Mass digitisation of a herbarium collection: ten lessons learned from Meise Botanic Garden

The lessons were published in the open-access journal PhytoKeys.

Herbaria – collections of preserved plant specimens – are crucial in botanical research and biodiversity conservation. Digitising these collections is an important step towards making data available to all, preserving specimens by reducing the need for handling, and creating new research opportunities.

Herbarium specimens on a conveyor belt at Meise Botanic Garden.
Mass digitisation of herbarium specimens on a conveyor belt at Meise Botanic Garden, allowing the imaging of 3,000–5,000 specimens per day.

Meise Botanic Garden recently completed a six-year project to digitise approximately three million specimens of their herbarium collection. While it was a big change for their organisation, it was one they deemed necessary to bring their collection into the digital age. 

The digitisation project contributes to the Distributed System of Scientific Collections (DiSSCo) research infrastructure aiming to unify access to biodiversity and geodiversity specimens under common standards, giving users access to specimens and their data from European institutions. DiSSCo has also created a website with digitisation guides and the DiSSCo Knowledge Base

Several people sitting at tables working on herbarium specimens.
Joint restoration session of the herbarium team at Meise Botanic Garden.

Based on their experience, the team published ten valuable lessons they learned during the process to assist  other institutions embarking on similar digitisation projects. These lessons are available in the open-access journal PhytoKeys.

1. Knowing yourself is the beginning of all wisdom ― Aristotle

Before starting digitisation, it is important to understand the full scope of your collection. This involves detailed inventory checks and assessments of the state of the specimens. Knowing the exact number and condition of the specimens will help in accurate budgeting and planning. A detailed inventory of a representative tenth of your collection can be extrapolated to the entire collection.

2. Prioritise (if lack of money forces you to do so)

If resources are limited, prioritising which parts of the collection to digitise first is key. Consider factors such as the scientific importance of the specimens, their physical state, and stakeholder needs. It is important to note that digitising the entire collection can be more efficient than selecting subcollections, as partial digitisation can complicate management.

3. Learn from other people’s successes – and mistakes

Do not reinvent the wheel. Engage with other institutions that have undertaken similar projects to learn from their successes and mistakes. Follow existing guidelines and adapt them to fit your specific needs. If you think you have a better way of doing things, talk it over with someone with experience. 

4. Decide whether to do it yourself or have it done for you

Deciding whether to conduct the digitisation in-house or to outsource it depends on available resources. Consider the skills and availability of your staff and the costs associated with outsourcing. Some tasks, such as imaging or data transcription, might be more efficiently handled by external specialists.

5. Make a plan

A well-thought-out plan is crucial. Define workflows, procedures, and quality control mechanisms. And be specific about your requirements when outsourcing parts of the project to avoid any misunderstandings.

6. Go shopping

Ensure that all necessary supplies, such as barcodes, storage containers, and IT infrastructure, are in place before starting the digitisation process. Bulk purchasing is often cost-effective, and having everything ready will prevent delays.

7. Make your collection look its best for the photographer

Prepare the specimens for imaging by incorporating pre-digitisation curation steps like repairing damaged specimens and adding barcodes. 

8. Expect problems, particularly ones that you don’t expect

Problems will arise, from equipment malfunctions to human errors. Establish quality control processes to catch issues early. Automate checks where possible and ensure prompt human review for aspects like image focus and lighting.

9. Make your data visible – make a big deal of it

Making digitised data publicly accessible is vital. Use online portals and ensure the data adheres to FAIR principles (Findable, Accessible, Interoperable, Reusable). Publicity will increase the use and impact of your collection.

10. Save your data for the future

Make sure the digitised data is backed up in a secure, offsite archive. Long-term storage solutions should be considered to preserve the data for future use. And factor this ongoing cost into the budget.

To read extended advice from Meise Botanic Garden, as well as four case studies, check out the full research paper below:

Original source

De Smedt S, Bogaerts A, De Meeter N, Dillen M, Engledow H, Van Wambeke P, Leliaert F, Groom Q (2024) Ten lessons learned from the mass digitisation of a herbarium collection. PhytoKeys 244: 23-37. https://doi.org/10.3897/phytokeys.244.120112 

***

Follow PhytoKeys on Facebook and X.

