New ‘grumpy’ fish species discovered in the Red Sea

Found among coral reefs in the Red Sea, it has large canines and a fierce expression, even though it is only 2 cm long.

A team of researchers at the King Abdullah University of Science and Technology and the University of Washington has discovered a new species of fish that seems perpetually displeased. The researchers decided to call this new species the grumpy dwarfgoby.

Despite its small size of less than 2 centimeters, the grumpy dwarfgoby has a surprisingly menacing appearance. Its large canines and fierce expression give it a rather intimidating look for such a small fish.

Lucía Pombo-Ayora, who gave the species its grumpy common name, comments on its distinctive appearance: “I imagine in its own tiny world, it is a fearsome predator. Its grumpy expression and large canines certainly make it look the part, despite its small size.”

A CT scan image of the skull of a grumpy-looking fish.

The species’ bright red coloration actually helps it blend into its natural habitat. It can be found on the walls and overhangs of coral reefs, covered in red coralline algae. There, it lives in small holes and crevices, using its large canines to capture tiny invertebrates. The grumpy dwarfgoby appears to be a relatively rare species, which is likely why it remained undiscovered until now.

The researchers found the first specimens in the Farasan Banks in Saudi Arabia, with additional specimens later found near Thuwal in the Red Sea. It was researcher Viktor Nunes Peinemann who first found it during a diving expedition to explore the coral reef fish diversity. Initially, the researchers thought they had rediscovered the fiery dwarfgoby, Sueviota pyrios, which is only known from a single specimen collected in 1972. However, upon closer examination, they realized they were dealing with an entirely new, undescribed species.

A photograph of a translucent-red grumpy-looking fish on a black background.

“The ongoing discovery of distinctive new species like this grumpy dwarfgoby shows how much biodiversity remains undiscovered in the Red Sea,” Viktor Nunes Peinemann explains. “This is concerning given the recent environmental changes in the region. In some cases, species could go extinct before we even describe them.”

The region is known for its high levels of endemic species and the Grumpy dwarf goby is another addition to this unique fauna. Much of the Red Sea has experienced major disturbances resulting from climate change in recent years, including widespread coral bleaching and mortality. The fact that new species are still being discovered in this rapidly changing environment highlights the urgency of continued research and conservation efforts, the researchers believe.

They have published their discovery in the open-access scientific journal ZooKeys.

Photos by Viktor Nunes Peinemann

Research article:

Nunes Peinemann V, Pombo-Ayora L, Tornabene L, Berumen ML (2024) The Grumpy dwarfgoby, a new species of Sueviota (Teleostei, Gobiidae) from the Red Sea. ZooKeys 1212: 17-28. https://doi.org/10.3897/zookeys.1212.121135

The race to discover biodiversity: 11 new marine species and a new platform for rapid species description

The initiative boasts the discovery of eleven new marine species from all over the globe, occurring at depths from 5.2 to 7081 meters.

Accelerating global change continues to threaten Earth’s vast biodiversity, including in the oceans, which remain largely unexplored. To date, only a small fraction of an estimated two million total living marine species have been named and described. A major challenge is the time it takes to scientifically describe and publish a new species, which is a crucial step in studying and protecting these species. The current scientific and publishing landscape often results in decade-long delays (20-40 years) from the discovery of a new species to its official description. As an alternative to this, the Ocean Species Discoveries initiative was launched, offering a new platform for rapid but thorough taxonomic description of marine invertebrate species.

Lepechinella naces, a newly described amphipod, on a black background.
One of the newly described species, Lepechinella naces.

Ocean Species Discoveries is coordinated by the Senckenberg Ocean Species Alliance (SOSA), a project of the Senckenberg Research Institute and Natural History Museum Frankfurt. SOSA’s goal is to facilitate the discovery, protection, and awareness of marine invertebrate species before they become extinct.

The project coordinated 25 different researchers and produced data on thirteen marine invertebrate taxa, including one new genus, eleven new species, and one redescription and reinstatement. The species, which originate from all over the globe and at depths from 5.2 to 7081 meters, are brought together in an open-access publication in the Biodiversity Data Journal.

Only by leveraging the collective strengths of global progress, expertise, and technological advancements, will we be able to describe the estimated 1.8 million unknown species living in our oceans.

