithms, various data items, such as nomenclature, descriptions, images and occurrences, are exported in relevant specialised databases (e.g. IPNI, Plazi, Zenodo, GBIF). In their turn, the readers who access the HTML version of the publication may enjoy the benefits of this semantically enriched format, as they navigate easily within the text, and access further information about the mentioned and hyperlinked taxa.

In fact, the Annonaceae contribution is the first to use the newly launched publication type in PhytoKeys: Flora.

Yet, to keep up with the much treasured tradition, the new publication is also available in print format, accompanied by its classic cover design.

In the field: Narcisse G. Kamdem (Université de Yaoundé I, Cameroon), co-author of the Flora of Cameroon – Annonaceae Vol 45. Photo by Thomas L.P. Couvreur.

When we spoke with the team behind the Flora, we learnt that they are all confident that  having the new volume in both print and open-access digital formats, is expected to rekindle the interest in the series, especially amongst younger botanists in Cameroon.

“The hybrid publication is a response to the reluctance to publish new volumes of these series. The hybrid version pioneered in Volume 45, is an opportunity for any scientist to freely access this fundamental work, and eventually use it in future studies. Also, the online and open access format is intended to stimulate botanists to author family treatments without the fear of not having their work published online in an academic journal with an Impact Factor,”

says Dr. Jean Michel Onana, editor and reviewer of the Flora, former Director of the National Herbarium of Cameroon, and a researcher at the Université de Yaoundé 1, Cameroon.

“The chosen format marks a qualitative leap in the presentation of the Flora of Cameroon and will be of interest to young botanists, who until now might have found the old presentation of the Flora unrewarding,” adds Prof. Bonaventure Sonké, last author and Head of the Biology Department of the Université de Yaoundé 1, Cameroon.

In the field: Prof. Bonaventure Sonké, last author and Head of the Biology Department of the Université de Yaoundé 1. Photo by Thomas L.P. Couvreur.

*

As an extensive contribution to a previously understudied area of research, the value of the new publication goes beyond its appreciation amongst plant taxonomists.

“The Flore du Cameroun series is considered as a showcase of the National Herbarium of Cameroon, which promotes knowledge of the flora of Cameroon at all levels. Being able to identify plants and trees is the first and foremost step to addressing the issue of ill-management of forest regions in Cameroon and the Congo Basin as a whole. If planning continues to rely on badly made identification, the forecasts about our resources are not good at all,” says Prof. Jean Betti Largarde, Head of the National Herbarium of Cameroon, and Editor-in-Chief of the Flora of Cameroon.

Narcisse G. Kamdem, co-author of the Flora of Cameroon. Photo by Thomas L.P. Couvreur.

“Plant taxonomy is the basic discipline for the knowledge, conservation and sustainable management of biodiversity, including animals, plants and habitats. Young Cameroonian botanists, privileged to having such floristic richness in their country, are invited to take an interest in it. This is the field that opens the mind and makes it possible to address all other aspects of botanical research and development in relation to natural resources,”

adds Jean Michel Onana.

Research article:

Specimen of Sirdavidia solanona in its natural habitat. Photo by Thomas L.P. Couvreur.

Couvreur TLP, Dagallier L-PMJ, Crozier F, Ghogue J-P, Hoekstra PH, Kamdem NG, Johnson DM, Murray NA, Sonké B (2022) Flora of Cameroon – Annonaceae Vol 45. PhytoKeys 207: 1-532. https://doi.org/10.3897/phytokeys.207.61432

Follow PhytoKeys on Twitter and Facebook.

Plants quick to let their flowers fade for protection, show new field experiments and microbiome

Microbes growing on flowers have adverse effects on their fruit yields. This is why plants are quick to shed their flowers, reveals a new study involving both field experiments and plant microbiome analyses.

The present study looked into the wild ginger in Japan (Alpinia japonica, Zingiberaceae). Its flowers open in the morning and wither around sunset, as many one-day flower plants do.
Photo by Shoko Sakai.

Microbes growing on flowers have adverse effects on their yields. This is why plants are quick to shed their flowers, reveals a new study involving both field experiments and plant microbiome analysis.

