New species of fungus sticking out of beetles named after the COVID-19 quarantine

A major comprehensive study on Herpomycetales and Laboulbeniales, two orders of unique ectoparasitic fungi associated with insects and other arthropods (class Laboulbeniomycetes) in Belgium and the Netherlands was published in the open-access, peer-reviewed scholarly journal MycoKeys.

A major comprehensive study on Herpomycetales and Laboulbeniales, two orders of unique ectoparasitic fungi associated with insects and other arthropods (class Laboulbeniomycetes) in Belgium and the Netherlands was published in the open-access, peer-reviewed scholarly journal MycoKeys.

Having surveyed arthropod fauna using pitfall traps and an illuminated white screen at night, and with the help of a network of entomologists, Dr. Danny Haelewaters (Purdue UniversityUniversity of South Bohemia and Ghent University) and Dr. André De Kesel (Botanic Garden Meise) provide identification details about a total of 140 fungal species. The list includes nine species that are reported for the first time for either of the two countries and two newly described species.

Interestingly, one of the novel fungi was described during the 2020 global quarantine period, imposed to curb the COVID-19 pandemic. This prompted the researchers to dedicate the newly discovered species to this extraordinary time. In the annals of science, the species will be going by the name of Laboulbenia quarantenae.

Laboulbenia quarantenae grows externally on the body of ground beetles belonging to the species Bembidion biguttatum and is thus far only found at the Botanic Garden Meise in Belgium. This new fungus is considered to be very rare compared to Laboulbenia vulgaris, another, well-documented species that is more commonly found on the same host. So far, there has been no evidence that L. quarantenae parasitizes other host species.

Extreme close-up of the thalli of a fungus in the genus Hesperomyces (H. virescens sensu lato) parasitizing a harlequin ladybird (Harmonia axyridis).
Image by Gilles San. Drawing by André De Kesel.

Herpomycetales and Laboulbeniales–unlike common mushrooms–do not form branching thread-like hyphae, nor a mycelium. Rather, they grow a single three-dimensional thallus of a few thousand cells sticking out of the body of the host organism. While some species of Laboulbeniales, like Laboulbenia quarantenae, are superficially attached to their host, others are more invasive, such as Hesperomyces halyziae, the second fungus newly described in this study. These fungi produce a haustorium, which is a hyphal outgrowth used to penetrate the tissues of their arthropod hosts, so that they can reach to the primary body cavity and the circulatory fluid in there. By doing so, it is thought that the parasites can both increase surface area for nutrient uptake and tighten their grip on their host.

In their study, the scientists hypothesize that, because of their invasive nature, these haustorial parasites maintain close interactions with their hosts in a process referred to as an “evolutionary arms race”. This means that whenever the host evolves a defence mechanism against the fungus, the parasite promptly evolves in its own turn, and adapts accordingly. Eventually, specialization leads to the evolution of new species.

The present study compiles all available data from Belgium and the Netherlands and serves as an appropriate starting point for an updated checklist of thallus-forming fungi in the class Laboulbeniomycetes found across Europe. Such a checklist is an ongoing project meant to summarize decades of research and will undoubtedly continue to uncover significant fungal diversity. The last update of this piece of knowledge dates back to 1991.

###

Original source:

Haelewaters D, De Kesel A (2020) Checklist of thallus-forming Laboulbeniomycetes from Belgium and the Netherlands, including Hesperomyces halyziae and Laboulbenia quarantenae spp. nov. MycoKeys 71: 23-86. https://doi.org/10.3897/mycokeys.71.53421

###

Follow lead author Dr. Danny Haelewaters on Twitter (@dhaelewa) and visit his website at: https://www.dannyhaelewaters.com/.

Medicinal mushroom newly reported from Thailand helps reveal optimum growth conditions

Globally recognised medicinal mushroom is reported for the first time in Thailand. The study also presents the first assessment of the optimum growth conditions for the species.

A species of globally recognised medicinal mushroom was recorded for the first time in Thailand. Commonly referred to as lingzhi, the fungus (Ganoderma tropicum) was collected from the base of a living tree in Chiang Rai Province, Northern Thailand. Additionally, the study reports the first assessment of the optimum conditions needed for the species to grow its mycelia (the vegetative part of a fungus consisting of a branching network of fine, thread-like structures) and spread its colony.

The discoveries are published in the open-access journal MycoKeys by a research team from the Chinese Academy of Sciences, University of Chinese Academy of SciencesWorld Agroforestry CentreKunming Institute of Botany (China) and Center of Excellence in Fungal ResearchMae Fah Luang University (Thailand), led by Thatsanee Luangharn.

Over the last centuries, the studied mushroom and its related species in the genus Ganoderma have been used extensively in traditional Asian medicines due to their natural bioactive compounds, including polysaccharides, triterpenoids, sterols, and secondary metabolites, which are used in the treatment of various diseases. Other compounds derived from lingzhi, such as the studied species, also demonstrate antimicrobial activities. The medicinal use of these mushrooms is recognised by the World Health Organization and they are featured in the Chinese Pharmacopoeia.

