How did the stonefly cross the lake? The mystery of stoneflies recolonising a US island

Massive glaciers once covered an island in one of the Great Lakes, USA, leaving it largely devoid of life. Its subsequent recolonisation by insects triggered the curiosity of entomologist R. Edward DeWalt and graduate student Eric J. South of the Illinois Natural History Survey and Department of Entomology. Not only did they prove there were significantly fewer species, compared to the mainland, but also that smaller stonefly species appeared to be more capable of recolonizing the island. This study was published in the open-access journal ZooKeys .

Isle Royale is a large island and national park in the middle of Lake Superior, isolated from the mainland by 22 — 70 km distance. As recently as 8,000 — 10,000 years ago, glaciers completely covered the island making it almost uninhabitable.

Over the last 10 millennia mammals as large as moose and wolves, swam, floated, flew, or walked on ice bridges to the island. Therefore, it seemed logical that it was the larger size that allowed some species to cross the water. However, as far as stoneflies are concerned, the results turned out quite different.

“We sampled stoneflies (Plecoptera), mayflies (Ephemeroptera), and caddisflies (Trichoptera), because they are important water quality indicators. Our laboratory has expertise in the taxonomy and ecology of these important species and we know that national parks potentially provide us with wilderness quality conditions,” says DeWalt.

Being much better fliers, the mayflies and caddisflies did not show a particular relation between a species’ body size and their ability to recolonise the island. Conversely, stoneflies on the island were considerably smaller than their mainland counterparts.

“Stoneflies are clumsy fliers, especially the larger species. Large ones are not very aerodynamic and because of this they don’t have the energy reserves to cover the distance to the island. Few species of stoneflies can actually live in the lake, so most could not swim to the island,” explains DeWalt. “Mayflies and caddisflies, on the other hand, are known to be better fliers and tolerant of lake conditions, which would allow for more of the mainland species and similarly sized species to reach Isle Royale.

“Smaller stoneflies have probably used updrafts from the mainland and prevailing winds to get to the island,” the scientist suggests. “The wind just held them up until they reached the island.”

Future research is to use molecular techniques to identify the possible mainland origin for several species inhabiting Isle Royale National Park.

 

###

Original source:

DeWalt RE, South EJ (2015) Ephemeroptera, Plecoptera, and Trichoptera on Isle Royale National Park, USA, compared to mainland species pool and size distribution. ZooKeys 532: 137-158.doi: 10.3897/zookeys.532.6478

World’s tiniest snail record broken with a myriad of new species from Borneo

The world’s record for the smallest land snail is broken once again. A minute shell with an average diameter of 0.7 mm was found in Malaysian Borneo by a team of Dutch and Malaysian biologists along with another 47 new species of greatly varying sizes. Called ‘dwarf’ (“nanus” meaning “dwarf” in Latin), the new snail, Acmella nana, is first-shown to the world in the open-access journal ZooKeys, where the last record-holder was announced only about a month ago.

The world’s tiniest snail has a shell of merely 0.50 – 0.60 mm width and 0.60 – 0.79 mm height. The previous holder of the title of world’s smallest snail, the Chinese Angustopila dominikae, published earlier this year, measured just 0.80 and 0.89 mm respectively.

Some of the new 48 species described in the present paper are widespread in Borneo and had been familiar to the team of snail researchers for decades. Yet, they had not got round to naming them until now. Others eke out a hidden existence on mountain tops or in rare vegetation types and, therefore, were only recently discovered by the authors. For instance, there are seven new species that can only be found on the 4,095-metre-high Mount Kinabalu. Another example, called Diplommatina tylocheilos, only lives at the entrance of the hardly accessible Loloposon Cave in Mount Trusmadi.

The new information tells us more about isolated, or endemic, species such as the new record-holder. Moving so slowly, snails can easily get stuck in very small patches of a habitat. There they can spend long enough to evolve and adapt to the particular limited area, undisturbed by the rest of the world. This makes them excellent examples of how endemic species can arise.