The findings – made by a joint team of researchers from the Centre for Research on Ecology and Forestry Applications (CREAF, Spain) and Kyoto University (Japan) – are published in the open-access scholarly journal Metabarcoding and Metagenomics.

Scientifically speaking, flowers are a reproductive structure of a plant. Unlike mammals, though, perennial plants develop those de novo every season and only retain them for as long as needed.

While a few earlier studies have already looked into the variation in flower lifespan among species, they were mainly concerned with the tradeoff between plants spending energy on producing and maintaining their flowers, and the benefit they would achieve from retaining their reproductive organs.

Most flowers complete their role and wither or drop within only several days or even less.
Photo by Shoko Sakai.

Prior to the present study, however, the team found another perspective to look at the phenomenon: why did plants invest their energy –  even if the ‘cost’ was minimal – to produce fragile flowers that would wither in a matter of days, rather than investing a bit more of it to produce a lot more durable ones, thereby increasing their reproductive success?

“Interestingly, flower lifespan is negatively correlated with temperature; the hotter the environment where they bloom, the shorter the period a plant retains them. The phenomenon has been known for a long time.

Then, at some point, I came up with the hypothesis that antagonistic microbes, such as bacteria and fungi growing on flowers after the flower bud opens, must be the driver that shortens the lifespan of a flower. I doubted that it was a coincidence that microbes grow faster in higher temperatures,”

comments Shoko Sakai, author of the present study.

Flowers provide various habitats for microbes. They attract pollinators by secreting nectar, which is rich in sugars, and often contains other nutrients, such as amino acids and lipids. The stigma is a germination bed for pollen grains connected to a growth chamber for pollen tubes. It maintains humidity and nutrients necessary for pollen tube growth. Not surprisingly, abundance of the microbes increases over time on individual flowers after it opens.

Before jumping to their conclusions, the scientists set out to conduct field experiments to see what microbial communities would appear on flowers if their longevity was prolonged.

To do this, they took microbes from old flowers of wild ginger (Alpinia japonica) – a species found in Japan and blooming in the early summer when the hot and humid weather in the country is ideal for microbial growth. Then, they transferred the microbes to other wild ginger plants, whose flowers had just opened.

In line with their initial hypothesis, the research team noted that the plant produced significantly fewer fruits, yet there were no visible symptoms on the flowers or fruits to suggest a disease. However, an analysis of the plants’ microbiomes revealed the presence of several groups of bacteria that were increasing with time. As these bacteria can also be found on the flower buds of flowers that have not been treated, the bacteria is categorised as “resident” for the plant.

“So far, flower characteristics have mostly been studied in the context of their interactions with pollinators. Recent studies have raised the question whether we have overlooked the roles of microbes in the studies of floral characteristics.

For example, flower volatiles – which are often regarded as a primary pollinator attractant – can also function to suppress antagonistic microbes. The impacts of microbes on plant reproductive ecology may be more deeply embedded in the evolution of angiosperms than we have considered,”

Sakai concludes.
Flowers have various organs rich in nutrients, and each organ harbours a distinct microbiome. Flower visitors transfer microbes between and within flowers.
Photo by Shoko Sakai.

***

Research article:

Jiménez Elvira N, Ushio M, Sakai S (2022) Are microbes growing on flowers evil? Effects of old flower microbes on fruit set in a wild ginger with one-day flowers, Alpinia japonica (Zingiberaceae). Metabarcoding and Metagenomics 6: e84331. https://doi.org/10.3897/mbmg.6.84331

***

Follow the Metabarcoding and Metagenomics (MBMG) journal on Twitter and Facebook (@MBMGJournal).

Volunteer “community scientists” do a pretty darn good job generating usable data

When museum-goers did a community science activity in an exhibit at the Field Museum (USA), the data they produced were largely accurate.

Left: Cuong Pham, Jimmy Crigler, and Joshua Torres working on a community science platform in an exhibit at the Field Museum (photo by Melanie Pivarski, Roosevelt University).
Right: The microscopic leaves of a liverwort, a primitive plant that helps scientists track climate change (photo by Lauren Johnson, Field Museum).
Original publication by the Field Museum

Ask any scientist — for every “Eureka!” moment, there’s a lot of less-than-glamorous work behind the scenes. Making discoveries about everything from a new species of dinosaur to insights about climate change entails some slogging through seemingly endless data and measurements that can be mind-numbing in large doses.

