Local scientists discover new species of cave pseudoscorpion named after Boulder, Colorado

A research associate with the Zoology Department at the Denver Museum of Nature & Science, found the new pseudoscorpion along with his wife and son.

Denver Museum of Nature & Science researchers discovered of a new species of cave-dwelling pseudoscorpion near the Flatirons in City of Boulder Open Space and Mountain Parks. David Steinmann, a research associate with the Zoology Department at the Denver Museum of Nature & Science, found the new pseudoscorpion along with his wife Debbie and son Nathan. The newly discovered species, Larca boulderica named after Boulder, marks the sixth cave-adapted species of the Larca genus from caves in North America. 

The new species of pseudoscorpion, Larca boulderica, on rocky substrate.
The new species of pseudoscorpion, Larca boulderica, inside the cave. Photo by David Steinmann

In 2008, the Steinmann family went looking for invertebrates in a small cave west of Boulder when David saw an unusual-looking pseudoscorpion clinging to the bottom of a jagged stone. Steinmann sent the specimens to Mark Harvey, a pseudoscorpion expert at the Western Australian Museum, and Harvey determined that the tiny animals represent a new species. Harvey and Steinmann described and named Larca boulderica in a paper recently published in ZooKeys. The specimen used in the species description will now be deposited in the arachnology collection at the Denver Museum of Nature & Science.  

Dave and Debbie Steinmann at the barred entrance of a small cave.
Dave and Debbie Steinmann at a small cave where L. boulderica lives. Photo by Ryan Prioreschi

“Dave Steinmann’s discovery of new species of pseudoscorpions from Colorado’s cave systems demonstrates how much we still have to discover about this planet’s biodiversity,” said Paula Cushing, senior curator of invertebrate zoology at the Museum. “Dave’s work in these challenging and unique habitats is critical in such discoveries.”  

About the size of a sesame seed with crab-like pincers, Larca boulderica survives in dry and dusty habitats such as packrat middens. Boulder is the only place in the world they are known to live. Pseudoscorpions have been around for millions of years, including when Tyrannosaurus rex roamed the planet.

A photo of the pseudoscorpion Larca boulderica under a microscope.
Larca boulderica as seen under a microscope. Photo by David Steinmann

“Pseudoscorpions are fascinating creatures. They look like tiny scorpions without a stinger. Few people encounter them, and even fewer find them in caves,” said Frank Krell, senior curator of entomology at the Museum. “David Steinmann has found many tiny creatures in Colorado caves that nobody has found before. The city of Boulder is now immortalized in the name of this new species.” 

Research article:

Harvey MS, Steinmann DB (2024) A new troglomorphic species of Larca (Pseudoscorpiones, Larcidae) from Colorado. ZooKeys 1198: 279-294. https://doi.org/10.3897/zookeys.1198.120353

Press release originally published by the Denver Museum of Nature and Science. Republished with permission.

New clam species discovered in South Africa’s kelp forest

It was discovered while working on the 1001 Seaforest Species project, which focuses on raising awareness about the rich kelp bed ecosystems of South Africa.

A new study sheds light on the unexplored diversity of galeommatoidean bivalves, a little-known group of marine mollusks, from the western coast of South Africa. The research, led by Paul Valentich-Scott from the Santa Barbara Museum of Natural History, along with collaborators from the University of Cape Town, Sea Change Trust, Stellenbosch University, and the University of Colorado Boulder, offers a curious glimpse into the habitats, symbiotic relationships, and taxonomy of these interesting creatures.

An unusual galeommatid clam, Melliteryx mactroides, living in tidepools near Cape Town, South Africa. Video by Jannes Landschoff

Published in the scientific journal ZooKeys, the study focuses on four species of galeommatoidean bivalves collected from the Western Cape region of South Africa. Among these is one new species, Brachiomya ducentiunus. This small clam, which is only 2 mm (less than 1/8th inch) in length, spends its life crawling between the spines of sea urchins.

The newly discovered species, Brachiomya ducentiunus, crawing on a sea urchin spine. Photo by Craig Foster

The new species has so far only been found in one locality in False Bay, South Africa, where it was found attached to the burrowing sea urchin Spatagobrissus mirabilis in coarse gravel at a depth of about 3 m. It has not been observed free-living, without the host urchin.