On the other hand, their restricted distribution makes them key targets for biodiversity conservation. “A blazing forest fire at Loloposon Cave could wipe out the entire population ofDiplommatina tylocheilos,” says co-author Schilthuizen.

The discoveries are the latest result of an ongoing research project on the snail fauna of Borneo by the authors. For more than twenty-five years, Jaap Vermeulen, Thor-Seng Liew, and Menno Schilthuizen of Naturalis Biodiversity Center and Universiti Malaysia Sabah, have been documenting Malaysia’s wonderful terrestrial molluscs. Only last year, also in ZooKeys, the team published ten new Malaysian species of the “micro-jewel” snails of the genus Plectostoma.

###

Original source:

Vermeulen JJ, Liew TS, Schilthuizen M (2015) Additions to the knowledge of the land snails of Sabah (Malaysia, Borneo), including 48 new species. ZooKeys 531: 1-139. doi:10.3897/zookeys.531.6097

New gorgeous coffee tree species from Honduras is critically endangered

Amid the challenging terrain of north-western Honduras, where Dr. Kelly’s team faced rugged and steep forest areas cut across here and there by a few trails, a gorgeous tree with cherry-like fruits was discovered. Being about 10 metres (33 ft) high and covered with cream-colored flowers, it was quickly sorted into the Coffee family (Rubiaceae), but it was its further description that took much longer. Eventually, it was named Sommera cusucoana, with its specific name stemming from its so far only known locality, the Cusuco National Park. The study is available in the open-access journal PhytoKeys.

During a plant diversity study in the Cusuco National Park, conducted by Drs. Kelly, Dietzch and co-workers as a part of a broader survey by Operation Wallacea, an international organisation dealing with biodiversity and conservation management research programmes.

A couple of curious findings in the past decade provide a strong incentive to further work. The place turns out to be not only of high biodiversity, but to also contain rare and hitherto unknown plant and animal species.

For instance, the tree Hondurodendron (from Greek, ‘Honduras Tree’) and the herbaceous plant Calathea carolineae are another two endemic species discovered as a result of the Operation Wallacea survey.

In 2013, two individuals of another unknown, 10-metre high (33 ft) tree with cream-colored flowers and red, cherry-like fruits were found by Daniel Kelly and Anke Dietzsch from Trinity College, University of Dublin, Ireland. The two were aided by local guide Wilmer Lopez.

The multinational collaboration did not stop then and there. Although the scientists quickly figured that the tree belonged to the Coffee family, they needed some additional help to further identify their discovery. Thus, they were joined by two leading specialist in this plant group, first Charlotte Taylor from Missouri Botanical Garden and then David Lorence from the National Tropical Botanical Garden in Hawaii.

It was actually David who was the first to recognise the unknown tree as a member of theSommera genus, a group of nine known species of trees and shrubs. Later, the team decided to name the new plant Sommera cusucoana to celebrate its singular locality, the Cusuco National Park.

“Sadly, there has been extensive logging in the vicinity in recent years, and we fear for the future of our new species,” the authors stressed. “According to the criteria of the International Union for the Conservation of Nature (IUCN), it must be regarded as Critically Endangered.”

“We hope that the publication of this and other discoveries will help to galvanize support for the conservation of this unique and beautiful park and its denizens,” they concluded.

###

Original Source:

Lorence DH, Dietzsch AC, Kelly DL (2015) Sommera cusucoana, a new species of Rubiaceaefrom Honduras. PhytoKeys 57: 1-9. doi: 10.3897/phytokeys.57.5339

A data paper at the click of a button: Streamlining metadata conversion into scholarly manuscripts for GBIF and DataONE data

At the time of the writing of this post, the Biodiversity Information Standards conference, TDWG 2015, is on in Kenya and everyone around the world can listen to the live audio stream. Data sharing, data re-use, and data discovery are being brought up in almost every talk. We might have entered the age of big data twenty years ago, but it is now that scientists face the real challenge – storing and searching through the deluge of data to find what they need.

