New ant species from Borneo explodes to defend its colony

Minor worker of the new species in a defensive pose.
Minor worker of the new species in a defensive pose.

Amongst the countless fascinating plants and animals inhabiting the tropical rainforests of Southeast Asia, there are the spectacular “exploding ants”, a group of arboreal, canopy dwelling ants nicknamed for their unique defensive behaviour.

When threatened by other insects, minor workers can actively rupture their body wall. Apart from leading to the ants’ imminent death, the “explosion” releases a sticky, toxic liquid from their enlarged glands, in order to either kill or hold off the enemy.

Three 'exploding' ants of the new species grasping onto a weaver ant.
Three ‘exploding’ ants of the new species grasping onto a weaver ant.

Curiously enough, while these ants’ peculiar behaviour was first mentioned in distant 1916, no new species have been formally described since 1935, due to insufficient evidence. Instead, scientists used to simply refer to them as the members of a remarkable species group – Colobopsis cylindrica, better known as “the exploding ants”.

That was until an interdisciplinary research team from Austria, Thailand and Brunei came together led by their shared fascination with these insects and their extraordinary mechanism of self-sacrifice (also called autothysis) in 2014. Thus, entomologists, botanists, microbiologists, and chemists from the Natural History Museum ViennaTechnical University ViennaIFA Tulln and Universiti Brunei Darussalam together identified roughly 15 separate species of exploding ants, with one of them now described as new to science in the open access journal ZooKeys.

Aptly named Colobopsis explodens, previously nicknamed “Yellow Goo” for its bright yellow gland secretion, the new species has been picked as the model species of the group, after the scientists deemed it to be “particularly prone to self-sacrifice when threatened by enemy arthropods, as well as intruding researchers”.

The new species grasping onto a larger unidentified 'exploding' ant.
The new species grasping onto a larger unidentified ‘exploding’ ant.

Being a “model species” means that the ant will serve as an important navigation point in future studies on exploding ants. Publications regarding their behaviour, chemical profile, microbiology, anatomy and evolution are currently in preparation, say the authors. In addition, there are several more new species expected to be described in the near future.

While minor workers exhibit the ability to “explode”, the other castes have specialities of their own. For example, major workers (also called “doorkeepers”) have big, plug-shaped heads used to physically barricade the nest entrances against intruders.

Major worker of the new species ('doorkeeper') with characteristically enlarged head.
Major worker of the new species (‘doorkeeper’) with characteristically enlarged head.

During a sampling trip to Brunei in 2015, project members Alexey Kopchinskiy and Alice Laciny even managed to observe queens and males on a mating flight. They sampled the first males of these ants ever to be seen.

The same expedition was used to record the ants’ activity schedule and conduct the first experiments on food preferences and exploding behaviour.

While the exploding ants play a dominant role in rainforests, their biology still holds a number of secrets. The observations and experiments conducted on the newly described species have laid important groundwork for future research that will uncover even more details about these enigmatic explosive insects.

Watch this video to observe the behaviour of the exploding ants in various settings.

###

Learn more about the ‘Exploding ants’ project at: http://explodingants.com/

###

Original source:

Laciny A, Zettel H, Kopchinskiy A, Pretzer C, Pal A, Salim KA, Rahimi MJ, Hoenigsberger M, Lim L, Jaitrong W, Druzhinina IS (2018) Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group. ZooKeys 751: 1-40. https://doi.org/10.3897/zookeys.751.22661

 

Heat-loving Australian ants believe in diversity, hint 74 species new to science

The ‘furnace ants’ or ‘honeypot ants’ present a very large genus of ants, Melophorus, confined to Australia. Long believed to be megadiverse, some scientists have even suggested that the group may contain ‘well over 1000 species’. However, to this point, only 32 species and subspecies had been described.

Scientists Dr Brian Heterick of Curtin UniversityDr Mark Castalanelli of Ecodiagnostics Pty Ltd and Dr Steve Shattuck of the Australian National University, funded by an internationally competitive Australian Biological Resources (ABRS) grant, set out to find the true facts.

