Celebrating World Lizard day with amazing discoveries

This August 14, we’re looking back to the most impressive lizard discoveries we’ve witnessed throughout the years.

World Lizard Day is a great way to raise awareness of these curious reptiles and their conservation needs; it is also a good excuse to look at pretty lizard pictures! Today, we’re doing a bit of both.

At Pensoft, we’ve published many new lizard species, some of them rare and truly fascinating. This August 14, we’re looking back to the most impressive lizard discoveries we’ve witnessed throughout the years.

The Dracula lizard

This beautiful lizard, described in 2018, comes from the Andean slopes of southwestern Colombia and northwestern Ecuador. It inhabits evergreen low montane forests, and is only known from a relatively small territory of approximately 1582 km2. Its prey most often consists of insects, spiders and worms.

Contrary to what you might think, this species was not named after the eponymous vampire count, but rather after some beautiful tropical flowers.

The specific epithet dracula refers to the Dracula Reserve, which is located within the lizard’s distribution and near its type locality. The Reserve protects an area with a high diversity of orchids of the genus Dracula.

Published in ZooKeys.

The tiny chameleon

This lizard friend, known as Brookesia tedi, is less than 3 cm long! It is more than ten times smaller than the longest known chameleon, Furcifer oustaleti. Its size makes it difficult to find, and as a result, challenging to study. Its description, published in 2019, helped resolve a 50-year old identity question.

Living at 1300 m above sea level on the Marojejy massif in northeastern Madagascar, Brookesia tedi lives is brown in colour, its tail and the back of its head grey.

The researchers consider it Vulnerable but worry that improper protection on Marojejy, as well as fires, could rapidly drive the species to becoming Critically Endangered.

Published in Zoosystematics and Evolution.

The charismatic wood lizard

Enyalioides feiruzae is a colourful and highly variable lizard – especially its males, who can have brownish turquoise, gray, or greenish brown backs traced with pale lines. Females, in turn, can be greenish brown or floury brown, with faint dark brown lines on their back, limbs and tail, and spots on the sides. The team behind its discovery spent seven years in the area searching for amphibians and reptiles before describing it.

The species comes from the Tropical Andes, and more specifically – from the Huallaga River basin, an area which is still poorly studied because for a long time it was disturbed by civil wars.

The Feiruz wood lizard was named after another reptile, Feiruz the iguana – “muse and lifelong friend”.

The spotted monitor lizard

Mussau is a small island in northeastern Papua New Guinea. The top predator on it? A lizard.

Varanus semotus has been isolated from related species for an estimated one to two million years, with its closest relatives several hundred kilometers away.

Even so, science discovered it only recently.

The one-meter-long lizard has a black body with yellow and orange markings and a pale yellow tongue, with a turquoise to blue tail. These animals “will eat just about anything they can catch and kill,” study author Valter Weijola told the Washington Post.

As the only large terrestrial generalist predator and scavenger on the island, Varanus semotus may fill an important ecological function, making it of particular conservation concern.

Published in ZooKeys.

The black iguana

What makes Iguana melanoderma so distinct is its black color; in fact, it only gets blacker with age. The species was discovered in Saba and Montserrat islands, the Lesser Antilles (Eastern Caribbean), to which it is endemic.

However, it is threatened by unsustainable harvesting (including pet trade), and competition and hybridization from invasive alien iguanas from South and Central America.

A greater focus on biosecurity, the minimization of hunting, and habitat conservation, would help its conservation, the researchers write in their paper.

In Saba, Iguana melanoderma lives on cliffs, in trees and bushes, in shrublands, and deciduous woodlands. It lives in a foggy and cool environment up to about 500 m a.s.l. and sunbathes as soon as the sun rises.

Published in ZooKeys.

Bonus: Illegal lizard trade might be closer than you think

Dubbed “miniature Godzilla” and “the Holy Grail of Herpetology,” the earless monitor lizard is endemic to Borneo. Legally, it can neither be traded within Indonesia, Malaysia and Brunei, nor exported out of them.

Even so, reptile enthusiasts and unscrupulous traders have long been smuggling small numbers of earless monitor lizards, eventually bringing them to Europe.

A new study reported that accredited zoos have acquired individuals of the protected lizard, without any evidence of legal export.

“Zoos that continue to obtain animals that have been illegally acquired, directly or indirectly, are often fuelling the illegal wildlife trade, supporting organised crime networks and possibly contributing to the decline in some species,” Vincent Nijman, author of the study, told us.

Published in Nature Conservation.

Top new species discoveries for the first half of 2022

The diversity is impressive, but what is even more amazing is how much more remains undiscovered.