Brachiomya ducentiunus was discovered while preparing and working on the 1001 Seaforest Species project, a research and storytelling program aimed at increasing awareness of regional kelp bed ecosystems colloquially referred to as ‘the Great African Seaforest’.

Dozens of the new species crawling on the surface of a sea urchin. Photo by Charles Griffiths

“This study marks a significant advancement in our understanding of the biodiversity and ecological interactions of galeommatoidean bivalves,” says lead author Paul Valentich-Scott. “By uncovering the hidden lives of these small but ecologically important organisms, we hope to contribute to the broader knowledge of marine biodiversity and the conservation of these unique habitats.”

Co-author Charles L. Griffiths, emeritus professor at the University of Cape Town, says, “A large proportion of smaller marine invertebrates remain undescribed in western South Africa and almost any project that samples specialized habitats turns up many new records and species.”

The new clam species feeding between the spines of a sea urchin. Video by Craig Foster

In a similar vein, co-author Jannes Landschoff, marine biologist at the Sea Change Trust, says “Creating foundational biodiversity knowledge is a most important step to the humbling realization of how fascinating and uniquely diverse a place is. I see this every day through our work in the rich coastal waters of Cape Town, where an extensive underwater kelp forest, the ‘Great African Seaforest,’ grows.

Research article: 

Valentich-Scott P, Griffiths C, Landschoff J, Li R, Li J (2024) Bivalves of superfamily Galeommatoidea (Mollusca, Bivalvia) from western South Africa, with observations on commensal relationships and habitats. ZooKeys 1207: 301-323. https://doi.org/10.3897/zookeys.1207.124517

New species, old threats: two hillstream suck-loaches discovered in China

The new-to-science fish face an uncertain future due to pollution and unsustainable harvesting.

All too often, researchers discover new species only to learn they are already at risk of extinction.

So when researchers from Shanghai Ocean University and Yunnan Agricultural University identified two new species from the upper Pearl River system in southwest China, they were likely unsurprised to find the fish facing major threats from pollution and overharvesting.

Three views of a flat-bottomed fish species with bumps on its head.
Beaufortia granulopinna holotype from Lizhou River, a stream tributary of Bo′ai River of the Pearl River basin, at Tianlin County, Guangxi Province, China.

The new species, Beaufortia granulopinna and Beaufortia viridis, are members of the family Gastromyzontidae, also known as hillstream suck-loaches. They are highly specialised, with compressed bodies, flattened bottoms, and greatly expanded paired fins forming suction cup-like structures. These adaptations enable them to adhere to rocky substrates, resisting currents while feeding on algae and invertebrates.

Researchers discovered the new species during surveys studying aquatic life in various waterways in Yunnan and Guangxi between 2022 and 2024. The study, led by Jing-Chen Chen, offers new insights into the taxonomy and molecular phylogeny of the Beaufortia pingi species group, of which the two discoveries are likely members.

Three views of a flat-bottomed fish species witha green and brown colouration.
Beaufortia viridis holotype from Wuming River, a stream tributary to the You River of the Pearl River basin, at Wuming District, Nanning City, Guangxi Province, China.

Although research on the Beaufortia pingi group is mostly in its initial stages, the situation is far from optimistic. These species have become popular ornamental fish in China, and aquarium trade operators reap substantial profits through their capture and sale. Among them are those who act with disregard for sustainability, using destructive harvesting practices.

Given the loaches’ preference for fast-flowing water, projects that obstruct rivers can easily lead to regional extinction. Their low pollution tolerance and sensitivity to changes in water quality also contribute to the significant reductions in population that many species are suffering.

Landscape image of a river and trees.
Collection site of Beaufortia viridis from Wuming River, a stream tributary to the You River of the Pearl River basin, Wuming District, Nanning City, Guangxi Province, China. Photographed by Jing-Chen Chen.

In the habitat of B. viridis, Wuming District, Nanning City, most small tributaries have been modified into step-like reservoirs for water storage, and those near agricultural irrigation areas are polluted, rendering these areas unsuitable for their survival. Interestingly, however, a stable population was discovered inside a commercial eco-camping site left untouched to satisfy consumers’ pursuit of “pristine nature.”

The researchers suggest that future efforts should focus on increasing attention to these species, conducting fundamental research, and further exploring their scientific and economic potential. Simultaneously, it is crucial to enhance habitat conservation awareness, scientifically plan, and develop sustainably, ensuring harmonious coexistence between humans and nature.

