Scientists call for a global alliance to place biodiversity at the heart of the UN Pact for the Future

A new white paper delivers a clear message: protecting biodiversity is not just an environmental issue. It is essential for food security, public health, climate stability, and the global economy.

A new white paper: “From Knowledge to Solutions: Science, Technology and Innovation in Support of the UN SDGs”, published in the open-science scholarly journal Research Ideas and Outcomes (RIO), brings together leading voices from Europe’s biodiversity and data science communities to deliver a clear message: protecting biodiversity is not just an environmental issue. It is essential for food security, public health, climate stability, and the global economy. 

The authors make a call for a decisive shift: from fragmented initiatives to a holistic, global approach to biodiversity research and policy, already demonstrated during a workshop at the 79th United Nations General Assembly and the Science Summit (UNGA79). A key part of this transformation concerns the role of research infrastructures in connecting science, technology, and policy: from vast biodiversity collections and genomic observatories, to ecosystem “digital twins” powered by supercomputers.

Behind the paper are a network of legal entities based in Europe and holding global interests, which includes biodiversity, ecology, and engineering communities, coordinated by the LifeWatch European Research Infrastructure Consortium (ERIC). 

With their combined expertise and through European initiatives, such as Research Infrastructures, e-Infrastructures, the European Open Science Cloud (EOSC), the Digital Twin projects and academic publishers, these communities provide a basis for collaboration in strategically contributing to the implementation of the Kunming-Montreal Global Biodiversity Framework (K-M GBF) targets.

Biodiversity needs to be placed at the centre of the upcoming 2026 UN Summit of the Future and become a core pillar of the agenda after the 2030 deadline for the United Nations Sustainable Development Goals (UN SDGs).

The UN Pact for the Future should include biodiversity as a core pillar: “not only of environmental sustainability, but of equity, security, and intergenerational justice”.  

urges the team.

To do this, the authors propose the establishment of a global alliance that will strategically integrate biodiversity conservation into the core priorities of the UN Summit of the Future and the post-SDG agenda.

This alliance is meant to join the voices of researchers, policymakers, indigenous knowledge holders, civil society, and industry to ensure that biodiversity underpins peace, prosperity, and justice as a universal enabler.

The white paper also demonstrates how the research infrastructures collectively contribute to the seven Strategic Considerations of the K-M GBF, outlined here in brief and further detailed in the full publication:

  1. Contribution and rights of Indigenous Peoples and local communities: Ensuring fair recognition and sharing of benefits with indigenous peoples and local communities, thus integrating their knowledge into biodiversity science.
  2. Collective efforts towards the targets of the K-M GBF: Coordinating biodiversity monitoring, databases, and digital infrastructures to track progress towards global conservation targets.
  3. Fulfilment of the three principal objectives of the Convention on Biological Diversity (CBD) and its protocols: Studying or supporting the study of all aspects of biodiversity; and providing public and streamlined access to biodiversity information.
  4. Implementation through science, technology, and innovation: Developing and offering technologically advanced and novel solutions for research, data sharing and management to various users; and promoting open science by publishing research findings and increasingly sharing more facets of the research process.
  5. Ecosystem approach: Developing and implementing technologies that enable a cross-domain, multidisciplinary approach to studying biodiversity and ecosystems; and using holistic, cross-disciplinary methods to understand and predict biodiversity and environmental dynamics.
  6. Cooperation synergies: Collaborating with organisations responsible for implementing the CBD, policy agents, international research projects; and participating in international forums and social, scientific and technical initiatives.
  7. Biodiversity and health linkages: Demonstrating how healthy ecosystems support human health, food security, and resilience to pandemics by supporting interdisciplinary research through bringing together knowledge and data and uncovering links and interactions between humans and the environment.

“With the UN’s ‘Pact for the Future’ currently being shaped, we see a unique opportunity to anchor biodiversity as a unifying thread across global goals that will transform how societies respond to the intertwined crises of climate change, nature loss, and pollution,” say the authors.

The white paper is the latest contribution to the LifeWatch ERIC Strategic Working Plan Outcomes open-science collection meant to provide a one-stop access point to the most important deliverables by the European biodiversity and ecosystem research infrastructure, which is currently undergoing a significant upgrade as a response to the needs of its target communities and stakeholders.