In the world of biodiversity science, 2022 started with some great discoveries and a lot of hope. Here at Pensoft, we get to see a new species (or more!) make an appearance into the scientific world almost every day. The diversity is impressive, but what is even more amazing is how much more remains undiscovered.

With the first half of the year already behind us, here are the stellar new species that took the world by storm as soon as we published them.

The magical fairy wrasse

This rainbow-coloured fish is called Cirrhilabrus finifenmaa, or Rose-Veiled Fairy Wrasse, and it was found in the Maldives’ reefs. It can live 160 to 500 feet beneath the ocean’s surface in unexplored coral ecosystems dubbed “the twilight zone”. 

It was discovered within California Academy of SciencesHope for Reefs initiative, which is aimed at better understanding and protecting coral reefs around the world.

“Nobody knows these waters better than the Maldivian people,” says senior author and Academy Curator of Ichthyology Luiz Rocha. “Our research is stronger when it’s done in collaboration with local researchers and divers.”

Apart from its striking appearance, Cirrhilabrus finifenmaa also gained popularity as the first new-to-science species to be described by a Maldivian scientist.

“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists, says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb. “This time it is different.”

It is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.

This beautiful fish is already being exploited through the aquarium hobbyist trade, a fact described as “unsettling” by the people who discovered it.

Published in ZooKeys.

The Taylor Swift millipede

How often is it that a millipede makes top news headlines? Well, Nannaria swiftae sure did.

Scientists Derek Hennen, Jackson Means, and Paul Marek, at Virginia Tech, U.S., described the new species in April, naming it after singer-songwriter Taylor Swift. “Her music helped me get through the highs and lows of graduate school, so naming a new millipede species after her is my way of saying thanks,” Derek Hennen says, admitting he has been her fan for years.

N. swiftae joins 16 other new species of twisted-claw millipedes described from the Appalachian Mountains of the United States. To find them, researchers traveled to 17 US states, checking under leaf litter, rocks, and logs. They then sequenced the DNA of the species they found and described them scientifically. They looked at over 1800 specimens collected on their field study or taken from university and museum collections!

These little-known invertebrates are somewhat tricky to catch, because they tend to remain buried in the soil, sometimes staying completely beneath the surface.

Most twisted-claw millipedes live on the forest floor, where they feed on decaying leaves and other plant matter. They also have a valuable role as decomposers: breaking down leaf litter, they release their nutrients into the ecosystem.

Published in ZooKeys.

The Greta Thunberg frog

Swedish climate activist Greta Thunberg has been namesakes with a frog for half a year now. In 2018, Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for some new-to-science species, including Pristimantis gretathunbergae, a black-eyed rainfrog from in eastern Panama.

The undisclosed auction winner wanted to name the frog in honor of Thunberg and her work in highlighting the urgency in preventing climate change. She has impressed global leaders and her work is drawing others to action for the climate.

The international team that discovered the new rainfrog was led by Abel Batista, Ph.D. (Panama) and Konrad Mebert, Ph.D. (Switzerland). They found the frog on Mount Chucanti, a sky island surrounded by lowland tropical rainforest in eastern Panama. Reaching its habitat in the cloud forest required access via horseback through muddy trails, hiking up steep slopes, by-passing two helicopters that crashed decades ago, and camping above 1000 m elevation.

Unfortunately, the frog’s remaining habitat is severely fragmented and highly threatened by rapid deforestation for plantations and cattle pasture. Rising temperatures are another threat as they could destroy its small mountain habitat. The Mount Chucanti region already has lost more than 30% of its forest cover over the past 10 years, and the scientists insist that conservation of the remaining habitat is critical to ensure the survival of the frog.

Published in ZooKeys.

The chocolate frog

Since we’re on the subject of frogs, how about one that almost looks like it’s not real?

Instantly gaining popularity as Chocolate Frog, Synapturanus danta is a curious little frog that was recently discovered in the Peruvian Amazon. Local people had long known about this tiny, burrowing frog with a long snout; one local name for it is rana danta, “tapir frog”, for its resemblance to the large-nosed Amazonian mammal.

“These frogs are really hard to find, and that leads to them being understudied,” says Michelle Thompson, a researcher in the Keller Science Action Center at Chicago’s Field Museum and one of the authors of the study describing the frog. “It’s an example of the Amazon’s hidden diversity, and it’s important to document it to understand how important the ecosystem functions.”

While the frogs are hard to see, they’re not hard to hear. “We just kept hearing this beep-beep-beep coming from underground, and we suspected it could be a new species of burrowing frog,” says Thompson. “But how do we get to it?”