Research on bats and pangolins – potential vectors of zoonotic pandemics like COVID-19 – invited to a free-to-publish special issue in ZooKeys

Captively bred pangolins. 
Photo by Hua L. et al., taken from their study on the current status, problems and future prospects of captive breeding of pangolins, openly accessible in ZooKeys at: https://doi.org/10.3897/zookeys.507.6970

Accepted papers will be published free of charge in recognition of the emergency of the current global situation

Was it the horseshoe bat or could it rather be one of the most traded mammal in the world: the pangolin, at the root of the current devastating pandemic that followed the transmission of the zoonotic SARS-CoV-2 virus to a human host, arguably after infected animal products reached poorly regulated wet markets in Wuhan, China, last year? 

To make matters worse, the current situation is no precedent. Looking at the not so distant past, we notice that humanity has been repeatedly falling victim to viral deadly outbreaks, including Zika, Ebola, the Swine flu, the Spanish flu and the Plague, where all are linked to an animal host that at one point, under specific circumstances transferred the virus to people. 

Either way, here’s a lesson humanity gets to learn once again: getting too close to wildlife is capable of opening the gates to global disasters with horrific and irreversible damage on human lives, economics and ecosystems. What is left for us to understand is how exactly these transmission pathways look like and what are the factors making certain organisms like the bat and the pangolin particularly efficient vectors of diseases such as COVID-19 (Coronavirus). This crucial knowledge could’ve been easier for us to grasp had we only obtained the needed details about those species on time.

Aligning with the efforts of the biodiversity community, such as the recently announced DiSSCo and CETAF COVID-19 Task Force, who intend to create an efficient network of taxonomists, collection curators and other experts from around the globe and equip them with the tools and large datasets needed to combat the unceasing pandemic, the open-access peer-reviewed scholarly journal ZooKeys invites researchers from across the globe to submit their work on the biology of bats and pangolins to a free-to-publish special issue. 

The effort will be coordinated with the literature digitisation provider Plazi, who will extract and liberate data on potential hosts from various journals and publishers. In this way, these otherwise hardly accessible data will be re-used to support researchers in generation of new hypotheses and knowledge on this urgent topic.

By providing further knowledge on these sources and vectors of zoonotic diseases, this collection of publications could contribute with priceless insights to make the world better prepared for epidemics like the Coronavirus and even prevent such from happening in the future. 

Furthermore, by means of its technologically advanced infrastructure and services, including expedite peer review and publication processes, in addition to a long list of indexers and databases where publications are registered, ZooKeys will ensure the rapid publication of those crucial findings, and will also take care that once they get online, they will immediately become easy to discover, cite and built on by any researcher, anywhere in the world. 

***

The upcoming “Biology of bats and pangolins” special issue is to add up to some excellent examples of previous research on the systematics, biology and distribution of pangolins and bats published in ZooKeys

In their review paper from 2015, Chinese scientists looked into the issues and prospects around captive breeding of pangolins. A year later, their colleagues at South China Normal University provided further insights into captive breeding, in addition to new data on the reproductive parameters of Chinese pangolins.

Back in 2013, a Micronesian-US research studied the taxonomy, distribution and natural history of flying fox bats inhabiting the Caroline Islands (Micronesia). A 2018 joint study on bat diversity in Sri Lanka focused on chiropteran conservation and management; while a more recent article on the cryptic diversity and range extension of the big-eyed bats in the genus Chiroderma

***

For more information, visit ZooKeys website

Follow ZooKeys on Twitter and Facebook.

*** 

References:

Buden D, Helgen K, Wiles G (2013) Taxonomy, distribution, and natural history of flying foxes (Chiroptera, Pteropodidae) in the Mortlock Islands and Chuuk State, Caroline Islands. ZooKeys 345: 97-135. https://doi.org/10.3897/zookeys.345.5840

Edirisinghe G, Surasinghe T, Gabadage D, Botejue M, Perera K, Madawala M, Weerakoon D, Karunarathna S (2018) Chiropteran diversity in the peripheral areas of the Maduru-Oya National Park in Sri Lanka: insights for conservation and management. ZooKeys 784: 139-162. https://doi.org/10.3897/zookeys.784.25562

Hua L, Gong S, Wang F, Li W, Ge Y, Li X, Hou F (2015) Captive breeding of pangolins: current status, problems and future prospects. ZooKeys 507: 99-114. https://doi.org/10.3897/zookeys.507.6970

Lim BK, Loureiro LO, Garbino GST (2020) Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera, Phyllostomidae). ZooKeys 918: 41-63. https://doi.org/10.3897/zookeys.918.48786

Zhang F, Wu S, Zou C, Wang Q, Li S, Sun R (2016) A note on captive breeding and reproductive parameters of the Chinese pangolin, Manis pentadactyla Linnaeus, 1758. ZooKeys 618: 129-144. https://doi.org/10.3897/zookeys.618.8886