As the rate at which we exponentially generate data exceeds the rate at which data storage technologies improve, the field of data management seems to be greatly challenged. Worse, this means the more new data is generated, the more of the older ones will be lost. In order to know what to keep and what to delete, we need to describe the data as much as possible, and judge the importance of datasets. This post is about a novel way to automatically generate scientific papers describing a dataset, which will be referred to as data papers.

The common characters of the records, i.e. descriptions of the object of study, the measurement apparatus and the statistical summaries used to quantify the records, the personal notes of the researcher, and so on are called metadata. Major web portals such as DataONE or the Global Biodiversity Information Facility store metadata in conjunction with a given dataset as one or more text files, usually structured in special formats enabling the parsing of the metadata by algorithms.

To make the metadata and the corresponding datasets discoverable and citable, the concept of the data paper was introduced in the early 2000’s by the Ecological Society of America. This concept was brought to the attention of the biodiversity community by Chavan and Penev (2011) with the introduction of a new data paper concept, based on a metadata standard, such as the Ecological Metadata Language, and derived from metadata content stored at large data platforms, in this case the Global Biodiversity Information Facility (GBIF). You can read this article for an in-depth discussion of the topic.

Pensoft’s Biodiversity Data Journal (BDJ) is to the best of our knowledge the first academic journal to have implemented a one-hundred-percent online authoring system for data papers, called ARPHA. Moreover, BDJ and the other Pensoft journals, such as ZooKeys, have already published more than seventy data papers. Therefore, in the remainder of this post we will explain how to use an automated approach to publish a data paper describing an online dataset in Biodiversity Data Journal. The ARPHA system will convert the metadata describing your dataset into a manuscript for you after reading in the metadata! We will illustrate the workflow on the previously mentioned DataONE and GBIF.

The Data Observation Network for Earth (DataONE) is a distributed cyberinfrastructure funded by the U.S. National Science Foundation. It links together over twenty five nodes, primarily in the U.S., hosting biodiversity and biodiversity-related data, and provides an interface to search for data in all of them.

Since butterflies are neat, let’s search for datasets about butterflies at DataONE! Type “Lepidoptera” in the search field and scroll down to the dataset describing “The Effects of Edge Proximity on Butterfly Biodiversity.” You should see something like this:

ONEMercury

As you can notice, this resource has two objects associated with it: metadata, which has been highlighted, and the dataset itself. Let’s download the metadata from the cloud! The resulting text file, “Blandy.235.1.xml”, or whatever you want to call it, can be read by humans, but is somewhat cryptic because of all the XML tags. Now, you can import this file into the ARPHA writing platform and the information stored in it would be used to create a data paper! Go to the ARPHA web-site, pwt.pensoft.net, and click on “Start a manuscript,” then scroll all the way down and click on “Import manuscript.”

ARPHA Import

Upload the “blandy” file and you will see an “Authors’ page,” where you can select which of the authors mentioned in the metadata must be included as authors of the data paper itself. Note that the user of ARPHA uploading the metadata is added to the list of the authors if they is not included in the metadata. After the selection is done, a scholarly article is created by the system with the information from the metadata already in respective sections of the article:

ARPHA Manuscript

Now, the authors can add some description, edit out errors, tell a story, cite someone – all of this without leaving ARPHA – i.e. do whatever it takes to produce a high-quality scholarly text. After they are done, they can submit their article for peer-review and it could be published in a matter of hours. Voila!

Let’s look at GBIF. Go to “Data -> Explore by country” and select “Saint Vincent and the Grenadines,” an English-speaking Caribbean island. There are, as of the time of writing of this post, 166 occurrence datasets containing data about the islands. Select the dataset from the Museum of Comparative Zoology at Harvard. If you scroll down, you will see the GBIF annotated EML. Download this as a separate text file (if you are in Chrome you can view the source and then use copy-paste). Do the exact same steps as before – go to “Import manuscript” in ARPHA and upload the EML file. The result should be something like this, ready to finalize:
ARPHA Manuscript 2

Now, allow us to give a disclaimer here: the authors of this blog post have nothing to do with the two datasets. They have not contributed to any of them, nor do they know the authors. The datasets have been chosen more or less randomly since the authors wanted to demonstrate the functionality with a real-world example. You should only publish data papers if you know the authors or you are the author of the dataset itself. During the actual review process of the paper, the authors that have been included will get an email from the journal!