Local guides who were familiar with the frogs led the researchers to peatland areas– wetlands carpeted with nutrient-rich turf made of decaying plant matter. “After 15 to 20 minutes of digging and looking for them, I heard Michelle screaming, and to me that could only mean that she and David had found the first adult,” says Germán Chávez, a researcher at Peru’s Instituto Peruano de Herpetología and the study’s first author.

The researchers used the physical specimens of the frogs, along with the recordings of their calls and an analysis of the frogs’ DNA, to confirm that they were a new species. They named them Synapturanus danta – Synapturanus is the name of the genus they belong to, and danta is the local word for “tapir.”

Published in Evolutionary Systematics.

The fabulous flaming-red snake

This magnificent non-venomous snake, previously unknown to science, was discovered in Paraguay. It belongs to the genus Phalotris, a group of snakes from central South America noted for their striking coloration with red, black, and yellow patterns.

Jean-Paul Brouard, one of the involved researchers, came across an individual of the new species by chance while digging a hole at Rancho Laguna Blanca in 2014. Together with his colleagues Paul Smith and Pier Cacciali, he described the discovery, naming the new snake Phalotris shawnella.

The species name recognizes two children – Shawn Ariel Smith Fernández and Ella Bethany Atkinson – who were born in the same year as the Fundación Para La Tierra (2008). They inspired the founders of the NGO to work for the conservation of Paraguayan wildlife, in the hope that their children can inherit a better world.

This new Phalotris snake is particularly attractive and can be distinguished from other related species in its genus by its red head in combination with a yellow collar, a black lateral band and orange ventral scales with irregular black spots.

Only known from three individuals, this species is endemic to the Cerrado forests of the department of San Pedro in east Paraguay. Its extreme rarity led the authors to consider it as “Endangered”, according to the conservation categories of the International Union for Conservation of Nature (IUCN), which means it is in imminent danger of extinction in the absence of measures for its protection.

Published in Zoosystematics and Evolution.

Striking new snake species discovered in Paraguay

Only known from three individuals, Phalotris shawnella is endemic to the Cerrado forests of the department of San Pedro in east Paraguay.

Distribution map.

A beautiful non-venomous snake, previously unknown to science, was discovered in Paraguay and described by researchers of the Paraguayan NGO Para La Tierra with the collaboration of Guyra Paraguay and the Instituto de Investigación Biológica del Paraguay. It belongs to the genus Phalotris, which features 15 semi-subterranean species distributed in central South America. This group of snakes is noted for its striking colouration with red, black, and yellow patterns.

Jean-Paul Brouard, one of the involved researchers, came across an individual of the new species by chance while digging a hole at Rancho Laguna Blanca in 2014. Together with his colleagues Paul Smith and Pier Cacciali, he described the discovery in the open-access scientific journal Zoosystematics and Evolution. The authors named it Phalotris shawnella, in honour of two children – Shawn Ariel Smith Fernández and Ella Bethany Atkinson – who were born in the same year as the Fundación Para La Tierra (2008). They inspired the founders of the NGO to work for the conservation of Paraguayan wildlife, in the hope that their children can inherit a better world.

Phalotris shawnella. Photo by Jean-Paul Brouard

The new Phalotris snake is particularly attractive and can be distinguished from other related species in its genus by its red head in combination with a yellow collar, a black lateral band and orange ventral scales with irregular black spots. Only known from three individuals, it is endemic to the Cerrado forests of the department of San Pedro in east Paraguay. Its known distribution consists of two spots with sandy soils in that department – Colonia Volendam and Laguna Blanca – which are 90 km apart. 

Phalotris shawnella. Photo by Jean-Paul Brouard

The extreme rarity of this species led the authors to consider it as “Endangered”, according to the conservation categories of the International Union for Conservation of Nature (IUCN), which means it is in imminent danger of extinction in the absence of measures for its protection.

Phalotris shawnella. Photo by Jean-Paul Brouard

This species can only be found in the famous tourist destination of Laguna Blanca, an area declared as an Important Area for the Conservation of Amphibians and Reptiles. 

Phalotris shawnella. Photo by Jean-Paul Brouard

“This demonstrates once again the need to protect the natural environment in this region of Paraguay,” the authors comment. “Laguna Blanca was designated as a Nature Reserve for a period of 5 years, but currently has no protection at all. The preservation of this site should be considered a national priority for conservation.”