Community science shares the burden with volunteers who help out, for even just a few minutes, on collecting data and putting it into a format that scientists can use. But the question remains how useful these data actually are for scientists. 

A new study, authored by a combination of high school students, undergrads and grad students, and professional scientists showed that when museum-goers did a community science activity in an exhibit, the data they produced were largely accurate, supporting the argument that community science is a viable way to tackle big research projects.

“It was surprising how all age groups from young children, families, youth, and adults were able to generate high-quality taxonomic data sets, making observations and preparing measurements, and at the same time empowering community scientists through authentic contributions to science,”

says Matt von Konrat (Field Museum, USA), an author of the paper in the journal Research Ideas and Outcomes (RIO Journal) and the head of plant collections at Chicago’s Field Museum.

“This study demonstrates the wonderful scientific outcomes that occur when an entire community comes together,”

says Melanie Pivarski, an associate professor of mathematics at Roosevelt University (USA) and the study’s lead author.

“We were able to combine a small piece of the Field Museum’s vast collections, their scientific knowledge and exhibit creation expertise, the observational skills of biology interns at Northeastern Illinois University (USA), led by our collaborator Tom Campbell, and our Roosevelt University student’s data science expertise. The creation of this set of high-quality data was a true community effort!” 

The study focuses on an activity in an exhibition at the Field Museum, in which visitors could partake in a community science project. In the community science activity, museumgoers used a large digital touchscreen to measure the microscopic leaves photographs of plants called liverworts. 

These tiny plants, the size of an eyelash, are sensitive to climate change, and they can act like a canary in a coal mine to let scientists know about how climate change is affecting a region. It’s helpful for scientists to know what kinds of liverworts are present in an area, but since the plants are so tiny, it’s hard to tell them apart. The sizes of their leaves (or rather, lobes — these are some of the most ancient land plants on Earth, and they evolved before true leaves had formed) can hint at their species. But it would take ages for any one scientist to measure all the leaves of the specimens in the Field’s collection. Enter the community scientists.

“Drawing a fine line to measure the lobe of a liverwort for a few hours can be mentally strenuous, so it’s great to have community scientists take a few minutes out of their day using fresh eyes to help measure a plant leaf. A few community scientists who’ve helped with classifying acknowledged how exciting it is knowing they are playing a helping hand in scientific discovery,”  

says Heaven Wade, a research assistant at the Field Museum who began working on the MicroPlants project as an undergraduate intern.

Community scientists using the digital platform measured thousands of microscopic liverwort leaves over the course of two years.

“At the beginning, we needed to find a way to sort the high quality measurements out from the rest. We didn’t know if there would be kids drawing pictures on the touchscreen instead of measuring leaves or if they’d be able to follow the tutorial as well as the adults did. We also needed to be able to automate a method to determine the accuracy of these higher quality measurements,”

says Pivarski.

To answer these questions, Pivarski worked with her students at Roosevelt University to analyze the data. They compared measurements taken by the community scientists with measurements done by experts on a couple “test” lobes; based on that proof of concept, they went on to analyze the thousands of other leaf measurements. The results were surprising.

“We were amazed at how wonderfully children did at this task; it was counter to our initial expectations. The majority of measurements were high quality. This allowed my students to create an automated process that produced an accurate set of MicroPlant measurements from the larger dataset,”

says Pivarski.

The researchers say that the study supports the argument that community science is valuable not just as a teaching tool to get people interested in science, but as a valid means of data collection.