Having said that, we want to leave you with some caveats and topics for further discussions. Till today, useful and descriptive metadata has not always been present. There are two challenges: metadata completeness and metadata standards. The invention of the EML standard was one of the first efforts to standardize how metadata should be stored in the field of ecology and biodiversity science. Currently, our import system supports the last two versions of the EML standard: 2.1.1 and 2.1.0, but we hope to expand this functionality. In an upcoming version of their search interface, DataONE will provide infographics on the prevalence of the metadata standards at their site (see figure), so there is still work to be done, but if there is a positive feedback from the community, we will definitely keep expanding this feature.

DataONE

Credit: DataONE

Regarding metadata completeness, our hope is that by enabling scientists to create scholarly papers from their metadata with a single-step process, they will be incentivized to produce high-quality metadata.
This project has received funding from the European Union’s  FP7 project EU BON (Building the European Biodiversity Observation Network), grant agreement No 308454, and Horizon 2020 research and innovation project BIG4 (Biosystematics, informatics and genomics of the big 4 insect groups: training tomorrow’s researchers and entrepreneurs) under the Marie Sklodovska-Curie grant agreement No. 542241 for a PhD project titled Technological Implications of the Open Biodiversity Knowledge Management System.

How small is the smallest? New record of the tiniest free-living insect provides precision

The long-lasting search and debate around the size and identity of the World’s smallest free-living insect seems to have now been ended with the precise measurement and second record of the featherwing beetle species.

Described back in 1999 based on only several specimens found in Nicaragua, as many as 85 individuals of the minute beetle species have recently been retrieved from Colombia and thoroughly examined. The smallest of them measured the astounding 0.325 mm. The finding made by Dr. Alexey Polilov, Lomonosov Moscow State University, Moscow, is available in the open access journal ZooKeys.

The World’s smallest beetle and tiniest non-parasitoid insect, called Scydosella musawasensis, is morphologically characterised by its elongated oval body, yellowish-brown colouration and antennae split into 10 segments. It is also the only representative of this featherwing beetle genus.

Not able to precisely measure its size because of the preserved specimens being embedded in preparations for microscopy studies, Dr. Polilov used new individuals, collected in Chicaque National Park, Colombia in early 2015. To conclude the length of the smallest one as 325 µm (0.325 mm) the scientist used a specialised software and digital micrographs.

The recent survey is the second record of the tiny beetle species, which also proved that the range of its distribution is actually much wider. Thereafter, so are the localities of the fungi that the insect feeds on.

###

Original source:

Polilov AA (2015) How small is the smallest? New record and remeasuring of Scydosella musawasensis Hall, 1999 (Coleoptera, Ptiliidae), the smallest known free-living insect. ZooKeys526: 61-64. doi: 10.3897/zookeys.526.6531 ZooBank: urn:lsid:zoobank.org:pub:E38CA5AE-0C65-45D0-9116-E74A1E889BDE

Novel cybercatalog of flower-loving flies suggests the digital future of taxonomy

Charting Earth’s biodiversity is the goal of taxonomy and to do so the scientists need to create an extensive citation network based on several hundred million pages of scientific literature. By providing a novel taxonomic ‘cybercatalog’ of southern African flower-loving (apiocerid) flies, Drs. Torsten Dikow and Donat Agosti demonstrate how the network of taxonomic knowledge can be made available through links provided to online data providers. Their work is available in the open-access Biodiversity Data Journal.

The present research showcases that the information cannot only be made available to the reader who follows the links, but also to machines that use the growing number of digital, online resources that are linked through persistent identifiers.