Research article:

Smith P, Brouard J-P, Cacciali P (2022) A new species of Phalotris (Serpentes, Colubridae, Elapomorphini) from Paraguay. Zoosystematics and Evolution 98(1): 77-85. https://doi.org/10.3897/zse.98.61064

Guest blog post: New tardigrade species honours Eurovision Song Contest winner

guest blog post by Matteo Vecchi

One of the main threats to biodiversity conservation is not recognizing the uniqueness of species – without a formal name, a species cannot be protected properly. Tardigrades – microorganisms also known as water bears or moss piglets – are no exception. When we were faced with two new species, we took the chance to describe them and add a small piece of information to the biodiversity of those tiny animals.

Thanks to the generosity of my research group principal investigator (Sara Calhim) and the second author’s (Daniel Stec) academic supervisor (Lukasz Michalczyk), who made available to us their spaces and instrumentations, we were able to give a formal name and description to two marvelous tardigrade species.

Macrobiotus annewintersae (top) and the eggs of M. Annewintersae (left) and M. Rybaki (right) Photos by Matteo Vecchi, Daniel Stec

When describing species, researchers have almost complete freedom to express their creativity or gratitude in bestowing them with names. We decided to honour two people: Dr. Anne Winters, who collected the sample where one of the new species – Macrobiotus annewintersae, was found, and the singer Alexander Rybak  with Macrobiotus rybaki.

While routinely examining samples for tardigrades, we stumbled upon tardigrade eggs that didn’t look like any described species. Macrobiotus annewintersae eggs have many conic projections on their surface (called processes) that are topped by about 6 small and stubby tentacles, whereas the processes of Macrobiotus rybaki look like spikes topped with a very tiny dish.

The choice to dedicate the new species to Alexander Rybak is the fruit of our (mine and Daniel’s) passion for the Eurovision Song Contest. We are both fans of this very popular, diverse and cheerful song contest, and we wanted to honour it with a reference to one of its most iconic winners. Rybak’s song Fairytale, which won the 2009 edition, is immediately recognized by any Eurovision Song Contest enthusiast. Our research article, where we describe the two newly found tardigrades,was published in the open-access journal Zoosystematics and Evolution on 19 May, right in the middle of the semi-finals for this year’s Eurovision Song Contest.

This is not the first instance that a tardigrade species is named after a singer. One species, Barbaria madonnae, was named in 2006 after the singer and performer Madonna.

We hope that naming tardigrade species after popular singers and artists will help popularize them and bring the broad public attention to their conservation.

Original source:

Vecchi M, Stec D (2021) Integrative descriptions of two new Macrobiotus species (Tardigrada, Eutardigrada, Macrobiotidae) from Mississippi (USA) and Crete (Greece). Zoosystematics and Evolution 97(1): 281-306. https://doi.org/10.3897/zse.97.65280

Editor’s note: The image of Alexander Rybak posted here is credited to NRK P3 under a CC BY-NC-SA 2.0 licence.

What can we learn from vanishing wildlife species: the case of the Pyrenean Ibex

The sad history of the Pyrenean Ibex (Capra pyrenaica pyrenaica) is a powerful example of species loss due to causes related to human activity. DNA analyses of Pyrenean Ibex found evidence that, after a demographic expansion about 20,000 years ago, its population went through a bottleneck caused by hunting, inbreeding and other factors, which ultimately caused its extinction. Their research is published in the open-access, peer-reviewed journal Zoosystematics and Evolution.

Only the French mountaineer and photographer Bernhard Clos managed to take a series of good photos of the Bucardo, as the Pyrenean Ibex is called on the Spanish side. Photo: Bernhard Clos

Likely the first extinction event of the 2000s in Europe, the sad history of the Pyrenean Ibex (Capra pyrenaica pyrenaica) is a powerful example of the ever-increasing species loss worldwide due to causes related to human activity. It can, however, give us valuable information on what should be done (or avoided) to halt this extinction vortex.

The distribution of this subspecies of Iberian Ibex was limited to the French and Spanish Pyrenees. Its first mention in an official written document, dating back to 1767, already refers to it as extremely rare. Like many other mountain goats, it was almost hunted to extinction before its killing became prohibited in 1913. Neither the institution of a national park (Ordesa & Monte Perdido), nor a conservation project with European LIFE program funding could stop the extinction of the Pyrenean Ibex eventually officialised on January 6, 2000. But the story of this charismatic animal did not end there – a controversial cloning program was started instantly with no scientific agreement, nor support from regional environmental NGOs, claiming that de-extinction was possible even in the absence of further DNA studies.

