Carried with the wind: mass migration of Larch Budmoth to the Russian High Arctic

Live Larch Budmoth walking on tundra, Vize Island, air temperature +3C, 30.07.2020. Photo by Dr Maria Gavrilo

Arctic habitats have fascinated biologists for centuries. Their species-poor insect faunas, however, provide little reward for entomologists – scientists who study insects – to justify spending several weeks or even months in the hostile environments of tundra or polar deserts. As a result, data on insects from the High Arctic islands are often based on occasional collecting and remain scarce.

Vize Island has uniform flatland landscape with lichen-moss vegetation typicalfor High-Arctic islands. Photo by Dr Maria Gavrilo

Vize Island, located in the northern part of the Kara Sea, is one of the least studied islands of the Russian High Arctic in terms of its biota. Scientists Dr Maria V. Gavrilo of the Arctic and Antarctic Research Institute in Russia and Dr Igor I. Chupin of the Institute of Systematics and Ecology of Animals in Russia visited this ice-free lowland island in the summer of 2020. 

“Our expedition studied the ecology of Ivory Gull”, Maria Gavrilo says, “but we also looked for other wildlife.” Because of the lack of data, scientists appreciate any observation on insects they can get from the High Arctic.

On the island, the team found hundreds of small moths. They were identified by Dr Mikhail V. Kozlov of the University of Turku, Finland, as Larch Budmoths – the first and only terrestrial invertebrate to ever be observed and collected on Vize Island. Their observations are published in the open-access, peer-reviewed journal Nota Lepidopterologica.

Live Larch Budmoth walking on tundra, Vize Island, air temperature +3C, 30.07.2020. The scientists believe that this moth arrived on the island two weeks earlier after travelling with the winds some 1200 km across the Arctic ocean. Photo by Dr Maria Gavrilo 

The scientists first observed live and freshly dead moths on the sandy banks of a pond near the meteorological station. Then, they saw hundreds of them at the sandy bottom of a river valley with shallow streams. Moths, single or in groups, were mostly found at the water’s edge, along with some fine floating debris. Despite extremely low daily temperatures (+2-5°C), flying moths were also spotted on several occasions.

On average, four dead moths per 10 square meters were counted along the sandy river bed during a survey on 19.07.2020. Photo by Dr Maria Gavrilo 

The larvae of Larch Budmoth feed on the needles of different coniferous trees. Because Vize Island is located 1000 km north of the tree limit, the scientists can be sure about the migratory origin of the moths observed on Vize Island. They were likely transported there on 12–14 July 2020 by strong winds coming from the continent. The nearest potential source population of Larch Budmoth is located in the northern part of the Krasnoyarsk Region, which means they travelled at least 1200 km.

“The Arctic islands will be colonised by forest insects as soon as changing environmental conditions allow the establishment of local populations.”

Dr Mikhail V. Kozlov, University of Turku

Importantly, some moths remained alive and active for at least 20 days after their arrival, which means that long-distance travel did not critically deplete resources stored in their bodies. The current changes in climate are making it easier for more southerly insects to invade species-poor areas in the High Arctic islands – provided they can reach them and survive there.

“The successful arrival of a large number of live moths from continental Siberian forests to Vize Island has once more demonstrated the absence of insurmountable barriers to initial colonisation of High Arctic islands by forest insects”, concludes Mikhail Kozlov, who has studied Arctic insects for decades. “The Arctic islands will be colonised by forest insects as soon as changing environmental conditions allow the establishment of local populations.”

***

Original source:

Gavrilo MV, Chupin II, Kozlov MV (2021) Carried with the wind: mass occurrence of Zeiraphera griseana (Hübner, 1799) (Lepidoptera, Tortricidae) on Vize Island (Russian High Arctic). Nota Lepidopterologica 44: 91–97. https://doi.org/10.3897/nl.44.63662

Book on plants in the Murmansk region (Russia) scores 4/19 correct insect identifications

Mistakes can occur in any environment, but what if the records we read about are actually incorrect? The case of unqualified scientists publishing false records of insects in the Murmansk oblast of Russia is described in the recent paper in the open-access journal Arctic Environmental Research.

A recently published book on some aspects of the ecology of woody introducents in the Murmansk oblast of Russia provides the information on 19 species of plant-damaging insects out of which only 4 species are identified correctly. Dr Mikhail V. Kozlov from the University of Turku provides correct identifications for the insects, illustrated in the book, in his paper, published in the open-access journal Arctic Environmental Research in order to prevent the spread of erroneous information across future publications and databases.

Insect fauna of the Murmansk region is relatively well-studied and that’s why any new faunistic records from this region immediately attract the attention of entomologists. Those findings are especially exciting when they extend the distribution range of certain species by 1,000 to 2,000 km towards the North Pole.

The published misidentifications of insect species can lead to a cascading effect of mistakes, because entomologists commonly use faunistic data published by colleagues decades and even centuries ago. That’s why it is very important to keep a track of such cases and provide correct identifications if possible, remarks the author.

“In particular, three moth species (Archips crataegana, A. podanaand Erannis defoliaria) reported in this book to occur around Kirovsk have not yet been found either in the Murmansk oblast or in the more southern Karelia. In neighbouring Finland, the northernmost records of these species are from locations some 1,000 km to the south of Kirovsk”,

Dr Kozlov shares his concerns.

The most striking examples of misidentification in the book are at the order level: a syrphid fly (Diptera) identified as a leafcutter bee (Hymenoptera), and a sawfly (Hymenoptera) identified as a psyllid (Hemiptera).


Leaf beetle Chrysomela lapponica, erroneously mentioned in the criticized book as a pest of bird cherry, shadbush and chokeberry, feeds in the Murmansk oblast only on willows.
Credit: Vitali Zverev
License: CC-BY 4.0

In conclusion, Dr Kozlov’s revision found that 15 out of the 19 species illustrated were incorrectly identified. Thus, the leaf damage associated with certain insect species, considered in the book, also becomes very questionable.

“The misidentification of pest species can easily result in incorrect pest management and face unnecessary costs, while publication of incorrect data distorts our knowledge of the distribution and biology of insects. Therefore, insect identification for scientific, educational or pest management purposes should always be performed by professionals or by volunteers and students who have specific training for this
purpose”,

concludes Dr Mikhail V. Kozlov.

***

Original source:
Kozlov MV (2019) Insects identified by unqualified scientists: multiple “new” records from the Murmansk oblast of Russia are dismissed as false. Arctic Environmental Research 19(4): 153-158. https://doi.org/10.3897/issn2541-8416.2019.19.4.153