Original source

Chen J-C, Li J-J, Tang W-Q, Pu X-R, Lei H-T (2024) Taxonomic resolution of the hillstream suck-loach Beaufortia pingi species group (Cypriniformes, Gastromyzontidae) and two new species from Southwest China– Beaufortia granulopinna and Beaufortia viridis. Zoosystematics and Evolution 100(3): 941-963. https://doi.org/10.3897/zse.100.124370

Follow Zoosystematics and Evolution on X and Facebook for more!

Top-lane crab: new species named after League of Legends character

The ‘furry’ crustacean is the latest discovery to be given a video-game-inspired name.

Species of the crab family Xanthidae go by many names: gorilla crabs, mud crabs, pebble crabs, rubble crabs – the list goes on. But when it was time to name a tiny, ‘furry’ new species from China, researchers drew unlikely inspiration from the video game League of Legends.

Gothus teemo was named after the character Teemo from the immensely popular MOBA (Multiplayer Online Battle Arena) thanks to its distinctive appearance.

Two images of a small white-and-brown crab species besides Teemo from League of Legends.
Gothus teemo male holotype (left), Teemo (right).

Loosely resembling a raccoon, Teemo is small and fluffy with a brown and white intermingled fur coat. The new species’ small size, densely covered short setae (bristles), and brown-striped colouration quickly drew comparisons.

Published in the open-access journal Zoosystematics and Evolution, the discovery was made during an expedition to the coral reefs of the South China Sea. There researchers discovered the new species in the Xisha Islands (Paracel Islands) and Nansha Islands (Spratly Islands).

An illustration of the crab species Gothus teemo. It is black with brown patterning.
Illustration of Gothus teemo by by Fei Gao.

The team collected specimens while scuba diving, photographing them and conserving them for further study. The specimens are now housed at the Marine Biological Museum, Chinese Academy of Sciences in Qingdao, China.

This new-to-science crab represents not only a new species, but also an entirely new genus. Sticking to a theme, researchers named the genus after a game – albeit one created 2,500 years before League of Legends!

The boardgame Go. Black and white counters on a a wooden box with a grid pattern.
The ancient Chinese board game, Go.

They chose the name Gothus for the genus, drawing inspiration from the ancient Chinese strategy board game, Go. The name alludes to the intermingled black and white patterns on the carapace of Gothus species, beneath which lie circular granules resembling the pieces of the game.

As part of their study, the researchers suggested the reclassification of the species Actaea consobrina into the genus Gothus. This reclassification was based on both morphological and molecular evidence.

A white crab with balck and orange dots.
Actaea consobrina, proposed as Gothus consobrina.

Gothus teemo is by no means the only new species named after a video game character. Just last week, we shared a story from our Biodiversity Data Journal about a blind spider named after the Monster Hunter character Khezu – check out the story below!

Gothus teemo is yet another reminder that countless unknown creatures are just waiting to be discovered. The coral reefs of the South China Sea continue to be a rich source of new and fascinating species. And, who knows, perhaps there’s a Gothus tristana out there, too.

Original source

Yuan Z-M, Jiang W, Sha Z-L (2024) Morphological and molecular evidence for Gothus teemo gen. et sp. nov., a new xanthid crab (Crustacea, Brachyura, Xanthoidea) from coral reefs in the South China Sea, with a review of the taxonomy of Actaeodes consobrinus (A. Milne-Edwards, 1867). Zoosystematics and Evolution 100(3): 965-987. https://doi.org/10.3897/zse.100.117859

Follow Zoosystematics and Evolution on X and Facebook for more!

Monster Hunter in real life: eyeless spider named after video game monstrosity

Discovered in China, the cave-dwelling arachnid was assigned a rather unflattering species name.

Deep within a cave in the Du’an Yao Autonomous County of Guangxi, China, researchers discovered a pale, eyeless spider unknown to science.

This discovery, detailed in the open-access Biodiversity Data Journal adds a remarkable member to the Otacilia genus. And, as is often the case, the scientist behind the revelation turned to popular culture to name the new species.

They settled on Otacilia khezu.

A close-up shot of the face Khezu from Monster Hunter at night. It is a wwyvern with no eyes and many teeth.
Khezu in Monster Hunter.