Laña, the last surviving Pyrenean Ibex, returned as a mounted animal to Torla-Ordesa on the 6th November 2012 after its controversial cloning attempt. Her skin is now exhibited in the visitors centre of Ordesa & Monte Perdido National Park. Photo: Manolo Grasa

To find out more about the drivers of its extinction, an international team composed of 7 nationalities built a database of all known museum specimens and reconstructed the demographic history of the Pyrenean Ibex based on DNA evidence. Their research is published in the open-access, peer-reviewed journal Zoosystematics and Evolution.

The research found that after a population expansion between 14,000 and 29,000 years ago (which is quite recent from a genetic point of view), a significant loss of genetic diversity followed between approximately 15,000 and 7,500 years BP, and continued until present. By that time, the Pyrenean Ibex also lived outside the Pyrenean mountain chain, but, gradually, its distribution was reduced to only one valley in the Ordesa National Park in the Spanish Pyrenees.

The adventures of the British hunter E.N. Buxton were published in 1893. This engraving represents a hunting party in the Ordesa Valley (Spanish Pyrenees).

Written sources confirm hunting of the Pyrenean Ibex from as early as the 14th century, and during the 19th and 20th century it became a common target for trophy hunters. Undoubtedly, hunting played an important role in reducing its population numbers and distribution area, but it is not possible – with the information currently available – to pinpoint it as the straw that broke the camel’s back. Infectious diseases that originate from livestock (for instance, those caused by the bluetongue virus, BTV, and sarcopses) are capable of decimating other subspecies of Iberian Ibex in extremely short periods of time.

While the relative contribution of various factors remains largely unknown, it seems that hunting and diseases transmitted from other animals have been effective in drastically reducing the number of Pyrenean ibexes over the last two centuries, because they were acting on an already genetically weakened population. This low genetic diversity, combined with inbreeding depression and reduced fertility, brought the population beyond the minimum viable size – from that point onwards, extinction was inevitable.

This case study shows the importance of historical biological collections for genetic analyses of extinct species. A privately owned 140-year-old trophy preserved in Pau, France, was genotyped as part of this research, showing that private individuals may possess material of high value. As there is little knowledge of such resources, the authors call for the creation of an online public database of private collections hosting biological material for the benefit of biodiversity studies. 

***


Original source:
Forcina G, Woutersen K, Sánchez-Ramírez S, Angelone S, Crampe JP, Pérez JM, Fandos P, Granados JE, Jowers MJ (2021) Demography reveals populational expansion of a recently extinct Iberian ungulate. Zoosystematics and Evolution 97(1): 211-221. https://doi.org/10.3897/zse.97.61854

Highlands of diversity: Another new chameleon from the Bale region, Ethiopia

The Bale Mountains in south-central Ethiopia are considered to be one of the most unique centers of endemism, with an extraordinary number of plants and animals that can only be found there. Numerous species are already known from this Afromontane high-elevation plateau, making it a biodiversity hotspot, but ongoing research continues to reveal the presence of so far unknown and undescribed organisms. 

The new chameleon species, Trioceros wolfgangboehmei
Credit: Koppetsch et al.

Zoologists Thore Koppetsch and Benjamin Wipfler of the Research Museum Alexander Koenig in Bonn, Germany, and Petr Nečas from the Czech Republic, describe one such species: a new small-sized chameleon living on the edge of the forest. Their findings were published in the open-access, peer-reviewed life science journal Zoosystematics and Evolution

There were already two species of the chameleon genus Trioceros known to be restricted to the Bale region when Thore Koppetsch and his colleagues discovered another unique representative of this group from the northern slopes of the Bale Mountains. Interestingly, this new chameleon is considered to be part of a species complex of the wide-spread Ethiopian Chameleon Trioceros affinis. Previous studies have indicated divergence between its different populations across the Ethiopian Highlands – with some of them separated by the northern extension of the Great Rift Valley, which also shaped the evolution of early humans. 

Living individual of Trioceros wolfgangboehmei
Credit: Koppetsch et al.

The new chameleon, Trioceros wolfgangboehmei, has a special name. It honours the scientific work of Wolfgang Böhme, senior herpetologist at the Zoological Research Museum Alexander Koenig in Bonn, and his passion for chameleons and other reptiles.

Apart from its biogeographical patterns, the new species also has a characteristic appearance, displaying enlarged spiny scales on its back and tail that form a prominent crest. It usually lives on small trees and bushes at an altitude of above 2,500 m above sea level.

Head detail of the new chameleon, Trioceros wolfgangboehmei
Credit: Koppetsch et al.

“Given the variation in colour patterns and morphology between different populations of these chameleons in Ethiopia, it is likely that these groups still bear a higher hidden diversity than expected, which might be revealed by further ongoing investigations.”

