More and more emerging diseases threaten trees around the world

A new study published in NeoBiota reveals a troubling trend: the rapid emergence of new diseases, doubling approximately every 11 years, and affecting a wide range of tree species worldwide.

Diseases are among the major causes of tree mortality in both forests and urban areas. New diseases are continually being introduced, and pathogens are continually jumping to new hosts, threatening more and more tree species. When exposed to novel hosts, emerging diseases can cause mortality previously unseen in the native range.

Tar spot on maple in Frostburg, MD, USA. Photo by Andrew V. Gougherty

Although not all diseases will outright kill their hosts, some can dramatically affect host populations. In the 20th century, chestnut blight, perhaps the most well-known tree disease in North America, effectively eliminated chestnut as an overstory tree in its native range in the Appalachian Mountains. More recently, we’ve seen sudden oak death in California, ash dieback in Europe, and butternut canker in the eastern US, each having the potential to eliminate host tree populations and alter the ecosystems where they occur.

“The continued emergence and accumulation of new diseases increases the likelihood of a particularly detrimental one emerging, and harming host tree populations,” says Dr Andrew Gougherty, research landscape ecologist at the USDA Forest Service. Recently, he has been exploring where tree diseases have accumulated fastest, and which trees are most impacted by new diseases. This information could help researchers and land managers better predict where new diseases may be most likely to emerge.

Powdery mildew on maple in Vancouver, BC, CAN. Photo by Andrew V. Gougherty

The study, recently published in the open-access journal NeoBiota, analyzes over 900 new disease reports on 284 tree species in 88 countries and quantified how emerging infectious diseases have accumulated geographically and on different hosts. “The ‘big data’ approach used in this study helps to characterise the growing threat posed by emergent infectious diseases and how this threat is unequally distributed regionally and by host species,” the author writes.

Dr Gougherty found that globally, the number of emerged diseases has accumulated rapidly over the past two decades. “The accumulation is apparent both where tree species are native and where they are not native, and the number of new disease emergences globally were found to double every ~11 years,” he explains. Among the trees he assessed, pines accumulated the most new diseases, followed by oaks and eucalypts. This, he explains, is likely due to their wide native distribution in the Northern Hemisphere, and the planting of pine forests throughout the globe. Europe, in aggregate, had the greatest total accumulation of new diseases, but North America and Asia were close behind.

Powdery mildew on maple in Vancouver, BC, CAN. Photo by Andrew V. Gougherty

In addition, he found more emerging tree diseases in areas where tree species were native versus non-native, with the exception of Latin America and the Caribbean, likely because most of the trees he assessed were not native to this region.

“Unfortunately, there is little evidence of saturation in emergent tree disease accumulation. Global trends show little sign of slowing, suggesting the impact of newly emerged diseases is likely to continue to compound and threaten tree populations globally and into the future,” warns Dr Gougherty. “Climate change is likely also playing a role, both by creating more favourable conditions for pathogens and by stressing host plants.”

Research article:

Gougherty AV (2023) Emerging tree diseases are accumulating rapidly in the native and non-native ranges of Holarctic trees. NeoBiota 87: 143-160. https://doi.org/10.3897/neobiota.87.103525

Follow NeoBiota on Facebook and X.

A race against pine: Wood-boring wasp in North America threatened by a Eurasian invader

Invasive species have diverse impacts in different locations, including biodiversity loss, as a result of native species being outcompeted for similar resources. A U.S. research team, led by Dr. Ann Hajek, Cornell University, studied the case of an aggressive Eurasian woodwasp that has recently established in North America and poses a threat to a native species. Their study is published in the open-access journal NeoBiota.

Most woodwasps play an essential part in the forest ecosystem, as they decompose wood, preferring dying or felled trees. They do so by laying their eggs in the wood underneath the tree bark. Curiously, the wasps also deposit a symbiotic fungus and venom that shuts down the tree’s defenses. As the tree weakens, the fungal infestation begins and the the tree starts to rot. When the eggs hatch, the larvae feed on the rotten wood before they emerge. This relationship is called obligate since the survival of the wasp is impossible without the fungal infestation.

IMG_2322Originating from Eurasia, the presence of the invasive species is dangerous because it can kill healthier pines. It has long been established in the southern hemisphere causing economic issues due to its attacks on pines. While pines have been introduced to that part of the world, they are native to North America, where the invasive wasp could be far more devastating.

Now that the invasive woodwasp has already been identified in the States, the scientists seek to find a way to protect its frail competitor, reporting a rapid decline in the North American species.

“We would often observe both species emerging from the same infested pine trees, but the ratios changed with time,” explains Dr. Ann Hajek.

“Shortly after the invasive colonizes an area, the native wasps emerging from the trees would equal the invasive. However, a few years later, the natives started to get fewer and fewer.”

It turned out that the Eurasian woodwasp has larger venom glands and produces more eggs, thanks to its greater body size. Furthermore, it emerges earlier than the North American species, so that it can find and colonize the most suitable trees first. By the time the native species lays its eggs, the authors speculate, most of the preferred trees are already occupied by the invasive, leaving a reduced supply of habitat for the newcomer’s larvae.

“Woodwasps are difficult to study and their biologies are generally poorly understood,” note the authors. “While the native species appears to be outcompeted from pines that both species prefer, it is possible that populations of the native can be sustained in trees less desirable to the invasive or unavailable during the time and place that the invasive is present.”

The scientists call for additional research on the native woodwasp in southeastern pine forests in USA, before the invaders spread to that area with extensive pine forests.

###

Original source:

Hajek AE, Henry JC, Standley CR, Foelker CJ (2017) Comparing functional traits and abundance of invasive versus native woodwasps. NeoBiota 36: 39-55. https://doi.org/10.3897/neobiota.36.14953