As a result, they discovered as many as 74 new species belonging to Melophorus. In their study, published in the open access journal ZooKeys, they also provide a taxonomic key to the workers of a total of 93 species in the genus.

Among the studied ants, there are quite bizarre ones, including a species (Melophorus hirsutus) whose eyes are strangely protruding out of his head to a varying degree. In the extreme cases, the eyes are so pointy that could be likened to ice-cream cones. Named many years ago, this ant appears to be older than the rest of the examined living species. Furthermore, unlike most of them, it does not seem adapted to heat. It is confined to the wet eastern coast of Australia.

Dr Heterick spent two weeks collecting specimens in the often rugged and forbidding terrain of Western Australia, while the team also asked a number of major museum collections to loan them specimens.

The newly collected ants were placed in alcohol and subjected to genetic tests using one mitochondrial and four nuclear genes. The findings were then compared with those from physical examinations to prepare the taxonomic key – a set of distinctive features per species that can be used to differentiate within the group.

Given the generally complex nature of these ants, the authors expect for the genus to further expand in future. They speculate that even though the numbers may increase to around 100 species, not the ‘well over 1000’ previously predicted, they still illustrate an incredible diversity.

The authors estimate that Melophorus arose around 35 million years ago. The closest relatives of the genus are also confined to the Australasian region with the exception of a single genus living in South America.

Furthermore, the genus is also quite astonishing thanks to another trait shared among the species.

“By the way, this group of ants has a thing or two to tell those of us who get lost easily!” comments lead author Dr Brian Heterick.

“They can find their way home in a featureless landscape by means of an internal compass influenced by information gathered on earlier journeys. We are not the first species to use a computing system!”

###

Original source:

Heterick B, Castalanelli M, Shattuck S (2017) Revision of the ant genus Melophorus (Hymenoptera, Formicidae). ZooKeys 700: 1-420. https://doi.org/10.3897/zookeys.700.11784

Rarely-seen event of ant brood parasitism by scuttle flies video-documented

While many species of scuttle flies are associated with ants, their specific interactions with their hosts are largely unknown. Brood parasitism (attacking the immature stages, rather than the adult ants), for example, is an extremely rarely observed and little-studied phenomenon. However, a research team from the USA and Brazil, led by Dr. Brian Brown, Natural History Museum of Los Angeles County, have recently video-documented two such occasions. The observations are published in the open access Biodiversity Data Journal.

One of the videos, taken in Brazil, shows female scuttle flies attacking ants evacuating their nest. Having had their colony exposed, worker ants try to carry the brood to the nearest shelter. The flies follow these workers on foot, and bump into them in attempt to make them drop the larvae. The scientists have provided a video of an ant which, when harassed, left a larva in a partially exposed position and fled. Immediately, the fly attacked the larva, laying an egg inside its body. The fact that the flies attack the relatively soft-bodied larvae explains the puzzling structure of the ovipositor (egg-layer) of this species (Ceratoconus setipennis), which appears much less hardened than the ovipositor of species attacking adult ants. As a result of the present observation, however, their association with ants is no longer a mystery.

The second footage, filmed in Costa Rica, shows an undescribed species of scuttle fly (genus Apocephalus) that fly above the ants. When they spot a worker carrying brood, it would plunge down to it, approach the ant from behind and land on the (in this case) pupa. Then, it flips over onto its back, keeping the pupa between itself and the ant, while it lays an egg into the pupa from an upside-down position.

“The video documentation of two very different types of brood parasitism of ant species by scuttle flies was recorded in two countries within just a few months of one another,” conclude the authors. “This hints at the many remarkable behaviors of phorid flies that may still await discovery by the patient observer. It appears brood parasitism may not be as rare as was once assumed, and that there may be a tremendous amount of information to uncover about these behaviors.”

###

Original source:

Brown B, Hash J, Hartop E, Porras W, Amorim D (2017) Baby Killers: Documentation and Evolution of Scuttle Fly (Diptera: Phoridae) Parasitism of Ant (Hymenoptera: Formicidae) Brood. Biodiversity Data Journal 5: e11277. https://doi.org/10.3897/BDJ.5.e11277