Primary data providers for taxonomic information such as species names (ZooBank), specimen images (Morphbank), species descriptions (Plazi), and digitized literature (BHL, Biodiversity Heritage Library; BioStor; and BLR, Biodiversity Literature Repository) play an important role in making data on species available in electronic form. Aggregators such as the Global Biodiversity Information Facility (GBIF) and the Encyclopedia of Life (EoL) gather this information automatically to distribute it even further to audiences beyond the reach of the life sciences.

In contrast to previous species catalogs, in cybercatalogs access to information is provided through links to open-access, online data repositories such as the ones listed above. Taxonomists and other users can now access this literature, species descriptions, and specimen records immediately without a search in a natural history library or collection. The cybercatalog takes advantage of a new publishing platform within the Biodiversity Data Journal that makes it easy to upload species information and links to data about these species through a CheckList template. Furthermore, the Biodiversity Data Journal now allows future updates and re-publications of the cybercatalog with the new unique persistent identifier (DOI, Digital Object Identifier) whenever a new species is described or other taxonomic changes take place.

The authors argue that cybercatalogs are indeed the future of taxonomic catalogs since the online data in them are easily accessible to anyone.

“It is a taxonomist’s dream to have online access to all previously published information on a species and through this step the discipline of taxonomy can (re-)position itself as a central resource within the life sciences and beyond to the public and society at large,” add the authors. “Online access will also help to narrow the gap between the South and the North as a fantastic example of unhindered access to our knowledge of the global biological diversity, which is increasingly under pressure from human populations.”

###

For the realization of this project Plazi and Pensoft were partially supported by the EC-FP7 EU BON project (ENV 30845) (Building the European Biodiversity Observation Network).

###

Original source:

Dikow T, Agosti D (2015) Utilizing online resources for taxonomy: a cybercatalog of Afrotropical apiocerid flies (Insecta: Diptera: Apioceridae). Biodiversity Data Journal 3: e5707. doi: 10.3897/BDJ.3.e5707

One new fly species, zero dead bodies: First insect description solely from photographs

The importance of collecting dead specimens or not when verifying a new species has been a hot ongoing discussion for quite a while now. Amid voiced opinions ranging from specimen collection being “no longer required” to relying on anything but physical evidence being defined as mere “malpractice,” science is now witnessing the first description of an insect species based solely on high-resolution photographs.

The unequivocally new bee fly species belongs to an extremely rare genus and was described by Drs. Stephen A. Marshall from the University of Guelph, Canada, and Neal Evenhuis from the Bishop Museum, Hawaii. Their research along with their commentary on the controversial topic are published in the open-access journal ZooKeys.

The authors in no way denounce dead specimen collection and dissection and even speak of it as the “gold standard” in new species description, they stress the fact that given the continued increased difficulty in obtaining permits to collect in many areas, and the resulting low probability of collecting and preserving specimens, there ought to be an alternative.

The newly described bee fly species, called Marleyimyia xylocopae, is a huge fly with a remarkable resemblance to a co-occurring carpenter bee. The new species might be a parasite of the bee, but not much is known about its behaviour. Therefore, the scientists stress that more observations are needed, something that will be encouraged by the availability of a name and an associated image.

Speaking of their own experience while studying their presently described new species, the scientists point out that relying on several high-resolution photographs has not only increased their knowledge of the biodiversity of the area and the genus, but has also provided some “interesting ecological and biological information”.

“As these image collections become curated just as dead specimens are curated today, the digital specimens will find their way into the work of practicing taxonomists, and they will need names,” the team explained. “It is unrealistic to think that distinct and diagnosable new taxa known only from good photographs and appropriate associated metadata should be organized and referred to only as “undescribed species” when they can and should be organized and named using the existing rules of nomenclature.”

