Twenty-four new beetle species discovered in Australian rain forests

As many as twenty-four new species from Australian rainforests are added to the weevil genus Trigonopterus. Museum scientists Dr. Alexander Riedel, State Museum of Natural History Karlsruhe, Germany, and Rene Tanzler, Zoological State Collection Munich, Germany, have first discovered them among unidentified specimens in different beetle collections. The study is published in the open-access journal ZooKeys.

Australia is well known for its extensive deserts and savanna habitats. However, a great number of native Australian species are restricted to the wet tropical forests along the east coast of northern Queensland. These forests are also the home of the recent discoveries.

Most of the weevil species now recognised as new have already been collected in the 80s and 90s of the past century. Since then they had been resting in museum collections until German researcher Alexander Riedel had the opportunity to study them.

“Usually a delay of decades or even centuries occurs between the encounter of a new species in the field and its thorough scientific study and formal naming,” he explains. “This is due to the small number of experts who focus on species discovery,” he elaborates. “There are millions of unidentified insect specimens stored in collections around the world but only few people have the training necessary to identify those of special interest.”

However, old museum specimens alone are not enough either. Nowadays, researchers try to include DNA data in their descriptions, and the necessary sequencing techniques work more efficiently with freshly collected material. Therefore, the scientists set off to the field after they have studied the collections of others. Nevertheless, the German team were led to the discovery of one additional new species, which had never been seen before. They called itTrigonopterus garradungensis after the place where it was found.

All of the newly described weevils are restricted to small areas. Some are found only in a single locality. Presumably, this is a consequence of their winglessness, which has prevented them from spreading around. Furthermore, most of them dwell in the leaf litter where they are easily overlooked. Usually, they come to light during specific surveys of the litter fauna.

This is what Geoff Monteith from the Queensland Museum in Brisbane, for instance, has done in the past. As a result, his work is now relevant to conservation because highly localised species are extremely vulnerable to changes of their habitat such as climate change or the arrival of invasive species.

It is likely that Trigonopterus weevils have originated in Australia, the oldest landmass in the region. The island of New Guinea is geologically much younger, but there the genus has quickly enough diversified into hundreds of species. Studies investigating such evolutionary processes depend on names and clear diagnoses of the species. As a result of the present research, for the Australian fauna these are now available.

Besides the publication in the open-access journal ZooKeys, high-resolution photographs of each species are uploaded to the Species ID website, along with the scientific description. All this puts a face to the species name, and therefore is an important prerequisite for future studies on their evolution.

###

Original Source:

Riedel A, Tanzler R (2016) Revision of the Australian species of the weevil genus Trigonopterus Fauvel. ZooKeys 556: 97-162. doi: 10.3897/zookeys.556.6126

Serendipitous orchid: An unexpected species discovered in Mexican deciduous forests

A new elegant orchid species that grows on rocks in deciduous forests of the Pacific slope of Oaxaca state, Mexico, has finally put an end to a long standing dispute among taxonomists. ‘Sheltered’ under the name of a close relative, the plant has been proved by a research team, led by Dr. Leopardi-Verde, to be different enough for a species of its own. Its distinct features, including shape, size and colors, are discussed and published in the open-access journal PhytoKeys.

When scientists Drs. Carlos L. Leopardi-Verde, Universidad de Colima and Centro de Investigacion Cientifica de Yucatan, German Carnevali and Gustavo A. Romero-Gonzalez, both affiliated with Centro de Investigacion Cientifica de Yucatan and Harvard University Herbaria, stumbled across a beautiful orchid in bloom, they found themselves so surprised by its unique colors and forms that later on they chose the specific epithet inopinatus, meaning “unexpected”.

One of the most distinctive characters of the new plant is the yellow labellum patterned with crimson to reddish brown lines. Typically for its species complex, this orchid’s leaves are wide and leatherlike and the flowers are relatively large, showy, and leathery to fleshy-leathery petals and sepals. The color of the flowers varies from bronze-green with dark purple lines near the base to pale pink and creamy white splashed with reddish-brown spots and lines towards the top.

The plant is between 30 and 42 cm tall, while together with its flowers it reaches between 80 and 90 cm. Each branch of the inflorescence bears from 3 to 8 flowers, which bloom between March and July. Having been recorded only from a few sites on the Pacific slope of Oaxaca state, Mexico, the species appears to be rare.

The authors explain the similarities between the new species and its close relatives. They also discuss the long-held confusion about its taxonomic placement. As a result of the study, a hypothesis about hybridization that has played a role in the evolution and origin of the novelty has been refuted.

###

Original source:

Leopardi-Verde CL, Carnevali G, Romero-Gonzalez GA (2016) Encyclia inopinata (Orchidaceae, Laeliinae) a new species from Mexico. PhytoKeys 58: 87-95. doi: 10.3897/phytokeys.58.6479

A botanical survey to help understand change in our wild flora

Volunteers in the north-east of England have created a benchmark survey of common plants with which to identify change in the countryside, its result and causes. This survey will be used in future to monitor the effects of climate change on plants; assess the success of conservation measures and predict future change. Its findings are published in the open-access journal Biodiversity Data Journal, contributing an additional 35,000 observations to the 200,000 observations collected by local recorders since the turn of the millennium .

Many people remark on the changes that are occurring in the countryside, the disappearance of some species and the spread of others. Yet, these anecdotes cannot substitute for hard facts. There are also many suggested causes for all these changes such as warmer climate, different agricultural practices, eutrophication, or alien species. Botanical observations tend to be biased. For example, common species are often ignored in the interest of exceptional ones. Therefore, what was needed was a dedicated survey with a clear and repeatable methodology.