Prof. Dr. Julia Sigwart

This is the first of a series of publications related to SOSA’s initiative, in collaboration with Biodiversity Data Journal, presenting a revolutionary approach in new species descriptions, thanks to which the publication of new species takes years, sometimes even decades, less. The ARPHA publishing platform, which powers the Biodiversity Data Journal, further expedites species descriptions and their use in studies and conservation programs by employing a streamlined data publishing workflow. ARPHA automatically exports all species data, complete with images and descriptions, to GBIF—the Global Biodiversity Information Facility and the Biodiversity Literature Repository at Zenodo, from where other researchers can easily find and use them.

Dorsal, ventral, and lateral images of a newly described hydrothermal vent limpet, Lepetodrilus marianae, on a black background.

One of the new OSD species – a hydrothermal vent limpet, Lepetodrilus marianae. Photo credit: Chong Chen, Hiromi Kayama Watanabe, and Miwako Tsuda

One of the new species described in the Ocean Species Discoveries is Cunicolomaera grata, a curious amphipod whose burrows along the seafloor perplexed scientists. Another is a wrinkly-shelled limpet called Lepetodrilus marianae that lives on hydrothermal vents, underwater volcanoes in the deep-sea where temperatures can reach 400 degrees C. Normally, the descriptions for these two very different species wouldn’t be in the same publication, but this new publication format allows for species descriptions from different marine invertebrate taxa to be published together in one ‘mega-publication,’ offering a huge incentive for researchers to make their discoveries public.

Top: a newly described hole-making amphipod, Cunicolomaera grata, on a black background. Bottom: A photo of burrows on the ocean floor where the amphipod is presumed to live.
One of the new OSD species – a hole-making amphipod, Cunicolomaera grata. Photo credit: Anne Helene S. Tandberg and Anna M. Jażdżewska

“Currently, there’s a notable delay in naming and describing new animals, often because journals expect additional ecological or phylogenetic insights. This means many marine species go undescribed due to lack of data. OSD addresses this by offering concise, complete taxonomic descriptions without requiring a specific theme, refocusing attention on taxonomy’s importance,” says Dr. Torben Riehl, who is one of the researchers featured in Ocean Species Discoveries.

Top: Psychropotes buglossa, a newly described sea cucumber species. Bottom: Psychropotes buglossa grabbed by the mechanic arm of a remote-operated vehicle.

The reinstated OSD species – a purple long-tailed sea cucumber, Psychropotes buglossa. Photo credit: Amanda Serpell-Stevens, Tammy Horton, and Julia Sigwart

Reducing the time it takes to get from discovering a new animal to a public species description is crucial in our era of increasing biodiversity loss. The wrinkly-shelled limpet and two other species described in the Ocean Species Discoveries live in hydrothermal vent zones – an environment threatened by deep-sea mining. Another OSD species, Psychropotes buglossa, a purple sea cucumber (sometimes also called a gummy squirrel), lives in the North Atlantic, but similar species live in areas of high economic interest, where polymetallic-nodule extraction could soon endanger sea life. Threats like these risk driving species to extinction before we even get the chance to know and study them. Through efforts like SOSA’s Ocean Species Discoveries, we can get closer to understanding the biodiversity of our oceans and protecting it before it’s too late.

Dorsal and ventral views of a newly described species of deep-sea chiton, Placiphorella methanophila.

One of the new OSD species – a deep-sea chiton, Placiphorella methanophila. Photo credit: Katarzyna Vončina

“Only by leveraging the collective strengths of global progress, expertise, and technological advancements, will we be able to describe the estimated 1.8 million unknown species living in our oceans. Every taxonomist specialized on some group of marine invertebrates is invited to contribute to the Ocean Species Discoveries,” says Prof. Dr. Julia Sigwart in conclusion.

Research article:

(SOSA) SOSA, Brandt A, Chen C, Engel L, Esquete P, Horton T, Jażdżewska AM, Johannsen N, Kaiser 5, Kihara TC, Knauber H, Kniesz K, LandschoffJ, Lörz A-N, Machado FM, Martínez-Muñoz CA, Riehl T, Serpell-Stevens A, Sigwart JD, Tandberg AHS, Tato R, Tsuda M, Vončina K, Watanabe HK, Went C, Williams JD (2024) Ocean Species Discoveries 1-12 — A primer for accelerating marine invertebrate taxonomy. Biodiversity Data Journal 12: e128431. https://doi.org/10.3897/BDJ.12.e128431

Ocean treasures: Two new species from ZooKeys highlighted by WoRMS

Two of 2023’s top marine species were first introduced to the scientific world on the pages of our journal ZooKeys.

Where would we be without taxonomists? We wouldn’t even want to imagine such a scenario, even though experts in taxonomy are declining at an alarming rate, just like some of the threatened species they describe.