The studied mushroom belongs to a group known to be parasitic or pathogenic on a wide range of tree species. The species is characterised with strongly laccate fruiting bodies and a cap with distinctly dark brown base colour and reddish shades. It grows to up to 7-12 cm in length, 4-8 cm in width and is up to 1.5 cm thick. While the mushroom has so far been widely reported from tropical areas, including mainland China, Taiwan and South America, it had never been recorded from Thailand.

During their research, the scientists found that mycelial production for Ganoderma tropicum is most successful on Potato Dextrose Agar, Malt Extract Agar, and Yeast extract Peptose Dextrose Agar, at a temperature of 25-28 °C and 7-8 pH. Unfortunately, mushroom fruiting was not achieved in the experiment.

###

Original source:

Luangharn T, Karunarathna SC, Mortimer PE, Hyde KD, Thongklang N, Xu J (2019) A new record of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand and first assessment of optimum conditions for mycelia production. MycoKeys 51: 65-83. https://doi.org/10.3897/mycokeys.51.33513

The Alps are home to more than 3,000 lichens

Historically, the Alps have always played an emblematic role, being one of the largest continuous natural areas in Europe. With its numerous habitats, the mountain system is easily one of the richest biodiversity hotspots in Europe.

Lichens are curious organisms comprising a stable symbiosis between a fungus and one or more photosynthetic organisms, for example green algae and/or cyanobacteria. Once the symbiosis is established, the new composite organism starts to function as a whole new one, which can now convert sunlight into essential nutrients and resist ultraviolet light at the same time.

A common fruticose lichen in the Alps (Flavocetraria nivalis). Photo: Dr Peter O. Bilovitz
A common fruticose lichen in the Alps (Flavocetraria nivalis).
Photo: Dr Peter O. Bilovitz

Being able to grow on a wide range of surfaces – from tree bark to soil and rock, lichens are extremely useful as biomonitors of air quality, forest health and climate change.

Nevertheless, while the Alps are one of the best studied parts of the world in terms of their biogeography, no overview of the Alpine lichens had been provided up until recently, when an international team of lichenologists, led by Prof. Pier Luigi Nimis, University of Trieste, Italy, concluded their 15-year study with a publication in the open access journal MycoKeys.

Sunrise in the Julian Alps. Photo: Dr Pier Luigi Nimis
Sunrise in the Julian Alps.
Photo: Dr Pier Luigi Nimis

The scientists’ joint efforts produced the first ever checklist to provide a complete critical catalogue of all lichens hitherto reported from the Alps. It comprises a total of 3,138 entries, based on data collected from eight countries – Austria, France, Germany, Italy, Liechtenstein, Monaco, Slovenia and Switzerland. In their research paper, the authors have also included notes on the lichens’ ecology and taxonomy.

A common lichen in the Alps (Xanthoria elegans). Photo: Dr Tomi Trilar
A common lichen in the Alps (Xanthoria elegans).
Photo: Dr Tomi Trilar

They point out that such catalogue has been missing for far too long, hampering research all over the world. The scientists point out that this has been “particularly annoying”, since the data from the Alps could have been extremely useful for comparisons between mountainous lichen populations from around the globe. It turns out that many lichens originally described from the Alps have been later identified in other parts of the world.

It was a long and painstaking work, which lasted almost 15 years, revealing a surprisingly high number of yet to be resolved taxonomic problems that will hopefully trigger further research in the coming years,” say the authors.

We think that the best criterion to judge whether a checklist has accomplished its task for the scientific community is the speed of it becoming outdated,” they conclude paradoxically.

The new checklist is expected to serve as a valuable tool for retrieving and accessing the enormous amount of information on the lichens of the Alps

A widespread alpine lichen (Thamnolia vermicularis). Photo: Dr Peter O. Bilovitz
A widespread alpine lichen (Thamnolia vermicularis).
Photo: Dr Peter O. Bilovitz

that has accumulated over centuries of research. It offers a basis for specimen revisions, critical re-appraisal of poorly-known species and further exploration of under-explored areas. Thus, it could become a catalyst for new, more intensive investigations and turn into a benchmark for comparisons between mountains systems worldwide.

###

Original source:

Nimis PL, Hafellner J, Roux C, Clerc P, Mayrhofer H, Martellos S, Bilovitz PO (2018) The lichens of the Alps – an annotated checklist. MycoKeys 31: 1-634. https://doi.org/10.3897/mycokeys.31.23568

Lichenologists at work in the Carnic Alps. Photo: Dr Pier Luigi Nimis
Lichenologists at work in the Carnic Alps.
Photo: Dr Pier Luigi Nimis