Thore Koppetsch

Furthermore, the research team urges for sustainable preservation and conservation of its habitat to mitigate the impact of human activity.

***

Original source:

Koppetsch T, Nečas P, Wipfler B (2021) A new chameleon of the Trioceros affinis species complex (Squamata, Chamaeleonidae) from Ethiopia. Zoosystematics and Evolution 97 (1): 161–179. https://doi.org/10.3897/zse.97.57297 

Agents of food-borne zoonoses confirmed to parasitise newly-recorded in Thailand snails

Parasitic flatworms known as agents of food-borne zoonoses were confirmed to use several species of thiarid snails, commonly found in freshwater and brackish environments in southeast Asia, as their first intermediate host. These parasites can cause severe ocular infections in humans who consume raw or improperly cooked fish that have fed on infected snails.

Parasitic flatworms known as agents of food-borne zoonoses were confirmed to use several species of thiarid snails, commonly found in freshwater and brackish environments in southeast Asia, as their first intermediate host. These parasites can cause severe ocular infections in humans who consume raw or improperly cooked fish that have fed on infected snails. The study, conducted in South Thailand by Thai and German researchers and led by Kitja Apiraksena, Silpakorn University, is published in the peer-reviewed open-access journal Zoosystematics and Evolution.

“Trematode infections are major public health problems affecting humans in southeast Asia. Trematode infections depend not only on the habit of people, but also on the presence of first and second intermediate host species, resulting in the endemic spread of parasites, such as intestinal and liver flukes in Thailand”.

explain the scientists.

The snails of concern belong to the genus Stenomelania, have elongated and pointed shells and can be found near and in the brackish water environment of estuaries in the Oriental Region, from India to the Western Pacific islands. Worryingly enough, science does not know much else about these snails to date. Further, these species are hard to distinguish from related trumpet snails, because of the similarities in their shell morphology.

In order to provide some basic knowledge about the parasitic worms in Thailand and neighbouring countries, the research team collected a total of 1,551 Stenomelania snails, identified as four species, from streams and rivers near the coastline of the south of Thailand in Krabi, Trang and Satun Provinces. Of them, ten were infected with trematodes. The parasites were found at seven of the studied localities and belonged to three different species. In Krabi Province, the researchers observed all three species.

Speculating on their presence, the scientists suspect that it could be related to the circulation of sea currents, as the flow of water along the Andaman coast is affected by the monsoon season.

In conclusion, the researchers note that it is a matter of public health that further research looks into the biodiversity and biology of these snails, in order to improve our knowledge about the susceptibility of Stenomelania snails to food-borne zoonotic.

“This finding indicated that the resulting parasitic diseases are still largely neglected in tropical medicine, so further studies should be performed on the prevalence of various trematode-borne diseases in locations with snail occurrences in Thailand,”

they say.

Research article:

Apiraksena K, Namchote S, Komsuwan J, Dechraksa W, Tharapoom K, Veeravechsukij N, Glaubrecht M, Krailas D (2020) Survey of Stenomelania Fisher, 1885 (Cerithioidea, Thiaridae): The potential of trematode infections in a newly-recorded snail genus at the coast of Andaman Sea, South Thailand. Zoosystematics and Evolution 96(2): 807-819. https://doi.org/10.3897/zse.96.59448

Notice me! Neglected for over a century, Black sea spider crab re-described

After the revision of available type specimens from all available collections in the Russian museums and the Senckenberg Museum in Frankfurt-on-Main, as well as newly collected material in the Black Sea and the North-East Atlantic, a research team of scientists, led by Dr Vassily Spiridonov from Shirshov Institute of Oceanology of Russian Academy of Sciences, re-described Macropodia czernjawskii and provided the new data on its records and updated its ecological characteristics.

Even though recognised in the Mediterranean Sea, the Macropodia czernjawskii spider crab was ignored by scientists (even by its namesake Vladimir Czernyavsky) in the regional faunal accounts of the Black Sea for more than a century. At the same time, although other species of the genus have been listed as Black sea fauna, those listings are mostly wrong and occurred either due to historical circumstances or misidentifications.Now, scientists re-describe this, most likely, only species of the genus occurring in the Black Sea in the open-access journal Zoosystematics and Evolution.

The studied spirder crab species Macropodia czernjawskii in the wild, Tuaphat (near Gelendzhik), Caucasus, Black Sea.
Photo by Sergey Anosov

The spider crab genus Macropodia was discovered in 1814 and currently includes 18 species, mostly occurring in the Atlantic and the Mediterranean. The marine fauna of the Black Sea is predominantly of Mediterranean origin and Macropodia czernjawskii was firstly discovered in the Black Sea in 1880, but afterwards, its presence there was largely ignored by the scientists.