“Biological collections are uniquely poised to inform the stewardship of life on Earth in a time of cataclysmic biodiversity loss, yet efforts to fully leverage collections are impeded by a lack of trained taxonomists. Crowd-sourced data collection projects like these have the potential to greatly accelerate biodiversity discovery and documentation from digital images of scientific specimens,”

says von Konrat.
Research article:

Pivarski M, von Konrat M, Campbell T, Qazi-Lampert AT, Trouille L, Wade H, Davis A, Aburahmeh S, Aguilar J, Alb C, Alferes K, Barker E, Bitikofer K, Boulware KJ, Bruton C, Cao S, Corona Jr. A, Christian C, Demiri K, Evans D, Evans NM, Flavin C, Gillis J, Gogol V, Heublein E, Huang E, Hutchinson J, Jackson C, Jackson OR, Johnson L, Kirihara M, Kivarkis H, Kowalczyk A, Labontu A, Levi B, Lyu I, Martin-Eberhardt S, Mata G, Martinec JL, McDonald B, Mira M, Nguyen M, Nguyen P, Nolimal S, Reese V, Ritchie W, Rodriguez J, Rodriguez Y, Shuler J, Silvestre J, Simpson G, Somarriba G, Ssozi R, Suwa T, Syring C, Thirthamattur N, Thompson K, Vaughn C, Viramontes MR, Wong CS, Wszolek L (2022) People-Powered Research and Experiential Learning: Unravelling Hidden Biodiversity. Research Ideas and Outcomes 8: e83853. https://doi.org/10.3897/rio.8.e83853

Follow RIO Journal on Twitter and Facebook.

48 years of Australian collecting trips in one data package

From 1973 to 2020, Australian zoologist Dr Robert Mesibov kept careful records of the “where” and “when” of his plant and invertebrate collecting trips. Now, he has made those valuable biodiversity data freely and easily accessible via the Zenodo open-data repository, so that future researchers can rely on this “authority file” when using museum specimens collected from those events in their own studies. The new dataset is described in the open-access, peer-reviewed Biodiversity Data Journal.

While checking museum records, Dr Robert Mesibov found there were occasional errors in the dates and places for specimens he had collected many years before. He was not surprised.

“It’s easy to make mistakes when entering data on a computer from paper specimen labels”, said Mesibov. “I also found specimen records that said I was the collector, but I know I wasn’t!”

One solution to this problem was what librarians and others have long called an “authority file”.

“It’s an authoritative reference, in this case with the correct details of where I collected and when”, he explained.

“I kept records of almost all my collecting trips from 1973 until I retired from field work in 2020. The earliest records were on paper, but I began storing the key details in digital form in the 1990s.”

The 48-year record has now been made publicly available via the Zenodo open-data repository after conversion to the Darwin Core data format, which is widely used for sharing biodiversity information. With this “authority file”, described in detail in the open-access, peer-reviewed Biodiversity Data Journal, future researchers will be able to rely on sound, interoperable and easy to access data, when using those museum specimens in their own studies, instead of repeating and further spreading unintentional errors.

“There are 3829 collecting events in the authority file”, said Mesibov, “from six Australian states and territories. For each collecting event there are geospatial and date details, plus notes on the collection.”

Mesibov hopes the authority file will be used by museums to correct errors in their catalogues.

“It should also save museums a fair bit of work in future”, he explained. “No need to transcribe details on specimen labels into digital form in a database, because the details are already in digital form in the authority file.”

Mesibov points out that in the 19th and 20th centuries, lists of collecting events were often included in the reports of major scientific expeditions.

“Those lists were authority files, but in the pre-digital days it was probably just as easy to copy collection data from specimen labels.”

“In the 21st century there’s a big push to digitise museum specimen collections”, he said. “Museum databases often have lookup tables with scientific names and the names of collectors. These lookup tables save data entry time and help to avoid errors in digitising.”

“Authority files for collecting events are the next logical step,” said Mesibov. “They can be used as lookup tables for all the important details of individual collections: where, when, by whom and how.”