The Khezu wyvern features in the popular video game series Monster Hunter. It is known for its blindness and unsettling appearance, just like newly discovered species. By naming the spider Otacilia khezu, the researchers highlight its troglobitic – or cave-dwelling – nature, particularly the complete absence of its eyes.

“Its long, elastic neck stretching out while it clings to a wall or the ceiling is a sight straight out of a nightmare. Make sure you do not get overwhelmed by its horrific appearance.”

Khezu description, Monster Hunter Wiki.

Otacilia khezu, like many troglobitic creatures, lacks eyes and pigmentation, has elongated appendages, and has developed heightened sensory adaptations to navigate and thrive in its dark environment.

A pale eyeless spider on a cave floor.
Otacilia khezu juvenile, in life. Photo: Shanmi Zheng.

The research team led by Yejie Li,  Langfang Normal University, note the significance of the discovery, as it marks the first recorded troglobitic Otacilia species in China. Prior to this, only two troglobitic Otacilia species had been identified, both in Laos. 

The species is one of many spiders named after influential fictional characters. In fact, one spider was named after a character and the actor playing him.

The documentation and publication of this new species set the stage for further studies on the ecological roles of troglobitic spiders and their evolutionary adaptations.

Chinese civillians can rest assured that Otacilia khezu is considerably less dangerous than its namesake when they keep an eye out for the eyeless arachnid.

Original source:

Lin Y, Chen H, Wang X, Li S (2024) Otacilia khezu sp. nov., a new troglobitic spider (Araneae, Phrurolithidae) from Guangxi, China. Biodiversity Data Journal 12: e126716. https://doi.org/10.3897/BDJ.12.e126716

Follow Biodiversity Data Journal on Facebook and X.

Cute but deadly: a new velvet worm species from Ecuador

The so-called “living fossil” shoots a sticky substance from a pair of glands to trap its prey.

Researchers have described a remarkable new species of velvet worm from the Ecuadorian Amazon.

Take a look below:

Oroperipatus tiputini.
Credit: Roberto J. León, Archive Universidad San Francisco de Quito USFQ.

While the Tiputini velvet worm (Oroperipatus tiputini) may look friendly, it is an accomplished hunter that shoots a sticky substance from a pair of glands to trap its prey.

However, lead author Jorge Montalvo from the USFQ Museum of Zoology, notes that the species also has a softer side, with the mother taking care of her considerably lighter-coloured young after they are born.

Adult female velvet worm with her offspring on a leaf.
Adult female with her offspring.

Velvet worms, also known as onychophorans or peripatus, are rare and unique invertebrates often referred to as “living fossils” because they evolved over 500 million years ago, long before the appearance of dinosaurs.

Currently, only about 240 velvet worm species are known, inhabiting tropical regions in the Americas, southern Chile, Africa, Southeast Asia, Oceania, and New Zealand.

Adult velvet worm on a leaf.
Oroperipatus tiputini.
Pedro Peñaherrera-R., Archive Universidad San Francisco de Quito USFQ

Published in the open-access journal Zoosystematics and Evolution, the discovery was more than 20 years in the making. It also represented the first study of Ecuadorian velvet worms for over 100 years.

“The research on this new species took several decades. I discovered the first individual of this new species in 2001, and we finally managed to describe it as part of Jorge Montalvo’s graduation thesis, who is now my colleague at the Museum of Zoology at USFQ. To complete the description, we used not only macromorphological descriptions but also high-magnification images obtained with a scanning electron microscope.”

Diego F. Cisneros-Heredia, one of the authors and director of the USFQ Museum of Zoology, Ecuador.

The researchers named the species after the Tiputini Biodiversity Station (TBS), part of the Yasuní Biosphere Reserve. The name recognises the hard work of the station’s management, research, and field team in protecting biodiversity.

Map of Ecuador showing the location of the Tiputini Biodiversity Station.
Map of Ecuador showing the location of the Tiputini Biodiversity Station (white square), type locality of Oroperipatus tiputini sp. nov., in the Amazonian lowlands.

The description of the Tiputini velvet worm raises the total number of described velvet worm species in Ecuador to seven. This species is the first from the Ecuadorian Amazon lowlands and the third in the western Amazon.