***

Original source:

Arvanitidis C, Barov B, Gonzalez Ferreiro M, Zuquim G, Kirrane D, Huertas Olivares C, Drago F, Pade N, Basset A, Deneudt K, Koureas D, Manola N, Mietchen D, Casino A, Penev L, Ioannidis Y (2025) From Knowledge to Solutions: Science, Technology and Innovation in Support of the UN SDGs. Research Ideas and Outcomes 11: e168765. https://doi.org/10.3897/rio.11.e168765

This publication is part of a collection:

LifeWatch ERIC Strategic Working Plan Outcomes Edited by Christos Arvanitidis, Cristina Huertas, Alberto Basset, Peter van Tienderen, Cristina Di Muri, Vasilis Gerovasileiou, Ana Mellado

***

About the contributing organisations:

LifeWatch ERIC 

Europe’s biodiversity and ecosystem research infrastructure. LifeWatch ERIC provides access to biodiversity and ecosystem data, services and other research products: its virtual workbenches and digital twins for biodiversity science enable researchers worldwide to analyse biodiversity patterns, processes, and changes in ecosystems, and derive evidence-based knowledge for science and policy. 

CSC – IT Center for Science

CSC hosts one of the world’s most powerful supercomputers (LUMI), pioneering biodiversity digital twins and climate models. CSC provides critical support for data-intensive projects that link computing, AI, and environmental science.

EGI Federation 

A federation of hundreds of data centres providing global-scale computing, AI, and data services. EGI enables large-scale analysis of biodiversity and environmental data from sensors and satellites, supporting international collaboration.

VLIZ – Flanders Marine Institute

A hub for marine research, coordinating Europe’s Digital Twin of the Ocean and global biodiversity data systems, such as WoRMS (World Register of Marine Species). VLIZ drives blue innovation and ocean data integration.

The European Marine Biological Resource Centre (EMBRC-ERIC)

Europe’s infrastructure for marine biology, offering access to organisms, labs, and genomic observatories. EMBRC connects over 70 institutes across 10 countries, supporting research “from genes to ecosystems.”

The Distributed System of Scientific Collections (DiSSCo)

The largest initiative to digitise and unify Europe’s natural science collections into a single, FAIR-data-based infrastructure. DiSSCo makes museum collections globally accessible, boosting taxonomic, ecological, and environmental research.

OpenAIRE 

A European e-Infrastructure dedicated to building a globally connected, interoperable, and sustainable open research ecosystem, with Open Science at its core. By offering a suite of services covering the entire research lifecycle, guidelines, and practices that support the adoption of Open Access and FAIR data principles across its network of National Open Access Desks in 34 countries, OpenAIRE supports local researchers, funders, and policymakers in aligning with European and global open science policies.

Pensoft 

Founded in 1992 “by scientists, for scientists”, the academic open-access publishing company is well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials. Through its Research and Technical Development department, the company is involved in various research and technology projects. Pensoft coordinated the EU project BiCIKL (2021-2024), which established a new community of Research Infrastructures and users of FAIR and interlinked biodiversity data.

The Association for Computing Machinery (ACM)

The world’s largest computing society, established to foster ethical and responsible innovation. ACM brings global expertise in computing and AI to biodiversity research and policy.

Athena Research Centre

A leading ICT and AI research institute advancing digital infrastructures and open science platforms. Athena connects computing innovation with biodiversity, humanities, and societal challenges.

The Biodiversity Digital Twin to help understand our planet’s life

By combining and improving digitally available data and models, BioDT offers approaches for sustainable biodiversity management and ecosystem conservation.

Biodiversity is essential for the processes that support all life on Earth. It provides critical resources such as food and energy, and supports ecosystem health. However, climate change, deforestation, and pollution are destroying habitats, altering ecosystems, and eliminating – or introducing – species that are fundamental for planet’s biosphere.

To tackle the challenges caused by environmental change and human activities on biodiversity, a consortium of 22 partners led by CSC – IT Center for Science, home of the EuroHPC LUMI supercomputer, is developing Biodiversity Digital Twins (BioDT) as a result of the European Commission’s initiative.

Cover of the “Building Biodiversity Digital Twins” article collection in RIO journal.