###

Research paper:

Mesibov RE (2021) An Australian collector’s authority file, 1973–2020. Biodiversity Data Journal 9: e70463. https://doi.org/10.3897/BDJ.9.e70463

###

Robert Mesibov’s webpage: https://www.datafix.com.au/mesibov.html

Robert Mesibov’s ORCID page: https://orcid.org/0000-0003-3466-5038

Bulgarian Academy of Sciences signs with Pensoft to move Silva Balcanica journal to ARPHA

The first 2020 issue of the journal by the Academy’s Forest Research Institute is already online on a brand new and user-friendly website

The scholarly publisher and technology provider Pensoft welcomes the open-access, peer-reviewed international journal in forest science concerning the Balkan Peninsula, Central and Southern Europe Silva Balcanica to its self-developed publishing platform ARPHA. Having become the latest addition to the lengthy portfolio of scholarly outlets dedicated to the fields of ecology and biology for Pensoft and ARPHA, Silva Balcanica is now offering a wide range of benefits and services to its readers, authors, reviewers and editors alike.

Having already acquired its own glossy and user-friendly website provided by ARPHA, Silva Balcanica also takes advantage of the platform’s signature fast-track, end-to-end publishing system. In addition, the published content enjoys automated export of data to aggregators, as well as web-service integrations with major global indexing and archiving databases.

Silva Balcanica’s new website on ARPHA Platform. Visit athttps://silvabalcanica.pensoft.net 

Ever since its inception in 2001, the journal by the Forest Research Institute at the Bulgarian Academy of Sciences (FRI-BAS), has been providing open access to the latest research in all aspects of forest ecosystems and landscapes of the Balkan Peninsula, and also Central and Southern Europe.

Silva Balcanica invites scientific analysis of practical results, as well as investigations, in the forest sciences, including forest ecology; forest soil science; forest genetics, tree breeding and plantation forestry; biometry and sylviculture; forest economy and management; forest entomology and pathology; ecology and management of game fauna, urban forestry and green infrastructure. Constructive critique addressing scientific publications or events in the field of forestry and forest science are also accepted.

In the first 2020 issue of Silva Balcanica, we can find a total of eight research papers, dealing with a range of various topics, including studies on local plant diversity, genetics, application of experimental designs for forestry research, ecosystem services, population dynamics, invasive pathogens and previously unknown populations of forest-dwelling insects. It brings together single-authored research contributions as well as international collaborative projects, with input from authors from Bulgaria, Greece, Northern Macedonia and Italy.

CEO and founder of both Pensoft and ARPHA Platform Prof. Lyubomir Penev comments:

“Silva Balcanica is an important scholarly outlet and also a remarkable example of international cooperation, inspired and maintained by curiosity, care and responsibility towards the unique, but fragile ecosystems this part of Europe hosts. This is why we take pride in having this particular journal joining our portfolio,”

Silva Balcanica’s Editorial Board says:

“The Scientific Council of the Forest Research Institute at the Bulgarian Academy of Sciences decided to begin publishing Silva Balcanica as an international series in 2001 and since 2014, Silva Balcanica has been published as an international journal.

We are honored to have as members of our Editorial Advisory Board eminent European professors and researchers in forestry and related sciences that join our efforts in pursuit of high quality scientific publishing.

We are confident that Silva Balcanica will unite the research of scientists and specialists in forestry from Southeastern, Central and Eastern Europe and beyond, and will help them in the processes of their European integration.”

###

Visit the new website of Silva Balcanica at https://silvabalcanica.pensoft.net.

Guest Blog Post: Researchers split the birdcatcher trees (genus Pisonia) into three

Large Cabbage trees (Pisonia grandis) dominate the landscape of a small island in the Pacific Ocean
Photo by Jean-Yves Meyer (Délégation à la Recherche de Polynésie Française, Tahiti, French Polynesia)

Guest blog post by Marcos Caraballo


The birdcatcher trees – genus Pisonia – are infamous for trapping birds with their super-sticky seed pods that would frequently entangle the body of the ‘victim’. Left flightless, the poor feathered creatures eventually die either from starvation or fatigue, or predators. Similarly notorious are the birdcatcher trees for botanists, who have been baffled by their complicated classification for the last three centuries. 

Here’s why myself and graduate student Elson Felipe Rossetto of the Universidade Estadual de Londrina (Brazil) decided to take up the untangling of this issue with our recent taxonomic studies. You can find our research paper published in the open-access scholarly journal PhytoKeys.