Original source

Montalvo-Salazar JL, Bejarano ML, Valarezo A, Cisneros-Heredia DF (2024) A new species of velvet worm of the genus Oroperipatus (Onychophora, Peripatidae) from western Amazonia. Zoosystematics and Evolution 100(3): 779-789. https://doi.org/10.3897/zse.100.117952

Follow Zoosystematics and Evolution on X and Facebook for more!

Lazy predator: A new species of mountain pit viper from China

Ovophis jenkinsi is dark brownish-grey, with trapezoidal patches on its back. It is endemic to China’s Yingjiang County and is not difficult to find in the wild.

Yunnan, China is a biodiversity hotspot, with many new reptile species discovered in the region in recent years. It is also where a research team from China found a new species of medium-sized venomous snake, known as a mountain pit viper.

Ovophis jenkinsi. Photo by Xianchun Qiu

“We checked specimens of the [snake] genus Ovophis collected by Institute of Zoology, Chinese Academy of Sciences and Beijing Forestry University in Yingjiang, Yunnan in 2008, and found that these specimens were different from all known similar species. We collected some new specimens from Yingjiang in 2023 and finally determined that this population represents a new species!” the researchers explained.

The new species was named Ovophis jenkinsi in honour of herpetologist Robert “Hank” William Garfield Jenkins AM (September 1947−September 2023), who had “a passion for snakes, especially pit vipers, and helped China, along with many Asian countries, complete snake census, conservation, and management projects,” the team writes in their study, which was published in the open-access journal ZooKeys.

A specimen of Ovophis jenkinsi from Yingjiang, Yunnan, China. Photo by Xianchun Qiu

Ovophis jenkinsi is generally dark brownish-grey, but some individuals can be deep orange-brown, and has trapezoidal patches on its back. “It is usually slow-moving but shows great aggression when disturbed,” the researchers explain after observing the snake’s behaviour. “When threatened, these snakes inflate their bodies to make themselves appear larger and strike quickly.”

There are no records to date of humans being bitten by this species.

The only known habitat of Ovophis jenkinsi, the tropical montane rainforest in Yingjiang, Yunnan, China. Photo by Xiaojun Gu

Like many other species, this snake is endemic to China’s Yingjiang County, which means it is currently found only there. “It is not difficult to find this species in the wild, they are active mainly in the autumn and prefer cool, humid, and even rainy nights, probably to avoid competition with other snakes,” the researchers say, suggesting it might feed on small mammals.

“We will be collecting more information about O. jenkinsi in the future, including their appearance, distribution, and habits, to improve our understanding of this species,” the researchers say in conclusion.

Research article:

Qiu X-C, Wang J-Z, Xia Z-Y, Jiang Z-W, Zeng Y, Wang N, Li P-P, Shi J-S (2024) A new mountain pitviper of the genus Ovophis Burger in Hoge & Romano-Hoge, 1981 (Serpentes, Viperidae) from Yunnan, China. ZooKeys 1203: 173-187. https://doi.org/10.3897/zookeys.1203.119218


Sun-shunning thief: new plant species robs underground fungi to survive

Tiny and highly specialised, Thismia malayana belongs to a group of plants known as mycoheterotrophs.

Researchers in Malaysia have discovered a tiny and distinctive plant that steals its nutrients from underground fungi.

Published as a new species in the open-access journal PhytoKeys, Thismia malayana belongs to a group of plants known as mycoheterotrophs. Unlike most plants, mycoheterotrophs do not perform photosynthesis. Instead, they act as a parasite, stealing carbon resources from the fungi on their roots.

Unusual brown and orange plant in leaf litter.
Thismia malayana live specimen.

The 2 cm-long plant’s unusual adaptation takes advantage of the mycorrhizal symbiosis, which is usually a mutually beneficial relationship between colonising fungi and a plant’s root system.

Several scientific photographs of an unusual brown and orange plant.
Thismia malayana.

By stealing nutrients from fungi, it can thrive in the low-light conditions of dense forest understories where its highly specialised flowers are pollinated by fungus gnats and other small insects.

A team of botanists from the Forest Research Institute Malaysia (FRIM) collaborated with local naturalists and stakeholders to make the discovery in the tropical rainforests of Peninsular Malaysia. It was there they found the miniscule species hidden amongst leaf litter and growing near tree roots and old rotten logs.