The BioDT project aims to revolutionise our understanding of biodiversity dynamics by integrating advanced modelling, simulation, and prediction capabilities. By combining and improving digitally available data and models, BioDT offers approaches for sustainable biodiversity management and ecosystem conservation. BioDT’s combines expertise in biodiversity, ecological modelling, FAIR data, high-performance computing, and artificial intelligence.

BioDT aims to enhance the accuracy and predictive performance of biodiversity models through iterative development and validation against independent data. This approach can be critical for developing decision support tools and policy development. By continuously updating data, BioDT will provide real-time predictions of biodiversity patterns and processes through interactive maps and summaries. The consortium leverages existing technologies and data from major research infrastructures (GBIF, eLTER, DiSSCo, and LifeWatch ERIC) to achieve this goal.

A screenshot of the BioDT homepage.

The project’s impact extends to addressing critical issues, including impact of environmental  change on species and ecosystems, food security, and the implementation of the EU and international policies. The project contributes to the UN Sustainable Development Goals 2 (Zero Hunger), 3 (Good Health and Well-being), 13 (Climate Action), and 15 (Life on Land).

BioDT develops prototype Digital Twins for biodiversity conservation

In order to test its modelling system, BioDT is developing ten prototype digital twins (pDTs) focused on species and ecosystems of high conservation and policy concern, such as invasive species, pollinators and grasslands.
The pDTs are divided into four main groups:

  • Species Response to Environmental Change: focus on the interactions between species and ecosystems. By incorporating temporal dynamics rather than pure space-for-time substitutions, BioDT improves temporal predictions and accuracy. Different sources of uncertainty are quantified using extensive geographic data combined with high-resolution time-series data in a single modelling framework.
  • Genetically Detected Biodiversity: addressing food security and challenging environments by integrating genomic methods based on DNA data with traditional biodiversity data. These twins focus on crop wild relatives and other genetic resources for farming and food security, as well as DNA-detected biodiversity in poorly known habitats.
  • Dynamics of Species of Policy Concern: applying modelling and high-performance computing to invasive and alien species recognised at EU and national levels. This twin involves using current species occurrence data, and tackling crucial environmental conditions and invasive effects on native taxa and ecosystems.
  • Influence of Species Interactions: predicting disease outbreaks using vector species and exploring the patterns and processes of insect pollinators. Work on interaction twins involves further development of data exchange models and establishing temporal historic reference points through digitisation of collection specimens.
A screenshot from the BioDT homepage showing the purposes of prototype digital twins.

The pDTs aim to make essential datasets, best practices, expertise, and lessons learned available and ready for use to researchers and research infrastructures in implementing the use cases, while providing.

The pDTs test the models predictive performance and data availability scenarios, and apply them to address biodiversity challenges through scenario simulations, predictions, and biomonitoring methods. This iterative approach aims to integrate and compare the predictive performance of various modelling approaches, stimulating the development of next-generation prototypes.

To learn more about the biodiversity pDTs, explore the dedicated pages on the BioDT website

Building Biodiversity Digital Twins: a BioDT collection of scientific papers

To further advance the development and reliability of Biodiversity Digital Twins, the BioDT team has produced 10 scientific papers, compiled in the “Building Biodiversity Digital Twins” issue of the open-science scholarly journal Research Ideas and Outcomes (RIO).

“The collection offers an in-depth understanding of the conceptual and technical advancements achieved towards developing digital twins for a wide range of biodiversity topics. Through the BioDT project, we are enabling a broad audience to interactively understand and predict biodiversity changes across space and time.” says Gabriela Zuquim, Scientific Coordinator at CSC for the BioDT project 

The collection serves as a centralised access point to project outputs by the BioDT initiative. Publication of rather unconventional and not traditionally published research outputs is in fact amongst the unique features of the open-science RIO journal. Another feature is the possibility of individual publications to be mapped to the SDGs they contribute to, thereby further underlining their significance.

A conceptual diagram of a digital twin prototype from this paper. The core aim of this project is to test the feasibility of generating essentially real-time updating predictions on bird spatiotemporal distributions and singing activity by combining prior information, based on long-term monitoring data with continuously accumulating new information provided by citizen scientists.

In the case of BioDT, RIO has made it possible for the project team to illustrate the process of prototyping Biodiversity Digital Twins in the format of a peer-reviewed scientific article, thereby ensuring its discoverability, credibility, citability, reusability and long-term public availability. By opting for this transparent approach to sharing their scientific work that has standed the rigour of formal scientific review, the BioDT project ensures that future scientists can make better and more efficient use of the models developed by the consortium’s researchers, data, and cutting-edge technology.