###

Original source:

Marshall SA, Evenhuis NL (2015) New species without dead bodies: a case for photo-based descriptions, illustrated by a striking new species of Marleyimyia Hesse (Diptera, Bombyliidae) from South Africa. ZooKeys 525: 117-127. doi: 10.3897/zookeys.525.6143

Saucer-like shields protect 2 new ‘door head’ ant species from Africa and their nests

Shaped like saucers, or concave shields, and covered with camouflaging layers of debris, the heads of two “door head” ant species are found to differentiate them as new taxa. They use their peculiar features to block the entrances of their nests against intruders like other predatory ants and invertebrates.

Being only the second case of such highly specialized morphologies discovered in Africa, the new representatives of the genus Carebara have been retrieved from sifted leaf-litter collected in rainforests in Western Kenya and the Ivory Coast.

Because of difficulties usually met while studying and identifying ants through dry specimens retrieved from standardised, passive collection methods, the two new species have so far been taxonomically misplaced. The new discovery was made by an international research team, led by Dr. Georg Fischer and Prof. Evan Economo, Okinawa Institute of Science and Technology Graduate University, Japan. The findings are available in the open access journal ZooKeys.

The “door head” ant individuals are a special worker subcaste that stands out among the other ant colony’s workers, who are responsible for vital tasks such as foraging and brood care. Dr. Georg Fischer and his colleagues analysed the herein described species with next-generation DNA sequencing to show that all different subcastes belong to the same species, despite their highly differing morphologies.

To assure the safety of their nestmates, the queen and the larvae, the two new species have evolved the special worker subcaste with heads covered by a layer of debris such as soil or even organic material, so that they blend in with their surroundings. While the shape of their heads allows them to perfectly fit into the nest entrance, the special armor shields their vulnerable eyes, antennae and mouthparts, as well as highly reduces the chance of enemies intruding into the nest.

The new Carebara species have been given the names C. phragmotica and C. lilith. The former is derived from the term phragmosis, in relation to the special function of their head shape, while the latter comes from the name of a female demon in Jewish mythology.

###

 

Original source:

Fischer G, Azorsa F, Hita Garcia F, Mikheyev AS, Economo EP (2015) Two new phragmotic ant species from Africa: morphology and next-generation sequencing solve a caste association problem in the genus Carebara Westwood. ZooKeys 525: 77-105. doi: 10.3897/zookeys.525.6057

Night calls reveal two new rainforest arboreal frog species from western New Guinea

Tracked by their calls at night after heavy rains, two species of narrow-mouthed frogs have been recorded as new. During the examinations it turned out that one of the studied specimens is a hermaphrodite and another one represents the first record of the genus Cophixalus for the Misool Island.

The field work, conducted by Steve Richards, South Australian Museum, Adelaide, and his team, took place in the Raja Ampat Islands, Indonesian part of New Guinea. Their findings, compiled by Dr. Rainer Guenther, Museum fur Naturkunde, Berlin, are available in the open access journal Zoosystematics and Evolution.

Belonging to the narrow-mouthed frog genus Cophixalus that occurs mainly in New Guinea and northern Australia, the two new species have been differentiated by their morphological features along with the specificity of their advertisement calls, produced by males to attract their partners. Both are characterised by small and slender bodies, measuring less than 23 mm in length.

Curious enough, when dissected one of the male specimens, assigned to the new species C. salawatiensis, revealed a female reproductive system with well-developed eggs. Simultaneously, neither its sound-producing organs, nor its calls differed in any way from the rest of the observed males from the same species. Therefore, it is to be considered a hermaphrodite.

Both new frog species have been retrieved from logged lowland rainforests. There the scientists noted that after heavy rains at night the males perched on leaves of bushes and produced sounds, characteristic for each species.

All specimens have been placed in the collection of the Museum Zoologicum Bogoriense (MZB) in Cibinong (Bogor), Indonesia.

###

Original source:

Guenther R, Richards S, Tjaturadi B, Krey K (2015) Two new species of the genus Cophixalusfrom the Raja Ampat Islands west of New Guinea (Amphibia, Anura, Microhylidae).Zoosystematics and Evolution 91(2): 199-213.doi: 10.3897/zse.91.5411