The research team identified Thismia malayana in two locations: the lowlands of Gunung Angsi Forest Reserve in Negeri Sembilan and the hilly dipterocarp forests of Gunung Benom in the Tengku Hassanal Wildlife Reserve, Pahang.

Unusual brown and orange plant with a scale showing it measures around 2 cm long.
Thismia malayana with scales (the finest grade is 0.5 mm).

Despite its small size, Thismia malayana is very sensitive to environmental changes and has been classified as Vulnerable according to the IUCN Red List criteria. Its limited distribution and the potential threat from trampling due to its proximity to hiking trails underscore the importance of continued conservation efforts.

Original source

Siti-Munirah MY, Hardy-Adrian C, Mohamad-Shafiq S, Irwan-Syah Z, Hamidi AH (2024) Thismia malayana (Thismiaceae), a new mycoheterotrophic species from Peninsular Malaysia. PhytoKeys 242: 229-239. https://doi.org/10.3897/phytokeys.242.120967

***

Follow PhytoKeys on Facebook and X.

Captivating blue-colored ant discovered in India’s remote Siang Valley

It was named Paraparatrechina neela, after the word “neela”, which means blue in various Indian languages.

Nothing like the common red, black, or brown ants, a stunning blue ant has been discovered from Yingku village in Arunachal Pradesh, northeastern India. This new species belongs to the rare genus Paraparatrechina and has been named Paraparatrechina neela. The word “neela” signifies the color blue in most Indian languages – a fitting tribute to the ant’s unique coloration.

Entomologists Dr. Priyadarsanan Dharma Rajan and Sahanashree R, from Ashoka Trust for Research in Ecology and the Environment (ATREE) in Bengaluru, along with Aswaj Punnath from the University of Florida, collaborated to describe the remarkable new species. Their scientific description of the ant is published in the open-access journal ZooKeys.

Paraparatrechina neela. Photo by Sahanashree R

“While exploring a tree hole about 10 feet up in a steep cattle track in the remote Yinku village one evening, something sparkled in the twilight. With the dim light available, two insects were sucked into an aspirator. To our surprise, we later found they were ants” said the researchers.

The ant was found during an expedition to Siang valley in Arunachal Pradesh to resurvey its biodiversity after the century-old ‘Abhor expedition’. The original Abor expedition from the period of colonial rule in India was a punitive military expedition against the indigenous people there in 1911-1912. A scientific team also accompanied the military expedition, to document the natural history and geography of the Siang Valley. Тhis expedition encountered several challenges, including hostile terrain, difficult weather conditions, and resistance from local tribes. Despite the challenges, it managed to explore and map large parts of the Siang Valley region, cataloguing every plant, frog, lizard, fish, bird & mammal and insects they found, with the discoveries published in several volumes from 1912 to 1922 in the Records of the Indian Museum.

A view of Suabg Valley. Photo by Ranjith AP

Now, a century later, a team of researchers  from ATREE and a documentation team from Felis Creations Bangalore have embarked on a series of expeditions under the banner “Siang Expedition”, to resurvey and document the biodiver­sity of the region. This expedition was funded by the National Geographic Society through the wild­life-conservation expedition grant.

“Nestled within a Himalayan biodiversity hotspot, Arunachal Pradesh’s Siang Valley presents a world of unparalleled diversity, much of it yet to be explored. However, this very richness, both cultural and ecological, faces unprecedented threats. Large-scale infrastructure projects like dams, highways, and military installations, along with climate change, are rapidly altering the valley. The impact extends beyond the valley itself, as these mountains play a critical role not only in sustaining their own diverse ecosystems but also in ensuring the well-being of millions of people living downstream”, said Priyadarsanan Dharma Rajan, corresponding author of the paper.

Paraparatrechina neela is a small ant with a total length of less than 2mm. Its body is predominantly metallic blue, except for the antennae, mandibles, and legs. The head is subtriangular with large eyes, and has a triangular mouthpart (mandible) featuring five teeth. This species has a distinct metallic blue colour that is different from any other species in its genus.