Ripe fruits (anthocarps) of the Birdlime tree (Ceodes umbellifera)
Photo by Ching-I Peng [deceased]

We reestablished two genera: Ceodes and Rockia, where both had been previously merged under the name of Pisonia. Now, as a result, there are three distinct lineages of birdcatcher trees from the islands of the Pacific and Indian Oceans: Ceodes, Pisonia, and Rockia.

“Previous molecular studies on Pisonia species from around the world showed that species were clustered into three major groups, and here we assign names for each of them. With this new classification, a large number of the species known as Pisonia will be henceforth named Ceodes. This includes the Parapara (Ceodes brunoniana) and the Birdlime (Ceodes umbellifera) trees, both native to many islands, including Hawaii and New Zealand. They are commonly planted in gardens for their lush and sometimes variegated foliage, as well as their fragrant white flowers. However, the Cabbage tree (Pisonia grandis) will still be technically known as Pisonia.”

adds the study’s lead author Felipe Rossetto.
Male (staminate) showy flowers of the Birdlime tree (Ceodes umbellifera)
Photo by Joel Bradshaw (Far Outliers, Honolulu, Hawaii)

Birdcatcher trees have generated much controversy in the popular media because of their seed pods (technically called “anthocarps”) secreting a sticky substance that glues them to the feathers of seabirds or other animals for dispersal. Sometimes, though, too many seed pods can harm or kill birds, especially small ones, by weighing them down and rendering them flightless. This macabre practice has led to many controversies and local campaigns aiming to remove the trees, even illegally.

Brown noddy (Anous stolidus) covered with the sticky fruits (anthocarps) of the Cabbage tree (Pisonia grandis)
Photo by Jean-Yves Meyer (Délégation à la Recherche de Polynésie Française, Tahiti, French Polynesia)

In spite of their forbidding reputation, however, we would like to stress that birdcatcher trees have positive effects on ecosystems and are important components of vegetation, especially for small islands. Sadly, there are many endemic and already endangered species of birdcatcher trees that only exist on a few small islands, where they are effectively placed at the mercy of local people.

Many species of birdcatcher trees are large and, thereby, tolerate harsh environments like seafronts and rocky cliffs, making them prime nesting spots for seabirds. Birdcatcher trees are also ecologically curious and could be regarded as keystone species in small islands, because their soft branches can sustain many types of invertebrates; their flowers are an important food source for bees and ants; their dense leaf litter nourishes the soil; and their roots have intimate interaction with native underground fungi (mycorrhiza).

All in all, clarifying the taxonomy of the birdcatcher trees is the first step to understanding how many species exist and how they relate to each other. 

Although most people relate birdcatcher trees with beaches and coastal habitats, there are species that are only found in mountains or rainforests. For example, the species now allocated to the genus Rockia is endemic to the Hawaiian archipelago. These are small trees able to grow in dry to mesic mountain forests. Using our new classification, future studies can explore in detail the hidden diversity of these enigmatic plants, and find out how trees with high dispersal capabilities evolve into species endemic to small island ecosystems.

Cabbage trees (Pisonia grandis) are important components of the vegetation in small islands due to their massive size
Photo by Jean-Yves Meyer (Délégation à la Recherche de Polynésie Française, Tahiti, French Polynesia)

About the author:

Marcos A. Caraballo-Ortiz is a research associate at the Smithsonian Institution (Washington, D.C., United States). His research interests include plant systematics and ecology, with a focus on flora of the Caribbean Islands. Dr. Caraballo-Ortiz has experience studying the taxonomy of several groups of tropical plants, with a particular interest in neotropical Mistletoes (Loranthaceae, Santalaceae, Viscaceae) and the Four O’Clock family (Nyctaginaceae). 

For more information about his projects, visit marcoscaraballo.com.

Research paper:

Rossetto EFS, Caraballo-Ortiz MA (2020) Splitting the Pisonia birdcatcher trees: re-establishment of Ceodes and Rockia (Nyctaginaceae, Pisonieae). PhytoKeys 152: 121-136. https://doi.org/10.3897/phytokeys.152.50611


Plant Sociology renewed: Does an open access society journal about vegetation still make sense in 2020?