This Taxonomist Appreciation Day is a great excuse to marvel at the amazing species that biodiversity specialists continue describing across the globe. The World Register of Marine Species does that by publishing a selection of the top 10 marine species published each year – we’re proud to share with you that two of 2023’s top marine species were first introduced to the scientific world on the pages of our journal ZooKeys!

One of them is Tetranemertes bifrost, a beautiful ribbon worm from the Carribean whose description was published in ZooKeys.

Tetranemertes bifrost

The most spectacularly colored nemertean in the Caribbean, if not the world, it has a long, thin, thread-like body that can stretch much more than 200 mm long. Its head has a characteristic, narrow diamond or spearhead shape, vaguely reminiscent of a viper’s head.

Its name refers to the bright, colorful iridescent stripes and spots characterizing it. Bifrost, the rainbow bridge in the Norse mythology, reaches between Midgard, the human Earth, and Asgard, the realm of the gods. Some authors state that the name Bifrost means “shimmering path” or “the swaying road to heaven”, and that it might be inspired by the Milky Way.

This benthic marine worm usually lives in coral rubble, gravel, and shell hash. It can often be found stretched between nooks and crannies of the substratum.

Tetranemertes bifrost

Found near Bocas del Toro, Panamá, it is one of the first records of this genus in the Carribean sea.

In the 1970s, some 50 years before it was scientifically described, Smithsonian photographer Kjell Sandved took a picture of it draped over an unknown fan coral off Puerto Rico.

The second ZooKeys species featured in the selection is the whimsical Nautilus samoaensis.

Nautilus samoaensis

Nautiloids were in fact quite plentiful throughout the oceans at one point, based upon the fossil record. Today, they are represented by just a handful of species. Nautilus samoaensis and two other species got described as new to science in ZooKeys in early 2023, proving that Nautilus are more diverse than one could think.

Nautilus samoaensis has a beautiful shell; in fact, its shell color pattern is the most unique of all Nautilus species. It is composed of multiple, branching stripes that have a rearward projection after descending from the venter. No other known Nautilus species shows this color pattern. It lives near Pago Pago, American Samoa, where it has been found at depths between 200 and 400 m.

This marine species also ranked second in Pensoft’s Top 10 New Species selection for 2023.

Last year, we told you about the peculiarities of studying nautilus species, but these animals are actually under a serious threat from illegal fishing, as they are highly prized for their shells.

The Top 10 Marine Species is an initiative that brings awareness to the importance of the work of biodiversity scholars, so announcing it on Taxonomist Appreciation Day is only fitting; but it also highlights the need to better protect our oceans and the unique life that hides in there.

Protecting marine biodiversity: we take a look at science

In light of the UN’s High Seas Treaty, we look back at deep-sea science published in our journals.

Surely, March 2023 will be remembered with the historic agreement of UN member states to protect marine biodiversity in the world’s oceans

The so-called High Seas Treaty is a legal framework for the protection of marine biodiversity and responsible and equitable use of resources of areas beyond national jurisdiction (BBJN). Its draft, published on the 5th of March 2023, is the outcome of two decades of negotiations, and is part of the international effort to protect a third of the world’s biodiversity by 2030.

An unwavering dedication to the protection and conservation of biodiversity will be required to see the firm landing of this hopeful step.

On this occasion, we look back at some impactful studies published in our journals that have made waves, hopefully in the right direction towards impactful conservation measures and actions.

Following President Barack Obama’s expansion of the largest permanent Marine Protected Area on Earth (Papahānaumokuākea Marine National Monument) in 2016, a new species of coral-reef fish was named in his honour. The fish is the only known coral-reef species to be endemic to the Monument, and, despite its small size, it carries wide-reaching cultural and political significance as a reminder of how politics go hand in hand with science.

Former President of the United States, Barack Obama, arriving on Midway Atoll Midway on September 1, 2016 to commemorate his use of the Antiquities Act to expand the boundaries of the Papahānaumokuākea Marine National Monument. Dr. Sylvia Earle gives President Barack Obama a photograph of Tosanoides obama on Midway Atoll, from the film “Sea of Hope: America’s Underwater Treasures” premiered on National Geographic Channel on January 15, 2017. See also the news story on National Geographic.

Other studies from our flagship zoology journal ZooKeys have focused on the benthic megafauna and abyssal fauna of the Clarion-Clipperton Zone (CCZ) in the Pacific Ocean.

The Clarion-Clipperton Zone, managed by the International Seabed Authority, has been targeted by deep-sea mining interests. In the context of heightened concern over potential biodiversity loss, scientific research is crucial for informing policy-makers and the general public about the risks and outcomes of such initiatives.

The Clarion-Clipperton Zone, central Pacific Ocean (purple box), spanning 6 milllion km2. Knowledge of marine biodiversity in the area is crucial for its protection.
Image source: A. Glover at al. (2016).

The rich biodiversity of the deep sea has also been documented in big-scale taxonomic inventories and checklists in the Biodiversity Data Journal.

Such examples are the publication of 48 new echinoderm records from the CCZ made during a single 25-day cruise, marking a ~25% increase of the echinoderm species records previously available in databases. Other notable contributions are the first image atlas of annelid, arthropod, bryozoan, chordate, ctenophore and mollusc morphospecies and the first image atlas of echinoderm megafauna morphospecies inhabiting the UK-1 exploration contract area and the eastern CCZ. 

The echinoderm Amphioplus cf. daleus Lyman, 1879. Image source: A. Glover at al.
Hymenopenaeus cf. nereus observed in the UK-1 exploration contract area.
Image source: Amon et al. (2017).

Going forward, the expansion of Marine Protected Areas should also ensure the implementation of policies for the methods of resource extraction and their equitable sharing and use among the world’s nations.

Over the next few years, we hope to see an ever increasing interest in biodiversity conservation - from the general public, stakeholders and policy makers, and, of course, research institutions.

 We need to love what we protect in order to be able to protect it.

Follow Pensoft on Twitter and Facebook, and sign up for our newsletter on the right.

Novel tech for research & protection of marine biodiversity: Pensoft joins EU project ANERIS

Pensoft joins the ANERIS consortium as an expert in science communication with the goal to engage stakeholders and build an active community

Coastal and marine biodiversity has been declining at an alarming rate in recent years due to anthropogenic activity, climate change, ocean acidification and other factors. 

To help protect and preserve these precious ecosystems, the new research project under the name of ANERIS (operAtional seNsing lifE technologies for maRIne ecosystemS) and coordinated by the Institute of Marine Sciences (ICM-CSIC) was launched under the Horizon Europe program.

ANERIS aims to contribute to improving the understanding, monitoring and protection of these ecosystems through technological, scientific and methodological innovation in the fields of marine life-sensing and monitoring.

Pensoft is joining the ANERIS consortium as a leader of WP6 Exploitation, Communication and Networking. The Pensoft team is to develop and implement sustainable communication and dissemination strategies, which will ensure the impactful knowledge exchange between partners and external stakeholders.

In addition, Pensoft is responsible for the development of a long-lasting brand identity of the project, which shall be reached by establishing and maintaining a user-friendly and eye-appealing public website. The overall visual identity of ANERIS will be supported by a set of innovatively-designed promotional materials

The project

ANERIS launched in January 2023 and will be running until December 2026 with the support of EUR 10 million of funding provided by the European Union’s Horizon Europe program and the work on the project officially kicked off with the project’s first consortium meeting, which took place on the 8th and 9th of March 2023 in Barcelona, Spain. 

The joint mission of the ANERIS partners for the next four years is to build the next generation of marine-sensing instruments and infrastructure for systematic routine measurements and monitoring of oceanic and coastal life, and their rapid interpretation and dissemination to all interested stakeholders.

In total, ANERIS aims to pioneer 11 novel technologies rerelated to marine ecosystem monitoring, data processing and dissemination:

  • NANOMICS – NAnopore sequeNcing for Operational Marine genomICS
  • MARGENODAT – workflows for the MARine GENOmics DAta managemenT
  • SLIM-2.0 – A Virtual Environment for genomic data analysis (ANERIS extended version)
  • EMUAS – Expandable Multi-imaging Underwater Acquisition System
  • AIES-ZOO – Automatic Information Extraction System for ZOOplankton images
  • AIES-PHY – Automatic Information Extraction System for PHYtoplankton images
  • ATIRES – Automatic underwaTer Image REstoration System
  • AIES-MAC – Automatic Information Extraction System for MACroorganisms
  • AMAMER – Advanced Multiplatform App for Marine lifE Reporting
  • AMOVALIH – Advanced Marine Observations VALidation-Identification system based on Hybrid intelligence
  • AWIMAR – Adaptive Web Interfaces for MARine life reporting, sharing and consulting

These technologies will be validated across four ANERIS case studies which aim to bridge the gaps between existing technologies and incorporate them into a functional technological framework:

  • High-temporal resolution marine life monitoring in research infrastructure observatories;
  • Improved spatial and temporal resolution of marine life monitoring based on genomics;
  • Large scale marine participatory actions;
  • Merging imaging and genomic information in different monitoring scenarios.

The final goal of the project through the creation and validation of these novel technologies and involving academia, industry, governments and civil society, is to build up the concept of Operational Marine Biology (OMB) to provide faster, higher quality, reliable, and accessible marine and coastal life data. OMB opens the door for near-real-time marine observations, data interpretation and decision making based on that data.

International Consortium

The interdisciplinary ANERIS consortium consists of 25 partnering organisations from 13 countries around Europe, the Mediterranean basin and Israel, bringing diverse expertise spanning from robotics, biooptics, marine biology and genomics, to programming and sustainability.

Many partners represent acclaimed scientific institutions with rich experience in collaboration in EU projects, specifically in the fields of marine research.

Full list of partners:

Visit the ANERIS website on https://www.aneris.eu/. You can also follow the project on Twitter (@ANERISproject), LinkedIn (/ANERIS Project) and Instagram (@aneris_project).

Scientists reveal the true identity of a Chinese octopus

Locals and fishermen had long been familiar with the species, but they kept mistaking it for a different species.

As they were collecting cephalopod samples in Dongshan island in China’s Fujian Province, a team of researchers came across an interesting finding: a new-to-science species of octopus.

A live individual of Callistoctopus xiaohongxu.

Actually, locals and fishermen have long been familiar with the species -but they kept mistaking it for a juvenile form of the common long-arm octopus (‘Octopus minor), whose trade is widespread throughout the country.

Only when a team of scientists from the Ocean University of China collected a batch of specimens misidentified by locals from Dongshan Seafood Market Pier as ‘O’. minor to study them, did it become apparent that this was in fact a separate, new species. That’s how it got its own name, Callistoctopus xiaohongxu, and a scientific description published in the open-access journal ZooKeys.

A live individual of Callistoctopus xiaohongxu.

The scientific name xiaohongxu is a phonetic translation of the local Chinese name of this species in Zhangzhou, where it was collected. It is a reference to its smooth skin and reddish-brown colour, which are among its most distinctive features. At less than 40 g in its adult stage, C. xiaohongxu is considered a small to moderate-sized octopus.

A net-like web structure on Callistoctopus xiaohongxu.

The researchers also note that this is the first new species of the genus Callistoctopus to be found in the China Seas.

More than 130 different cephalopod species are recorded in Chinese waters. Тhe southeast waters of China, due to the influence of strong warm currents, provide ideal environmental conditions to generate abundant marine biodiversity, and the finding of C. xiaohongxu further confirms the high diversity of species in the southeast China sea, the researchers said.

Research article:

Zheng X, Xu C, Li J (2022) Morphological description and mitochondrial DNA-based phylogenetic placement of a new species of Callistoctopus Taki, 1964 (Cephalopoda, Octopodidae) from the southeast waters of China. ZooKeys 1121: 1-15. https://doi.org/10.3897/zookeys.1121.86264

Follow ZooKeys on Twitter and Facebook.

First-ever fish species described by a Maldivian scientist

Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described by a Maldivian researcher.

Named after the country’s national flower, the species is added to the tree of life as part of the California Academy of Sciences’ global Hope for Reefs initiative

Originally published by the California Academy of Sciences

Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described—the scientific process an organism goes through to be recognized as a new species—by a Maldivian researcher.

The new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa), described in the journal ZooKeys, is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.

Scientists from the California Academy of Sciences, the University of Sydney, the Maldives Marine Research Institute (MMRI), and the Field Museum collaborated on the discovery as part of the Academy’s Hope for Reefs initiative aimed at better understanding and protecting coral reefs around the world.

“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists. This time, it is different and getting to be part of something for the first time has been really exciting, especially having the opportunity to work alongside top ichthyologists on such an elegant and beautiful species,”

says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb.

First collected by researchers in the 1990s, C. finifenmaa was originally thought to be the adult version of a different species, Cirrhilabrus rubrisquamis, which had been described based on a single juvenile specimen from the Chagos Archipelago, an island chain 1,000 kilometers (621 miles) south of the Maldives. 

In this new study, however, the researchers took a more detailed look at both adults and juveniles of the multicolored marvel, measuring and counting various features, such as the color of adult males, the height of each spine supporting the fin on the fish’s back and the number of scales found on various body regions. These data, along with genetic analyses, were then compared to the C. rubrisquamis specimen to confirm that C. finifenmaa is indeed a unique species. 

Importantly, this revelation greatly reduces the known range of each wrasse, a crucial consideration when setting conservation priorities.  

“What we previously thought was one widespread species of fish, is actually two different species, each with a potentially much more restricted distribution. This exemplifies why describing new species, and taxonomy in general, is important for conservation and biodiversity management,”

says lead author and University of Sydney doctoral student Yi-Kai Tea. 

Despite only just being described, the researchers say that the Rose-Veiled Fairy Wrasse is already being exploited through the aquarium hobbyist trade. 

“Though the species is quite abundant and therefore not currently at a high risk of overexploitation, it’s still unsettling when a fish is already being commercialized before it even has a scientific name. It speaks to how much biodiversity there is still left to be described from coral reef ecosystems,”

says senior author and Academy Curator of Ichthyology Luiz Rocha, PhD, who co-directs the Hope for Reefs initiative.

Last month, Hope for Reefs researchers continued their collaboration with the MMRI by conducting the first surveys of the Maldives’ ‘twilight zone’ reefs—the virtually unexplored coral ecosystems found between 50- to 150-meters (160- to 500-feet) beneath the ocean’s surface—where they found new records of C. finifenmaa along with at least eight potentially new-to-science species yet to be described. 

This new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa) became the first Maldivian fish to ever be described by a local researcher.
Photo by Yi-Kai Tea.

For the researchers, this kind of international partnership is pivotal to best understand and ensure a regenerative future for the Maldives’ coral reefs. 

“Nobody knows these waters better than the Maldivian people. Our research is stronger when it’s done in collaboration with local researchers and divers. I’m excited to continue our relationship with MMRI and the Ministry of Fisheries to learn about and protect the island nation’s reefs together,”

says Rocha says

“Collaborating with organizations such as the Academy helps us build our local capacity to expand knowledge in this field. This is just the start and we are already working together on future projects. Our partnership will help us better understand the unexplored depths of our marine ecosystems and their inhabitants. The more we understand and the more compelling scientific evidence we can gather, the better we can protect them,”

adds Najeeb.

***

Research article:

Tea Y-K, Najeeb A, Rowlett J, Rocha LA (2022) Cirrhilabrus finifenmaa (Teleostei, Labridae), a new species of fairy wrasse from the Maldives, with comments on the taxonomic identity of C. rubrisquamis and C. wakanda. ZooKeys 1088: 65-80. https://doi.org/10.3897/zookeys.1088.78139

***

Follow ZooKeys on Twitter and Facebook.

Four Cheers for Marine Diversity: New species from Pensoft journals float their way up to the ‘TOP 10’ charts of WoRMS

The Harry Potter ‘hero’ crab, Palau president’s colonial anemone and the ‘living fossil’ octocoral published in ZooKeys along with the Bob Marley’s intertidal spider from the pages of Evolutionary Systematics made it to the top in the two lists compiled by the World Register of Marine Species (WoRMS). The ‘TOP 10’ charts mark the 10th anniversary of the organisation dedicated to noting down all creatures splashing around Earth’s marine habitats.

While the three species in the ‘Ten remarkable new marine species from 2017’ list have been bathing in glory mostly thanks to their prominent human namesakes, the octocoral from Japan found a place amongst the ‘Ten astounding marine species of the last decade (2007-2017)’ after being identified as a ‘living fossil’.

To compile the lists, WoRMS first invited all their editors to nominate their favourites in the two disciplines, and then asked a small committee of taxonomists and data managers to provide their votes.

Without further ado, let’s dive into a little bit of a reminder to find out exactly why and how those particular species turned up at the top.

 

  • Harry Potter ‘hero’ crab (Harryplax severus)

Harryplax severus 2

To the delight of the millions of fans of the iconic fantasy franchise Harry Potter around the world, a new species of charming crab discovered in the coral reefs of the island of Guam, the Pacific Ocean, was named after not one, but two of their favourite characters – protagonist Harry Potter and the villain-turned-hero Professor Severus Snape.

Luckily for lead author and self-confessed ‘Potterhead’ Dr. Jose Christopher E. Mendoza, the crustacean was simultaneously identified as a new species and a new genus, which made it possible to have the genus name (Harryplax) ‘reserved’ for the famous fictional wizard, while the species name (severus) remains dedicated to his secretive teacher.

Furthermore, the two scientists – Dr. Jose Christopher E. Mendoza and Dr. Peter Ng, both affiliated with the National University of Singapore – used the scientific name of their rubble-inhabiting discovery to pay tribute to its initial collector – Harry Conley. About 20 years ago, the “soft-spoken ex-Marine with a steely determination and a heart of gold” collected a curious-looking crab from the waters of Guam to unknowingly hand his successors with a piece of nature’s undescribed gems.

***

Learn more about Harryplax severus on our blog or read the study published in our open access journal ZooKeys.

 

  • Bob Marley’s intertidal spider (Desis bobmarleyi)

Female Desis bobmarleyi

It’s true – underwater spiders are for real!

Keep calm, though, they tend to be tiny and harmless to humans, so you are highly unlikely to get in contact with them by pure chance.

Scientists Drs. Barbara Baehr, Robert Raven and Danilo Harms, affiliated with Queensland Museum and the University of Hamburg, themselves, had to stay alert and wait for the low tide at the coastline of Australia’s “Sunshine State” of Queensland, in order to spot and collect the several-millimetre spider now known as the Bob Marley’s intertidal spider (or Desis bobmarleyi if you stumble upon it in the academic books).

Fans of the legendary reggae musician, the biologists were quick to link the emergence of the arachnid to a favourite song – “High Tide or Low Tide” – and its underlying message about love and friendship through all struggles of life.

***

Check out our blog post on Desis bobmarleyi or go read the full study appearing in the open access Evolutionary Systematics and its first issue published since the journal joined Pensoft last December.

 

  • Palau president’s colonial anemone (Antipathozoanthus remengesaui)

159664

Yes, the species in the picture is an animal living in the sea, even though Anemone is also a genus of flowering plants growing on the ground. Confused? In fact, the two have nothing to do with each other, apart from their ‘flowery’ appearance.

While researchers from the University of the Ryukyus, Kagoshima University, Japan and the Palau International Coral Reef Center were studying the sea anemones living on top of black coral colonies in the Indo-Pacific Ocean, they discovered a total of three new lovely species (allegedly, even more!), where one, Antipathozoanthus obscurus, was spectacular with its preference for hiding in the narrow reef cracks, rather than ‘perching’ proudly on corals.

Amazed by the quantity of yet to be explored biodiversity at the studied localities, including the island country of Palau, the scientists took the occasion to say Thank you to Palau’s President Tommy Remengesau for his nation’s support.

By naming one of the new species A. remengesaui, the scientists also pay tribute to the politician’s vision on nature conservation which has already placed Palau “at the forefront of marine conservation”, as noted by senior author Dr. James Reimer.

***

Find more about the new anemones from our blog post or check out the full study openly accessible in ZooKeys.

 

  • The ‘living fossil’ octocoral (Nanipora kamurai)

living fossil

Dubbed ‘living fossil’ for having much more in common with extinct species than it has with its ‘living’ relatives, this octocoral discovered in Okinawa, Japan, comes to show that sometimes it’s staying calm and still on the (shallow reef) surface that takes you places.

Here, the extraordinary, in modern sense, octocoral species landed a spot among the ten most astounding marine species of the decade.

The ‘living fossil’ resembles the extraordinary blue corals, which are said to have been widely distributed around the globe during the Cretaceous period. Much like its ancestors, it sports a hard skeleton of calcium-carbonate, explain graduate student Yu Miyazaki and associate professor Dr James Davis Reimer, University of the Ryukyus.

Planning a trip to Okinawa? Keep an eye open, as this unusual species prefers depths of less than a meter, which is once again quite the contrary to the habitats picked by its contemporaries.

***

Check out our blog post on the ‘living fossil’ octocoral and find the study in our open access journal ZooKeys.

DNA study in the Pacific reveals 2000% increase in our knowledge of mollusc biodiversity

Lead author Dr Helena Wiklund examining specimens on the RV Melville in October 2013
Lead author Dr Helena Wiklund examining specimens on the RV Melville in October 2013

Scientists working in the new frontier for deep-sea mining have revealed a remarkable 2000% increase in our knowledge of the biodiversity of seafloor molluscs.

The 21 mollusc species newly described thanks to the latest DNA-taxonomy methodology
The 21 mollusc species newly described thanks to the latest DNA-taxonomy methodology

Tweny-one species, where only one was previously known, are reported as a result of the research which applied the latest DNA-taxonomy methodology to mollusc specimens collected from the central Pacific Clarion Clipperton Zone (CCZ) in 2013. They are all described in the open access journal ZooKeys.

Among the discoveries is a monoplacophoran mollusc species regarded as a ‘living fossil’, since it is one the ancestors of all molluscs. This is the first DNA to be collected from this species and the first record of it from the CCZ mining exploration zone – a vast 5-million-km² region of the central Pacific that is regulated for seabed mining by the International Seabed Authority.

“Despite over 100 survey expeditions to the region over 40 years of mineral prospecting, there has been almost no taxonomy done on the molluscs from this area,” says lead author Dr Helena Wiklund of the The Natural History Museum in London (NHM).

Dr Wiklund undertook a comprehensive DNA-based study of the molluscs to confirm species identities and make data available for future taxonomic study. This was coupled with the expertise of the NHM’s Dr John Taylor, who led the morphological work.

The molluscs were found in samples taken on and in the mud surrounding the potato-sized polymetallic nodules that are present in high abundance across the CCZ. These nodules are the target for potential deep-sea mining being rich in cobalt, copper, nickel, manganese and other valuable minerals.

The data are vital for the future environmental regulation of deep-sea mining, but have also revealed surprising patterns.

“I was amazed to discover that specimens collected during the 19th century by HMS Challenger were probably the same as ours over a range of 7000 km, but that data lodged on genetic databases from closer but shallower depths is likely to be from a different species,” comments Dr Thomas Dahlgren, population geneticist at Uni Research, Norway and University of Gothenburg, Sweden, who studied in detail a species called Nucula profundorum.

“Our efforts are now focussing on studying the DNA from many more samples of this species to examine connectivity and potential resilience to deep-sea mining,” he added.

Dr Thomas Dahlgren sieving sediments to find new clam and snail
Dr Thomas Dahlgren sieving sediments to find new clam and snail species

“It is a simple truth that we cannot move forward on regulatory approval for deep-sea mining without fundamental baseline data on what animals actually live in these regions,” says Principal Investigator of the NHM Deep-sea Systematics and Ecology Research Group, Dr Adrian Glover.

“Our work has highlighted obvious gaps in our knowledge, but also shown that with even relatively modest effort, we can greatly increase our understanding of baseline biodiversity using DNA-taxonomy.”

Creating a library of archived DNA-sequenced samples from known species allows for the future possibility of using the latest environmental DNA (eDNA) methods to ‘search’ for these species using just tiny samples of mud or seawater.

“Its akin to forensic science’, says Dr Glover. “You can’t use eDNA to find the criminals or species unless you have a library of information to compare them too”.

All data and specimens from the study have been lodged at the NHM and online repositories to make them accessible for future study. Of particular importance are the frozen tissue collections, which are housed in the state-of-the-art Molecular Collections Facility at the NHM and available for loan or further DNA work.

 

Original source:

Wiklund H, Taylor JD, Dahlgren TG, Todt C, Ikebe C, Rabone M, Glover AG (2017) Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca. ZooKeys 707: 1–46. https://doi.org/10.3897/zookeys.707.13042

Six new sponge species and new symbiotic associations from the Indonesian coral triangle

Comprising more than 17,000 islands, the Indonesian archipelago is one of the world’s most biodiverse places on Earth.

Sponges, aquatic organisms whose bodies consist of numerous pores to allow the ingress of water, are key components of this richness and play a fundamental role in the survival of coral reef habitats. Furthermore, they are also known for their medicinal benefits.

Unfortunately, due to the paucity of taxonomic expertise, the sponges from the Indonesian reefs are often ignored in monitoring surveys and conservation programmes, while their diversity is largely underestimated.

Researchers from the Italian Università Politecnica delle Marche and Università degli Studi di GenovaPharmaMar, Spain, and University of Sam Ratulangi, Indonesia, describe six new species in their paper in the open access journal, ZooKeys.

Inspired by their extraordinary biodiversity, the researchers teamed up with the pharmaceutical company PharmaMar to conduct several expeditions in the waters of North Sulawesi Island.

Psammocinia albaThe authors reported a total of 94 demosponge species belonging to 33 families living in the North Sulawesi Island. Amongst them, there are six species new to science and two previously unknown symbiotic relationships.

Seven of the recorded species were collected for the very first time since their original description.

However, these findings are still scarce, given the abundance of the sponges in similar localities in the Indonesian archipelago.

In conclusion, the authors note that the marine diversity in Indonesia is still far from being well known.

“Thanks to this impressive diversity, these areas are important spots for diving tourism and require the urgent development of sustainable tourism practices,” they say.

###

Original source:

Calcinai B, Bastari A, Bavestrello G, Bertolino M, Horcajadas SB, Pansini M, Makapedua DM, Cerrano C (2017) Demosponge diversity from North Sulawesi, with the description of six new species. ZooKeys 680: 105-150. https://doi.org/10.3897/zookeys.680.12135