New immigrant: Shiny Cowbirds noted from a recording altitude of 2,800 m in Ecuador

Two juveniles of Shiny Cowbird, a parasitic bird that lays its eggs in the nests of other birds, were spotted in the Andean city of Quito, Ecuador, for the first time. This finding represents an altitudinal expansion of approximately 500 m.

Breeding populations might have been prompted by forest fragmentation and/or climate change, suggest the research team, led by Dr Verónica Crespo-Pérez, professor at Pontificia Universidad Católica del Ecuador (PUCE). Resultingly, the ‘immigrants’ could be threatening native birds. The study is published in the open access Biodiversity Data Journal.

“The Shiny Cowbird is native to the lowlands of South America but within the last 100 years, it has been expanding its distribution to higher altitudes and latitudes” says the lead author.

The bird had already been noted from high altitudes in Bolivia and Perú, and in some localities in the Ecuadorian Andes. Since 2000, Juan Manuel Carrión, co-author and director of the Zoo in Quito, recalls observing Shiny cowbirds near his home in a valley near Quito at 2,300 m above sea level (asl). However, one has never before been reported from an altitude as high as 2,800 m asl.

Moreover, the fact that the observed individuals were juveniles means that the species is already breeding in the city.

“Such a significant expansion of reproductive birds, of approximately 500 m, could be related to human disturbances, like forest fragmentation or climate change,” adds Crespo-Pérez.

The observations took place at the PUCE campus about a year ago. Two juvenile Shiny cowbirds were seen parasitizing two different pairs of Rufous-collared Sparrow, one of the most common birds in Quito. The cowbirds displayed food-begging behaviors to adult sparrows, including chasing the sparrows on the ground and chanting intensely on bushes and tree branches.

“These observations mean that the birth mother of the cowbird laid her eggs in the nests of the sparrows, who inadvertently, became the cowbird’s foster parents and incubated, fed and cared for the it as if it were its own, even though the cowbird is almost twice as big,” says Miguel Pinto, co-author and professor at Escuela Politécnica Nacional, and former postdoctoral fellow at the Smithsonian Institution.

“The sparrows were not feeding fledglings of their own species, which suggests that the Cowbird could be having some negative effect on the Sparrow, at least on their ability to reproduce,” points out Tjitte de Vries, co-author and professor at PUCE.

There are several published reports of negative effects of Cowbirds on other birds, especially on species that are already endangered or have restricted distribution ranges. Therefore, this report of an expansion of the Shiny Cowbird towards higher altitudes may be of concern, mainly for native, endemic or endangered bird species.

###

Original source:

Crespo-Pérez V, Pinto C, Carrión J, Jarrín E R, Poveda C, de Vries T (2016) The Shiny Cowbird, Molothrus bonariensis (Gmelin, 1789) (Aves: Icteridae), at 2,800 m asl in Quito, Ecuador.Biodiversity Data Journal 4: e8184. doi: 10.3897/BDJ.4.e8184

The owls beyond the Andes: Divergence between distant populations suggests new species

They might be looking quite identical, while perched above humanised farmlands and grasslands across several continents, but each of the populations of two owl species, living in the opposite hemispheres, might actually turn out to be yet another kind. This suggestion has been made by Dr. Nelson Colihueque and his team from Universidad de Los Lagos, Chile, based on new genetic divergence analyses of the Common Barn and the Short-eared Owl populations from southern Chile and comparing them with those from other geographic areas. The study is published in the open-access journal ZooKeys.

Although much has been known about the two widespread owl species, the knowledge about them has so far been restricted mainly to aspects such as their diet, conservation status and habitats. On the other hand, their genetic divergence in comparison with populations in distant areas has received little attention. Moreover, their taxonomical status is still based on traditional identification rather than modern methods such as the herein utilised mitochondrial COI sequencing.

Thus, the Chilean research team concluded a significant genetic divergence among the populations of both species from a few distinctive groups. In the case of the Common Barn Owl they compared the new analysis of its South American representatives with already available such data about populations from North America, Northern Europe and Australasia. For the Short-eared Owl, they compared Chilean and Argentinean birds with North American and North Asian.

One of the reasons behind such an evolutionary divergence might be the geographic isolation, experienced by the peripheral South American populations of both owl species. It is a consequence of the Andean Mountains acting as a natural barrier.

“In the case of the Common Barn Owl, the existence of geographic barriers to gene flow among populations on different continents is to be expected, and this in combination with its non-migratory or short-distance migratory behaviour, should contribute to promote the genetic divergence,” further explain the authors.

In conclusion, the researchers call for additional studies to clarify the taxonomic identification of these owl populations.

###

Original source:

Colihueque N, Gantz A, Rau JR, Parraguez M (2015) Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence. ZooKeys 534: 135-146. doi: 10.3897/zookeys.534.5953