Paraparatrechina neela. Photo by Sahanashree R

Blue is relatively rare in the animal kingdom. Various groups of vertebrates, including fish, frogs, and birds, as well as invertebrates such as spiders and flies and wasps, showcase blue coloration. In insects, it is often produced by the arrangement of biological photonic nanostructures, which create structural colours rather than being caused by pigments. While blue coloration is commonly observed in some insects like butterflies, beetles, bees, and wasps, it is relatively rare in ants. Out of the 16,724 known species and subspecies of ants worldwide, only a few exhibit blue coloration or iridescence.

The discovery of Paraparatrechina neela contributes to the richness of ant diversity and represents the unique biodiversity of the Eastern Himalayas, and its blue coloration raises intriguing questions. Does it help in communication, camouflage, or other ecological interactions? Delving into the evolution of this conspicuous coloration and its connections to elevation and the biology of Paraparatrechina neela presents an exciting avenue for research.

Research article:
Sahanashree R, Punnath A, Rajan Priyadarsanan D (2024) A remarkable new species of Paraparatrechina Donisthorpe (1947) (Hymenoptera, Formicidae, Formicinae) from the Eastern Himalayas, India. ZooKeys 1203: 159-172. https://doi.org/10.3897/zookeys.1203.114168

Snake in a ski mask: a striking new species from the Arabian Peninsula

The stylish serpent is dubbed “the missing piece of the puzzle” as it fills a large distribution gap for its genus.

Researchers have discovered a new distinctive and secretive snake species in the Hejaz region of Saudi Arabia.

Rhynchocalamus hejazicus is a small snake bearing a black collar and reddish colouration. A completely black variation of of the species known as a ‘melanistic morphotype’ was also discovered.

A black snake on stony ground.
Melanistic morphotype of Rhynchocalamus hejazicus.

The snake’s genus Rhynchocalamus previously had a large distribution gap, stretching between the Levant and coastal regions of Yemen and Oman. However, the new species is widely distributed between these areas, prompting the research team to dub it “the missing piece of the puzzle.”

Distribution map of the new species showing the location of the material examined in this study. Various areas in western Saudi Arabia are marked.
Distribution of Rhynchocalamus hejazicus, showing the location of the material examined in the study.

The international team led by scientists from the Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Portugal, and Charles University, Czech Republic, published their discovery in Zoosystematics and Evolution, an open-access journal published by Pensoft on behalf of Museum für Naturkunde Berlin.

Rhynchocalamus hejazicus inhabits sandy and stony soils with varying vegetation cover and is found in habitats disturbed by humans, suggesting the species should not be categorised as threatened according to IUCN criteria.

Three images of habitats. The first is a barren desert landscape with sparse trees and rocks scattered throughout. The second is a dry desert scene featuring a small number of trees and rocks. The third is an arid landscape with a handful of trees and rocks in view.
Habitats of the holotype and two paratype specimens of R. hejazicus.

The species’ natural history and behaviour remain unclear, and further monitoring and conservation efforts are necessary to better understand its ecological dynamics. However, it appears that Rhynchocalamus hejazicus is predominantly nocturnal as all encountered individuals were active at night.

“The discovery of a new species of snake widespread in the central-western regions of Saudi Arabia is surprising and gives rise to the hope that more undiscovered species might be present in the Kingdom,” the authors say.

Orange snake with black collar and nose colouration on sandy ground.
Rhynchocalamus hejazicus.

Most observations of the new species are the result of intense sampling efforts in a vast area around the ancient Arabic oasis city of AlUla, fostered by the Royal Commission for AlUla, Saudi Arabia, which is pushing forward scientific activities and explorations to promote conservation in the region. Recent research in Saudi Arabia has led to fruitful collaborations and findings like this study, to which many experts from multiple teams contributed significantly.

The discovery of such a distinctive snake highlights the existing gap in knowledge of rare and secretive species, and the need to enhance sampling efforts and monitoring strategies to fully capture species diversity in unexplored areas.

Original source

Licata F, Pola L, Šmíd J, Ibrahim AA, Liz AV, Santos B, Patkó L, Abdulkareem A, Gonçalves DV, AlShammari AM, Busais S, Egan DM, Ramalho RMO, Smithson J, Brito JC (2024) The missing piece of the puzzle: A new and widespread species of the genus Rhynchocalamus Günther, 1864 (Squamata, Colubridae) from the Arabian Peninsula. Zoosystematics and Evolution 100(2): 691-704. https://doi.org/10.3897/zse.100.123441

Follow Zoosystematics and Evolution on X and Facebook for more!