For example, one publication describes the HONEYBEE Prototype Digital Twin. The prototype will allow, after the ongoing calibration with land use and hive weight data,  predictions of honeybee population dynamics, mite infestation and honey production. The model was developed based on a previously developed one, devised to simulate foraging of a single bee colony. By using the prototype digital twin, users can interactively apply the model on various time and geographic scales ranging from local sites to whole regions or even country level. Thus, it can become an essential tool for the assessment of the viability and productivity of honey bee colonies around Germany, regardless of the specificity of landscapes and management strategies.

Overview of the prototype HONEYBEE-pDT

Our vision is that the assessment can even be run to take into account different climate-change scenarios. The publication also provides guidelines to potential users of the prototype. The authors of the paper, led by Dr Jürgen Groeneveld (Helmholtz Centre for Environmental Research – UFZ, Germany) reminds that despite honey bees “being a managed species, they are severely affected by climate change, emerging parasites and diseases, modern agricultural land use and possibly inappropriate beekeeping practices”, while going on to cite worrying data about the trends in both Europe and the USA. 

Similarly, other publications already available from the collection address equally crucial and pressing issues with impact on a global scale, including disease outbreaks, crop management, invasive species, bird and vegetation dynamics. 

“The Building Biodiversity Digital Twins collection of project papers suited our needs perfectly,” said Dmitry Schigel, GBIF Scientific officer and a coordinating editor of the collection. “The project team agreed to capture the project’s iterations and reveal our two-thirds stage prototypes two years into the project with one more to go. The innovative platform that the Pensoft’s RIO journal provides lets us describe our progress in a less formal but still peer-reviewed setting. Thanks to the efficient work of the author teams, reviewers and co-editors, this special issue came together quickly and now enables our prototype digital twin teams to attract and process feedback from broader audiences”

Explore the “Building Biodiversity Digital Twins” collection, freely accessible on Pensoft’s RIO Journal. Read them now and see their impact!

Call for research outcomes addressing four UN Sustainable Development Goals in RIO Journal

Eligible submissions enjoy a 50% discount off APCs in 2021

Since its launch in 2015, RIO Journal has been mapping its articles to the Sustainable Development Goals (SDGs) of the United Nations. The articles published so far span the entire research cycle, a broad range of research fields and all SDGs, which can also be used as a search filter. However, the distribution of RIO articles across SDGs is uneven, as detailed in a recent editorial: for instance, more than 100 articles addressed SDG9 (Industry, innovation & infrastructure), while only one publication has been mapped to SDG1 (No poverty) so far.

Even though there might be logical explanations for this phenomenon, including funding biases or specific scholarly communication tendencies in some research fields, RIO’s team remains dedicated to its role as a harbinger of innovative open science practices and socially engaged research, and is eager to support the open publication of research on all SDGs.

So, RIO Journal is now inviting research outcomes – early, interim or final – addressing the four least represented SDGs in RIO’s content to date (with the current number indicated in parentheses):

  • SDG1: No poverty (1)
  • SDG7: Affordable & clean energy (2)
  • SDG5: Gender equality (4)
  • SDG2: Zero hunger (4)
All publications in RIO Journal are mapped to one or more SDGs.

The call will remain open until the end of 2021, where all accepted papers will enjoy a 50% discount on their publication charges (APCs), regardless of how many contributions RIO receives in the meantime. Eligible submissions encompass all article types generally accepted in RIO, as long as the journal’s editorial team confirms that they belong to the assigned SDG category.

As also highlighted in the editorial, RIO is currently experimenting with a more fine-grained mapping of its publications to the individual targets under each SDG. This was piloted with SDG 14 (Life below water). For instance, Target 14.a (Marine Biodiversity contributes to Economic Development of small/developing nations) is currently covered by 17 RIO articles. If you would like to get involved with mapping RIO articles to the Targets under other SDGs, please get in touch.

You can find more about RIO’s rationale behind introducing the SDGs mapping in the latest editorial or in this earlier blog post.

***

Follow RIO Journal on Twitter, Facebook and LinkedIn.

***

Further reading: