Smithsonian Expedition Yields a New Species of Deep-Sea Coral

Collected from the deep waters off Puerto Rico, the species is a member of an enigmatic, and threatened, group of corals

When people think about corals, most picture the multi-hued reef-builders that reside in balmy waters off tropical beaches. But not all corals stick to the shallows. For example, most members of the order Antipatharia do not live within 160 feet of the surface. Some even reside at depths deeper than 26,000 feet. Commonly known as black corals due to their ink-colored skeletons, these corals are staples of deep-sea ecosystems around the world.

However, black corals remain enigmatic due to the challenges of studying them in the deep sea. This makes it difficult for scientists to assess how black corals, whose skeletons (which are made out of chitin, the same material that composes an insect’s exoskeleton) are prized components of jewelry, are responding to threats like poaching, ocean acidification and climate change.

“Describing these species is fundamental information to make conservation decisions,” said Jeremy Horowitz, a postdoctoral researcher at the National Museum of Natural History who specializes in studying black corals. “You have to know it before you can protect it.”

Jeremy Horowitz, a postdoctoral researcher in the museum’s invertebrate zoology department, examines a coral specimen during a subsequent expedition off Puerto Rico earlier this year. Credit: Jeremy Horowitz, NMNH

In a paper published this week in the journal ZooKeys, Horowitz and his colleagues at the museum and the University of Puerto Rico described Aphanipathes puertoricoensis, a new species of black coral that sports branching features found in multiple coral groups that diverged roughly 100 million years ago.

Taken by the deep-sea ROV Global Explorer, this image offered the scientists the first glimpse of the black coral species in its natural habitat. Image courtesy of Illuminating Biodiversity in Deep Waters of Puerto Rico 2022

The new black coral species was discovered in April 2022 during a joint Smithsonian and National Oceanic and Atmospheric (NOAA) expedition to a stretch of the Caribbean Sea just south of Puerto Rico. Here, the seafloor bottoms out into a network of deep-sea canyons and seamounts that remain largely unexplored.

The expedition, led by research zoologist Andrea Quattrini, the museum’s curator of corals and one of Horowitz’s co-authors on the new paper, aimed to explore some of this abyssal terrain and catalog some of the creatures that reside there. Many of these animals live far deeper than human divers can go. So the researchers deployed a remotely operated unmanned vehicle (ROV) called the Global Explorer to depths as deep as 4,000 feet below the ocean’s surface.

Andrea Quattrini, the expedition’s lead researcher, aboard the Nancy Foster research vessel. Image courtesy of Illuminating Biodiversity in Deep Waters of Puerto Rico 2022

Over seven dives, the ROV mapped 180 square nautical miles of the deep-sea floor. It collected a suite of biological samples and hours of footage for the researchers to parse on the research vessel above. They observed ghostly, blob-like predators called tunicates, gangly bristle stars, vibrant comb jellies and tiny crustaceans with fused eyes that live inside glass sponges. They even collected a colony of small invertebrates called bryozoa that had not been collected since a Smithsonian expedition to the Puerto Rico Trench in 1933.

One of the deep-sea anemones observed during the expedition. Image courtesy of Illuminating Biodiversity in Deep Waters of Puerto Rico 2022

They also found a multitude of species new to science. While exploring a canyon nearly 1,200 feet below the surface, the ROV came across a scraggly patch of black coral reminiscent of a deep-sea tumbleweed. As the ROV snipped off one of the coral’s spindly branches, Quattrini sent Horowitz, who was back in Washington, a picture of the coral on the ROV’s live feed. “She shared a picture of this coral and I immediately had no idea what it was,” Horowitz said.

When the expedition’s trove of specimens arrived in Washington, Horowitz could finally take a closer look at the puzzling coral. With long, coiled branches emanating from a short stalk like a tiny tree, the coral sported features found in multiple genera, or groups, of black coral that diverged long ago.

A microscopic close-up of the black coral’s spines taken with the help of the museum’s scanning electron microscope. Credit: Jeremy Horowitz, NMNH

To assign the new species in the right group, Horowitz placed a fragment of the coral specimen underneath a high-powered scanning electron microscope at the museum. That gave him a microscopic view of the miniscule spines that line the coral skeleton. Like a fingerprint, a coral species’ spines have their own distinct shape. Comparing these spines to known black coral species allowed Horowitz to get a better idea of where this new species may slot into the black coral family tree. To be sure, the researchers also used cutting edge techniques to compare the new species’ genetic code with other corals.

All this work allowed the researchers to find a taxonomic home for the new species in the genus Aphanipathes. They christened the black coral with the species name puertoricoensis in homage to the island near where it was found.

Discarded fishing gear sits on a thicket of black coral in the deep sea off of Puerto Rico. Image courtesy of Illuminating Biodiversity in Deep Waters of Puerto Rico 2022

Horowitz believes its resemblance to other groups of black coral reveals how helpful a simple body type is for survival in the deep-sea. “This simple morphological structure is evolving over and over again, probably because the conditions are the same in these different areas,” he said.  “This simple structure is what works.”

The team is still examining the specimens collected and expects to name additional new species in the near future. There are also plans to go back and conduct further field research in the deep-sea canyons and ridges off Puerto Rico. “Every time we go back to this region, we find new species,” Horowitz said.

But there is also plenty to uncover closer to home. The piece of black coral from Puerto Rico recently joined the museum’s 4,000 other black coral specimens — the largest such collection in the world. Many of these black coral specimens likely represent undescribed species hiding in plain sight. According to Horowitz, “we don’t even have to go offshore to find new species.”

Reference:

Horowitz J, Opresko DM, González-García MP, Quattrini AM (2023) Description of a new species of black coral in the family Aphanipathidae (Anthozoa, Antipatharia) from Puerto Rico. ZooKeys 1173: 97-110. https://doi.org/10.3897/zookeys.1173.104141

Story originally published by the Smithsonian Magazine. Republished with permission.

Novel tech for research & protection of marine biodiversity: Pensoft joins EU project ANERIS

Pensoft joins the ANERIS consortium as an expert in science communication with the goal to engage stakeholders and build an active community

Coastal and marine biodiversity has been declining at an alarming rate in recent years due to anthropogenic activity, climate change, ocean acidification and other factors. 

To help protect and preserve these precious ecosystems, the new research project under the name of ANERIS (operAtional seNsing lifE technologies for maRIne ecosystemS) and coordinated by the Institute of Marine Sciences (ICM-CSIC) was launched under the Horizon Europe program.

ANERIS aims to contribute to improving the understanding, monitoring and protection of these ecosystems through technological, scientific and methodological innovation in the fields of marine life-sensing and monitoring.

Pensoft is joining the ANERIS consortium as a leader of WP6 Exploitation, Communication and Networking. The Pensoft team is to develop and implement sustainable communication and dissemination strategies, which will ensure the impactful knowledge exchange between partners and external stakeholders.

In addition, Pensoft is responsible for the development of a long-lasting brand identity of the project, which shall be reached by establishing and maintaining a user-friendly and eye-appealing public website. The overall visual identity of ANERIS will be supported by a set of innovatively-designed promotional materials

The project

ANERIS project’s intro video: Towards a network of Operational Marine Biology

ANERIS launched in January 2023 and will be running until December 2026 with the support of EUR 10 million of funding provided by the European Union’s Horizon Europe program and the work on the project officially kicked off with the project’s first consortium meeting, which took place on the 8th and 9th of March 2023 in Barcelona, Spain. 

The joint mission of the ANERIS partners for the next four years is to build the next generation of marine-sensing instruments and infrastructure for systematic routine measurements and monitoring of oceanic and coastal life, and their rapid interpretation and dissemination to all interested stakeholders.

In total, ANERIS aims to pioneer 11 novel technologies rerelated to marine ecosystem monitoring, data processing and dissemination:

  • NANOMICS – NAnopore sequeNcing for Operational Marine genomICS
  • MARGENODAT – workflows for the MARine GENOmics DAta managemenT
  • SLIM-2.0 – A Virtual Environment for genomic data analysis (ANERIS extended version)
  • EMUAS – Expandable Multi-imaging Underwater Acquisition System
  • AIES-ZOO – Automatic Information Extraction System for ZOOplankton images
  • AIES-PHY – Automatic Information Extraction System for PHYtoplankton images
  • ATIRES – Automatic underwaTer Image REstoration System
  • AIES-MAC – Automatic Information Extraction System for MACroorganisms
  • AMAMER – Advanced Multiplatform App for Marine lifE Reporting
  • AMOVALIH – Advanced Marine Observations VALidation-Identification system based on Hybrid intelligence
  • AWIMAR – Adaptive Web Interfaces for MARine life reporting, sharing and consulting

These technologies will be validated across four ANERIS case studies which aim to bridge the gaps between existing technologies and incorporate them into a functional technological framework:

  • High-temporal resolution marine life monitoring in research infrastructure observatories;
  • Improved spatial and temporal resolution of marine life monitoring based on genomics;
  • Large scale marine participatory actions;
  • Merging imaging and genomic information in different monitoring scenarios.

The final goal of the project through the creation and validation of these novel technologies and involving academia, industry, governments and civil society, is to build up the concept of Operational Marine Biology (OMB) to provide faster, higher quality, reliable, and accessible marine and coastal life data. OMB opens the door for near-real-time marine observations, data interpretation and decision making based on that data.

International Consortium

The interdisciplinary ANERIS consortium consists of 25 partnering organisations from 13 countries around Europe, the Mediterranean basin and Israel, bringing diverse expertise spanning from robotics, biooptics, marine biology and genomics, to programming and sustainability.

Many partners represent acclaimed scientific institutions with rich experience in collaboration in EU projects, specifically in the fields of marine research.

Full list of partners:

Visit the ANERIS website on https://www.aneris.eu/. You can also follow the project on Twitter (@ANERISproject), LinkedIn (/ANERIS Project) and Instagram (@aneris_project).

The first Field Identification Guide of Seychelles’ deeper reefscapes

The deep ocean is the last frontier on our planet. It is home to creatures beyond our imagination and filled to the brim with life. Coastal communities have known the value of a healthy ocean for centuries, yet much of its life remains unknown, sitting beyond the reach of most research programs due to the hostility of its depth and vastness. With current research and monitoring activities in the region mostly focussing on shallow reefs, our Field Identification Guide, published in the peer-reviewed, open-access Biodiversity Data Journal, aims to showcase the benthic organisms that inhabit the Seychelles’ deeper reefscapes. The research cruise that gathered the imagery data used to create the guide, Nekton’s “First Descent: Seychelles Expedition”, was the first of its kind to systematically survey deeper reefs in Seychelles waters, bringing to light previously little-known ecosystems and their inhabitants.

Guest blog post by Nico Fassbender, Zoleka Filander, Carlos Moura, Paris Stefanoudis and Lucy Woodall

 “We cannot protect something we do not love, we cannot love what we do not know, and we cannot know what we do not see.”

These compelling words by author Richard Louv perfectly describe the importance of taxonomy in today’s conservation efforts.

A fan coral of the genus Annella surrounded by various smaller fans and encrusting benthic organisms. Photograph taken at 60m depth. © Nekton.

The deep ocean is the last frontier on our planet. It is home to creatures beyond our imagination and filled to the brim with life. Coastal communities have known the value of a healthy ocean for centuries, yet much of its life remains unknown, sitting beyond the reach of most research programs due to the hostility of its depth and vastness. 

More recently, the importance of deeper ecosystems started moving into the focus of modern marine research as many scientists across the globe are now working to unriddle the mysteries and processes that drive the patterns of life down in the deep.

Deeper reef habitats, starting at ~30m depth beyond SCUBA diving limits, are of crucial importance for coastal communities and adjacent ecosystems alike. They have been found to not only support coral and fish larval supply, aiding shallower reefs, but also to act as a refuge for many species in times of disturbance. Yet, going back to the start of this post – you cannot protect what you don’t know – and we currently know very little about these deeper reefs, especially ones in the Western Indian Ocean region.

We are many nations, but together we are one ocean.

Zoleka Filander – Department of Forestry, Fisheries and Environment, Branch Oceans and Coasts, Cape Town, South Africa

With current research and monitoring activities in the region mostly focussing on shallow reefs, our Field Identification Guide, published in the peer-reviewed, open-access Biodiversity Data Journal, aims to showcase the benthic organisms that inhabit the Seychelles’ deeper reefscapes. The research cruise that gathered the imagery data used to create the guide, Nekton’s “First Descent: Seychelles Expedition”, was the first of its kind to systematically survey deeper reefs in Seychelles waters, bringing to light previously little-known ecosystems and their inhabitants.

All species play relevant roles in trophic relations, in the functioning of ecosystems, and all have a potential biotechnological interest.

Carlos Moura – OKEANOS/DOP, University of the Azores, Horta, Portugal
A grouper (Cephalopholis miniate) hovering above encrusting benthic communities at Aldabra, dominated by the scleractinian coral Pachyseris. Photograph taken at 30m depth. © Nekton.

Our Field Identification Guide is one of the first efforts to describe the mesophotic and sub-mesophotic reefs in the Western Indian Ocean. To effectively protect these ecosystems, stakeholders need to be able to visualise them and scientists need to be able to identify and classify the organisms they observe. Displaying the diversity of the benthic organisms we encountered is only the first step in a complex and long process, allowing us to categorize, study, monitor and thus effectively protect these habitats. 

The correct identification of life is a fundamental building block of ecological knowledge. This international collaboration provided an important place to start from when considering the life on deeper reefs in Seychelles and the wider Western Indian Ocean region.

Lucy Woodall – University of Oxford, and Nekton

To survey the benthic flora and fauna of the Seychelles, we used a variety of methods, including submersibles, remotely operated vehicles and SCUBA diving teams equipped with stereo-video camera systems. We then recorded benthic communities during transect surveys conducted at 10 m, 30 m, 60 m, 120 m, 250 m and 350 m depths. This way, we ended up with 45 h of video footage and enough images to be able to present a photographic guide for the visual identification of the marine macrophytes, corals, sponges and other common invertebrates that inhabit Seychelles’ reefs.

We encountered coral fan gardens on steep slopes, boulders entirely encrusted with sponges of all colours and textures, corals of all shapes and sizes, and an amazing variety of critters. The images in our guide cannot do justice to the beauty of these habitats, and more than one tear was shed encountering these intact ecosystems teeming with life. Especially in times of increasingly frequent disturbance events and quickly shifting baselines (i.e., what we would see as a pristine, healthy reef in the 21st century), intact reef systems become increasingly rare. So much so that they are often confined to extremely remote and/or long and heavily protected areas. Finding these deeper reefs intact and with little to no signs of anthropogenic disturbance means hope – hope that there are yet undiscovered and unexplored reefs in the Western Indian Ocean region that show similar traits; and hope that we will discover even more novel habitats worth protecting.

An overview of how habitat composition changes across depths at Astove Island. © Nekton.

We hope that this guide will help the public to discover the beauty of Seychelles’ deeper reefs and aid current and future monitoring and research activities in Seychelles and the Western Indian Ocean region.

Currently, there are few formalised training materials available to new marine researchers working in mesophotic and deeper reef habitats, especially for the Indian Ocean. The present benthic field ID guide will hopefully be of use to marine researchers, managers, divers and naturalists with the identification of organisms as seen in marine imagery or live in the field.

Paris Stefanoudis – University of Oxford, and Nekton

Taxonomic paper:

Fassbender N, Stefanoudis PV, Filander ZN, Gendron G, Mah CL, Mattio L, Mortimer JA, Moura CJ, Samaai T, Samimi-Namin K, Wagner D, Walton R, Woodall LC (2021) Reef benthos of Seychelles – A field guide. Biodiversity Data Journal 9: e65970. https://doi.org/10.3897/BDJ.9.e65970

From an amateur nature video to a unique study on Antarctic jellyfish

Sometimes research emerges from the strangest turns of events. In this case, an online video created by an amateur videographer on life under the sea ice in McMurdo Sound, Antarctica, resulted in a unique taxonomic study on Antarctic jellyfish and an image-based training set for machine learning. This study was published in the open-access Biodiversity Data Journal.

Sometimes, scientific discoveries emerge from the strangest turns of events.

It all started in 2018, when Dr. Emiliano Cimoli, postdoctoral researcher at the University of Tasmania, joined a field campaign to McMurdo Sound in the Ross Sea, Antarctica – to study not jellyfish, but rather the algal communities that thrive beneath the ice. 

This crystal-like comb jelly species, Callianira cristata, has been reported for the first time in the Ross Sea by the team of researchers. Photo by Dr. Emiliano Cimoli

“These algae are like the plants of the under-ice world and are very important for the Antarctic food chain,” Dr. Cimoli says.  The research team he was part of focused on the development of new sensing technologies to monitor these algal communities (e.g. optical techniques and chemical microsensors).

“We usually have a nice large tent to be able to work and operate such instruments in the harsh Antarctic environment. The cool part is that inside this tent, we have a massive 2 x 2 m hole in the sea ice that allows us to deploy these instruments to the under-ice world.”

It’s kind of like a magic portal to another world filled with mysterious and wondrous jellyfish-like creatures that live down there.

Besides working as an engineer and remote sensing scientist, Dr. Cimoli is also a passionate amateur nature and wildlife photographer and videographer, and in his free time he decided to document all sightings of these creatures with his camera. The researcher used a combination of macro photography equipment and a set of light sources, along with underwater robots for filming underwater. 

This brownish-orange comb jelly of the genus Beroe is likely one of the five undescribed species characterized by the team of researchers. Photo by Dr. Emiliano Cimoli

“Finally, I ended up having a massive amount of jellyfish footage, did not know what to do with it, then lockdown hit and suddenly I found myself working on a trippy video composition of all these creatures,” he adds.

The value of his video was soon picked up by biologist Dr. Gerlien Verhaegen, postdoctoral researcher at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC):

“When I came across Emiliano’s video, I was amazed by the image quality of his underwater footage. You could clearly distinguish some key morphological features.” Unlike hard-bodied animals, the fragile body of jellyfishes and comb jellies (i.e. “sea gooseberries”) are easily destroyed when sampled with nets, which is why photography and videography of specimens are crucial to describing them taxonomically.

“Life Beneath the Ice”, a short musical film about light and life beneath the Antarctic sea-ice by Dr. Emiliano Cimoli

The two postdocs soon joined forces to produce a collaborative study. 

“I think I underestimated the time needed to produce a jellyfish taxonomic paper,” laughs Dr. Verhaegen. “Most of the original descriptions of Antarctic jellies date back to the so-called Heroic Age of Antarctic Exploration in the early 20th century, and are written in English, French, and German. Furthermore, due to the high-water content of jellies, it is extremely difficult to fix and preserve them in formalin or ethanol. We therefore could not compare our specimens to physical specimens preserved in museums but had to rely on the century old descriptions and drawings. Luckily, we were in good hands with my project host, Dr. Dhugal Lindsay, senior scientist at JAMSTEC, a jellyfish taxonomist expert, and last author of our paper”.

Filming creatures in their natural environment can yield valuable information on their trophic interactions with other organisms. For example, this picture of a Diplulmaris antarctica jellyfish shows it feeds on comb jellies, with a Beroe present in its stomach, whereas numerous hyperiid amphipods (small parasitic crustaceans) are observed scattered around on the bell of the jellyfish. Photo by Dr. Emiliano Cimoli

Despite the small geographical and temporal scale of this study, which was published in the open-access Biodiversity Data Journal, a total of 12 species were reported, with two jellyfish and three comb jellies likely representing undescribed species.

Besides revealing new morphological traits for every species, including some behavior and trophic traits, this study was also the first to include a training image set for video annotation of Antarctic jellyfish through machine learning. 

“Machine learning is being applied to numerous fields nowadays, from voice recognition software and translation through to detection of typhoon formation,” comments Dr. Lindsay.

“In marine biology, annotating species from underwater videos can be both time-consuming and financially costly, with very few experts able to give names to the high diversity of species invariably encountered. Machine learning techniques could help solve these issues by enabling automatic first-pass annotation of videos. However, taxonomically accurate image-based datasets are needed to train these learning algorithms, and this study is a valuable first step.”

Watch the video “Life Beneath the Ice” by Dr. Emiliano Cimoli on YouTube and Vimeo.

Original source

Verhaegen, G., Cimoli, E., & Lindsay, D. J. (2021). Life beneath the ice: jellyfish and ctenophores from the Ross Sea, Antarctica, with an image- based training set for machine learning. Biodiversity Data Journal, 9, e69374. https://doi.org/10.3897/BDJ.9.e69374