In a new editorial, Plant Sociology’s Editor-in-Chief Daniela Gigante and Co-editors Gianni Bacchetta, Simonetta Bagella and Daniele Viciani reflect on the current position and outlook of the official journal of the Italian Society of Vegetation Science (Società Italiana di Scienza della Vegetazione or SISV), now that it has completed its first issue since transitioning to the scientific publisher and technology provider Pensoft and ARPHA Platform earlier this year.

Homepage of the new website of Plant Sociology
(visit: https://plantsociology.arphahub.com/)

The Editorial board briefly analyses the issues around the inaccessibility to scholarly research and suitable scholarly outlets still persisting in our days that impede both readers and authors across branches of science. Naturally, they go on to focus on the situation in vegetation science, where, unfortunately, there are rather few outlets open to original research related to any aspect within vegetation science.

By telling their own experience, but also citing the stories of other similarly positioned society journals, including other journals that have moved to Pensoft’s self-developed ARPHA Platform over the past several years (e.g. Journal of Hymenoptera Research, European Science Editing, Italian Botanist, Vegetation Classification and Survey, Nota Lepidopterologica), the editors present an example how to address the challenges of securing the long-term sustainability and quality for a journal used to being run by a small editorial staff in what they refer to as a “home made” method.

Other society journals that have moved to Pensoft’s self-developed ARPHA Platform over the past several years

In this process, the SISV supported its official scholarly outlet to be published as a “gold open access” journal and ensured that the APCs are kept to a reasonable low in line with its non-profit international business model. Further discounts are available for the members of the Society.

Then, the journal management also reorganised its Editorial Board and welcomed a dedicated Social media team responsible for the increased outreach of published research in the public domain through the channels of Twitter and Facebook

Besides making the publications publicly available as soon as they see the light of day, the journal strongly supports other good open science practices, such as open data dissemination. In Plant Sociology, authors are urged to store their vegetation data in the Global Index of Vegetation-Plot Databases (GIVD). Additionally, the journal is integrated with the Dryad Digital Repository to make it easier for authors to publish, share and, hence, have their data re-used and cited.

The team behind Plant Sociology is perfectly aware of the fact that it is only through easy to find and access knowledge about life on Earth that the right information can reach the right decision-makers, before making the right steps towards mitigating and preventing future environmental catastrophes.

Access the article from: https://doi.org/10.3897/pls2020571/05

“A journal focusing on all aspects of natural, semi-natural and anthropic plant systems, from basic investigation to their modelisation, assessment, mapping, management, conservation and monitoring, is certainly a precious tool to detect environmental unbalances, understand processes and outline predictive scenarios that support decision makers. In this sense, we believe that more and more OA journals focused on biodiversity should find space in the academic editorial world, because only through deep knowledge of processes and functions of a complex planet, humankind can find a way to survive healthy,”

elaborate the editors.

To take the burden of technical journal management off the shoulders of Plant Sociology’s own editorial team, the journal has entrusted Pensoft to provide a user-friendly and advanced submission system, in addition to the production, online publishing and archiving of the accepted manuscripts. Thus, the editorial team is able to focus entirely on the scientific quality of the journal’s content.

“The renewal of Plant Sociology is a challenge that we have undertaken with conviction, aware of the difficulties and pitfalls that characterize the life of a scientific journal today. Entrusting the technical management of the journal to a professional company aims to improve its dissemination and attractiveness, but also to focus our efforts only on scientific content,”

explain the editors.

***

About Plant Sociology:

Plant Sociology publishes articles dealing with all aspects of vegetation, from plant community to landscape level, including dynamic processes and community ecology. It favours papers focusing on plant sociology and vegetation survey for developing ecological models, vegetation interpretation, classification and mapping, environmental quality assessment, plant biodiversity management and conservation, EU Annex I habitats interpretation and monitoring, on the ground of rigorous and quantitative measures of physical and biological components. The journal is open to territorial studies at different geographic scale and accepts contributes dealing with applied research, provided they offer new methodological perspectives and a robust, updated vegetation analysis.

Find all pre-2020 issues and articles of Plant Sociology openly available on the former website.

Follow Plant Sociology on Twitter and Facebook.