After the revision of available type specimens from all available collections in the Russian museums and the Senckenberg Museum in Frankfurt-on-Main, as well as newly collected material in the Black Sea and the North-East Atlantic, a research team of scientists, led by Dr Vassily Spiridonov from Shirshov Institute of Oceanology of Russian Academy of Sciences, re-described Macropodia czernjawskii and provided the new data on its records and updated its ecological characteristics.

“The analysis of the molecular genetic barcode (COI) of the available material of Macropodia species indicated that M. czernjawskii is a very distinct species while M. parva should be synonimised with M. rostrata, and M. longipes is a synonym of M. tenuirostris”,

states Dr Spiridonov sharing the details of the genus analysis.

All Macropodia species have epibiosis and M. czernjawskii is no exception: almost all examined crabs in 2008-2018 collections had significant epibiosis. It normally consists of algae and cyanobacteria and, particularly, a non-indigenous species of red alga Bonnemaisonia hamifera, officially reported in 2015 at the Caucasian coast of the Black Sea, was found in the epibiosis of M. czernjawskii four years earlier.

“It improves our understanding of its invasion history. Museum and monitoring collections of species with abundant epibiosis (in particular inachid crabs) can be used as an additional tool to record and monitor introduction and establishments of sessile non-indigenous species,”

suggests Dr Spiridonov.
The spider crab species Macropodia czernjawskii in the wild, Tuaphat (near Gelendzhik), Caucasus, Black Sea.
Photo by Sergey Anosov

***

Original source:

Spiridonov VA, Simakova UV, Anosov SE, Zalota AK, Timofeev VA (2020) Review of Macropodia in the Black Sea supported by molecular barcoding data; with the redescription of the type material, observations on ecology and epibiosis of Macropodia czernjawskii (Brandt, 1880) and notes on other Atlanto-Mediterranean species of Macropodia Leach, 1814 (Crustacea, Decapoda, Inachidae). Zoosystematics and Evolution 96(2): 609-635. https://doi.org/10.3897/zse.96.48342

Shining like a diamond: a new species of diamond frog from northern Madagascar

Despite the active ongoing taxonomic progress on the Madagascar frogs, the amphibian inventory of this hyper-diverse island is still very far from being complete. More new species are constantly being discovered, often within already well-studied areas. So, in one of the relatively well-studied parks in northern Madagascar, a new species of diamond frog, Rhombophryne ellae, was found in 2017. Now, the discovery is published in the open-access journal Zoosystematics and Evolution.

Despite the active ongoing taxonomic progress on Madagascar’s frogs, the amphibian inventory of this hyper-diverse island is still very far from being complete. The known diversity of the diamond frog genus Rhombophryne in Madagascar has increased significantly (more than doubled!) over the last 10 years, but still there are several undescribed candidate species awaiting description. New species are constantly being discovered in Madagascar, often even within already well-studied areas. One such place is the Montagne d’Ambre National Park in northern Madagascar.

Montagne d’Ambre National Park is widely known for its endemic flora and fauna, waterfalls and crater lakes, and considered to be a relatively well-studied area. Yet, only two studies have been published so far on the reptiles and amphibians of the Park.

Rhombophryne ellae was captured just as Cyclone Ava began to make itself felt across Madagascar with high winds and heavy rain. The camp where Dr. Scherz and his team were based became flooded, with rivers running through the kitchen and sleeping area. Miserable weather for humans, but a time of increased activity for some of the more elusive amphibians of the forest.
Credit: Mark D. Scherz
License: CC-BY 4.0

Serving the pursuit of knowledge of the herpetofauna in the region, Germany-based herpetologist Dr. Mark D. Scherz (Bavarian State Collection of Zoology, Technical University of Braunschweig, University of Konstanz) published a description of a new diamond frog species: Rhombophryne ellae, in the open-access journal Zoosystematics and Evolution.

Rhomobphryne ellae
Credit: Mark D. Scherz
License: CC-BY 4.0

“As soon as I saw this frog, I knew it was a new species. The orange flash-markings on the legs and the large black spots on the hip made it immediately obvious to me. During my Master’s and PhD research, I studied this genus and described several species, and there are no described species with such orange legs, and only few species have these black markings on the hip. It’s rare that we find a frog and are immediately able to recognise that it is a new species without having to wait for the DNA sequence results to come back, so this was elating”,

shares Dr. Scherz.