Common plant species are the mainstay of habitats, they create our woodlands, hedgerows and meadows. They also provide the food for herbivores and pollinators and create homes for birds and mammals. Changes in the abundance of rare species have little impact on other species, but change in the abundance of common species can have cascading effects on whole ecosystems of which we are a part.

For these reasons volunteer botanists in the north-east of England conducted a four-year survey to benchmark the abundance of common plants. Led by the Botanical Societies vice county recorders, John Durkin Ecology, Botanical Society of Britain and Ireland, and Botanic Garden Meise, the volunteers surveyed the plants in a randomly selected sample of 1km2 grid squares in the vice counties of Durham and South Northumberland.

They created a solid foundation that can be used to qualify the abundance of common species and compare against previous and future studies. The project was conducted over four years and required volunteers to go to various places. Some surveyed post-industrial brown-field sites, while others walked for miles across bleak moorland to reach sites high in the hills. Although these moors are arguably wilder and natural, the industrial wastelands turn out to be far more biodiverse.

Botanical surveying continues in the region despite the end of the project. Volunteers continue to monitor rare plants in the region and are currently working towards the next atlas of Britain and Ireland, coordinated by the Botanical Society of Britain and Ireland.

“Good biological conservation in the 21st century will have as much to do with sensitive adaption to change as it is about preserving what we have,” point out the authors. “Human memory is short and fickle and it is only with benchmark surveys, such as this that we can hope to understand and manage that change.”

###

Original source:

Groom Q, Durkin J, O’Reilly J, Mclay A, Richards A, Angel J, Horsley A, Rogers M, Young G (2015) A benchmark survey of the common plants of South Northumberland and Durham, United Kingdom. Biodiversity Data Journal 3: e7318. doi: 10.3897/BDJ.3.e7318

New snake species with pitch black eyes from the Andes highlights hidden diversity

Extremely rare and hidden in the forests of the Andes, there are still new snake species left to find. This has recently been evidenced by the colubrid serpent, described for the first time in the present article. Moreover, there is the vicious circle enwrapping its relatives: the harder it is to find more specimens, the tougher it is to describe and thus, start to identify them, which does not help in mapping their distribution and habitats. To address this issue, Dr. R. Alexander Pyron, The George Washington University, and his international research team have included a taxonomic review and discussion on the relationships and origin within a non-venomous snake tribe in a paper, published in the open-access journal ZooKeys.

Slender and small, the new species, called Synophis zaheri, measures less than 40 cm in length, or between 351 and 372 mm. Contrasting to its slim body with a distinct neck, separating the head from the body, its eyes are large and bulging, making up for more than a third of its head. Being black in colour, it is hard to tell the pupil and the iris apart. While the upper part of the body is grayish-brown with an iridescent sheen, the abdominal side stands out with its yellowish-white colouration.

Typically for the tribe, where the new species has been placed, it is also characterised with a highly modified spine and an enlarged scale row running over it. This is also where the name of this group of snakes comes from with “Diaphorolepidini” consisting of the Greek words for “differentiated” and “scales”. Not so clear, however, is the name of the genus, which the authors have translated also from Greek as “with snake”, but find themselves unaware of the meaning behind. The species is named after Dr. Hussam El-Dine Zaher, a Brazilian herpetologist whose work has been foundational for South American snakes.

In conclusion, the scientists note that the rarity of the observed snake species, especially the genus, where the new serpent belongs, accounts for the unclear species-boundaries as well as for the myriad of undescribed species. “Dipsadine diversity in the Andes is clearly underestimated, and new species are still being discovered in the 21st century,” they point out.

###

Original source:

Pyron RA, Guayasamin JM, Peñafiel N, Bustamante L, Arteaga A (2015) Systematics of Nothopsini (Serpentes, Dipsadidae), with a new species of Synophis from the Pacific Andean slopes of southwestern Ecuador. ZooKeys 541: 109-147. doi: 10.3897/zookeys.541.6058

The owls beyond the Andes: Divergence between distant populations suggests new species

They might be looking quite identical, while perched above humanised farmlands and grasslands across several continents, but each of the populations of two owl species, living in the opposite hemispheres, might actually turn out to be yet another kind. This suggestion has been made by Dr. Nelson Colihueque and his team from Universidad de Los Lagos, Chile, based on new genetic divergence analyses of the Common Barn and the Short-eared Owl populations from southern Chile and comparing them with those from other geographic areas. The study is published in the open-access journal ZooKeys.

Although much has been known about the two widespread owl species, the knowledge about them has so far been restricted mainly to aspects such as their diet, conservation status and habitats. On the other hand, their genetic divergence in comparison with populations in distant areas has received little attention. Moreover, their taxonomical status is still based on traditional identification rather than modern methods such as the herein utilised mitochondrial COI sequencing.

Thus, the Chilean research team concluded a significant genetic divergence among the populations of both species from a few distinctive groups. In the case of the Common Barn Owl they compared the new analysis of its South American representatives with already available such data about populations from North America, Northern Europe and Australasia. For the Short-eared Owl, they compared Chilean and Argentinean birds with North American and North Asian.

One of the reasons behind such an evolutionary divergence might be the geographic isolation, experienced by the peripheral South American populations of both owl species. It is a consequence of the Andean Mountains acting as a natural barrier.

“In the case of the Common Barn Owl, the existence of geographic barriers to gene flow among populations on different continents is to be expected, and this in combination with its non-migratory or short-distance migratory behaviour, should contribute to promote the genetic divergence,” further explain the authors.

In conclusion, the researchers call for additional studies to clarify the taxonomic identification of these owl populations.

###

Original source:

Colihueque N, Gantz A, Rau JR, Parraguez M (2015) Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence. ZooKeys 534: 135-146. doi: 10.3897/zookeys.534.5953