Comprehensive review of Burmese python science released

A USGS-led publication offers a new look at the constrictor that has invaded southern Florida.

An illustration of a burmese python
Getting your Trinity Audio player ready...

The U.S. Geological Survey has released a comprehensive synthesis of Burmese python science, showcasing results from decades of USGS-funded research on python biology and potential control tools. The giant constrictor now represents one of the most challenging invasive species management issues worldwide.

Occurrence records were obtained from a large geospatial database of invasive species reports (Early Detection & Distribution Mapping System) submitted by both researchers and the public. The map illustrates the chronology of python removals across southern Florida and represents the best professional estimate of the invasion front, which is not exact and will change over time.

“For the first time, all the science on python ecology and potential control tools has been consolidated into one document, allowing us to identify knowledge gaps and important research areas to help inform future python management strategies. This synthesis is a major milestone for Burmese python research; six years in the making, it represents the consensus of the scientific community on the python invasion,” said USGS Ecologist Jacquelyn Guzy, lead author for the publication.

Burmese pythons were confirmed to have an established breeding population in Everglades National Park in 2000. The population has since expanded and now occupies much of southern Florida. They consume a wide range of animals and have altered the food web and ecosystems across the Greater Everglades.

The synthesis, which pulled together the expertise of scientists and managers nationwide, provides a breakdown of 76 prey species found in python digestive tracts, which primarily included mammals and birds, as well as two reptile species, American alligator and Green iguana. However, as the scientists noted, the number of animals may increase as the python population expands to new areas.

It also reports new findings including a summary of body sizes of pythons measured by state and federal agencies between 1995 and 2022, as well as descriptions of length-mass relationships, the estimated geographic spread of pythons over time, and a comprehensive assessment of all control tools explored to date.

Illustration by Natalie Claunch demonstrates typical features of the Burmese python.

One of the hallmark issues of the Burmese python invasion has been the difficulty of visually detecting or trapping pythons in an immense natural landscape, Guzy said. Pythons do not readily enter any type of trap, occupy vast stretches of inaccessible habitat, and camouflage extremely well within the subtropical Florida environment.

“Extremely low individual python detection rates hamper our ability to both estimate python abundance and expand control tools across the extensive natural landscape” says USGS Research Ecologist Kristen Hart, an author of the publication.

Because the Burmese python has spread throughout southern Florida, eradication of the population across the landscape is not possible with existing tools, the publication states. However, researchers at USGS and partner institutions are exploring potential novel techniques such as genetic biocontrol, that may one day provide an avenue towards larger-scale population suppression.

In the meantime, important areas of research according to the publication include reproductive life history and estimation of demographic vital rates such as survival, to help managers evaluate and refine existing control tools. With improved control tools managers may be able to reduce population expansion and minimize the future impact of pythons on the environment.

The USGS python research over the past decades has been largely supported by the USGS Greater Everglades Priority Ecosystem Sciences (GEPES) Program with additional support from the USGS Biothreats and Invasive Species program.

Research article:

Guzy JC, Falk BG, Smith BJ, Willson JD, Reed RN, Aumen NG, Avery ML, Bartoszek IA, Campbell E, Cherkiss MS, Claunch NM, Currylow AF, Dean T, Dixon J, Engeman R, Funck S, Gibble R, Hengstebeck KC, Humphrey JS, Hunter ME, Josimovich JM, Ketterlin J, Kirkland M, Mazzotti FJ, McCleery R, Miller MA, McCollister M, Parker MR, Pittman SE, Rochford M, Romagosa C, Roybal A, Snow RW, Spencer MM, Waddle JH, Yackel Adams AA, Hart KM (2023) Burmese pythons in Florida: A synthesis of biology, impacts, and management tools. NeoBiota 80: 1-119. https://doi.org/10.3897/neobiota.80.90439

Story originally published by the USGS. Republished with permission.