The new species is most closely related to a poorly-known and still undescribed species from Tsaratanana in northern Madagascar, but is otherwise quite different from all other diamond frogs. With the orange colouration on its legs, Rhombophryne ellae joins the growing list of frogs that have red to orange flash-markings. The function of this striking colouration remains unknown, despite having evolved repeatedly in frogs, including numerous times in Madagascar’s narrow-mouthed frogs alone.

The new species, Rhombophryne ellae, is well camouflaged among the rainforest leaflitter
Credit: Mark D. Scherz
License: CC-BY 4.0

“The discovery of such a distinctive species within a comparatively well-studied park points towards the gaps in our knowledge of the amphibians of the tropics. It also highlights the role that bad weather, especially cyclones, can play in bringing otherwise hidden frogs out of hiding—Rhombophryne ellae was caught just as Cyclone Ava was moving in on Madagascar, and several other species my colleagues and I have recently described were also caught under similar cyclonic conditions”,

says Dr. Scherz.
Rhombophryne ellae is a small, probably semi-fossorial (sub-terranean-dwelling) species of diamond frog, at home amongst the leaf litter of Montagne d’Ambre National Park, north Madagascar
Credit: Mark D. Scherz
License: CC-BY 4.0

The species is known so far only from a single specimen, making it difficult to estimate its conservation status. Yet, based on the status of other, related frogs from the same area, it will probably be Red-listed as Near Threatened due to its presumably small range and micro-endemicity.

Original source:

Scherz MD (2020) Diamond frogs forever: a new species of Rhombophryne Boettger, 1880 (Microhylidae, Cophylinae) from Montagne d’Ambre National Park, northern Madagascar. Zoosystematics and Evolution 96(2): 313-323. https://doi.org/10.3897/zse.96.51372


A new character for Pokémon? Novel endemic dogfish shark species discovered from Japan

A new endemic deep-water dogfish shark: Squalus shiraii, was discovered in the tropical waters of Southern Japan by an international team of scientists led by Dr. Sarah Viana from South African Institute for Aquatic Biodiversity. The finding brings the amount of spurdogs shark species inhabiting Japanese waters to six. The discovery is published in the open-access journal Zoosystematics and Evolution.

Newly discovered creatures can often be as impressive and exciting as the ones from the Japanese movies and shows. Many of those fictional characters, including inhabitants of the famous Pokémon universe, might have their analogues among the real animals native to Japan. Maybe, a new species of the dogfish shark published in the open-access journal Zoosystematics and Evolution is also “a real Pokémon” to be?

A new deep-water dogfish shark: Squalus shiraii, was discovered in the tropical waters of Southern Japan by an international team of scientists, led by Dr. Sarah Viana from South African Institute for Aquatic Biodiversity


 Map of the North-western Pacific Ocean, showing the geographical distribution of Squalus shiraii
Credit: Sarah Viana
License: CC-BY 4.0

The new shark has the body length of 59-77 cm and some unique characteristics such as tall first dorsal fin and caudal fin with broad white margins. Currently, the species is known exclusively as a Japanese endemic, occurring in the tropical shallow waters of Southern Japan in the North-western Pacific.


Squalus shiraii lateral view
Credit: Sarah Viana
License: CC-BY 4.0

Spurdogs represent commercially important for the world fish trade taxa. They are caught for a range of purposes: consumption of meat, fins and liver oil. Despite their high occurrence, the accurate identification data of species is scarce, population threats and trends remain unknown.

Japan currently represents one of the world’s leading shark fish trade countries, though, during the last decades the amount of shark catches is decreasing and over 78 elasmobranch species traded in Japanese shark fin markets are now evaluated as threatened.

The new species Squalus shiraii previously used to be massively misidentified with shortspine spurdog, due to the resembling shape of body, fins and snout length. However, there are some differences, defining the specificity of the new species.

Squalus shiraii has body brown in colour, postventral and preventral caudal margins whitish, dorsal and ventral caudal tips broadly white and black upper caudal blotch evident in adults. S. mitsukurii has body conspicuously black to dark grey and caudal fins black throughout with post-ventral caudal margin fairly whitish and black upper caudal blotch not evident in adults”, shares lead author Dr. Viana.

Scientists propose the name for the newly described species as Shirai’s spurdog in honour to Dr. Shigeru Shirai, the former Japanese expert of the group.

Original source:
Viana STFL, Carvalho MR (2020) Squalus shiraii sp. nov. (Squaliformes, Squalidae), a new species of dogfish shark from Japan with regional nominal species revisited. Zoosystematics and Evolution 96(2): 275-311. https://doi.org/10.3897/zse.96.51962

Contact:
Dr. Sarah Viana
Email: stviana@gmail.com