Smithsonian Expedition Yields a New Species of Deep-Sea Coral

Collected from the deep waters off Puerto Rico, the species is a member of an enigmatic, and threatened, group of corals

When people think about corals, most picture the multi-hued reef-builders that reside in balmy waters off tropical beaches. But not all corals stick to the shallows. For example, most members of the order Antipatharia do not live within 160 feet of the surface. Some even reside at depths deeper than 26,000 feet. Commonly known as black corals due to their ink-colored skeletons, these corals are staples of deep-sea ecosystems around the world.

However, black corals remain enigmatic due to the challenges of studying them in the deep sea. This makes it difficult for scientists to assess how black corals, whose skeletons (which are made out of chitin, the same material that composes an insect’s exoskeleton) are prized components of jewelry, are responding to threats like poaching, ocean acidification and climate change.

“Describing these species is fundamental information to make conservation decisions,” said Jeremy Horowitz, a postdoctoral researcher at the National Museum of Natural History who specializes in studying black corals. “You have to know it before you can protect it.”

Jeremy Horowitz, a postdoctoral researcher in the museum’s invertebrate zoology department, examines a coral specimen during a subsequent expedition off Puerto Rico earlier this year. Credit: Jeremy Horowitz, NMNH

In a paper published this week in the journal ZooKeys, Horowitz and his colleagues at the museum and the University of Puerto Rico described Aphanipathes puertoricoensis, a new species of black coral that sports branching features found in multiple coral groups that diverged roughly 100 million years ago.

Taken by the deep-sea ROV Global Explorer, this image offered the scientists the first glimpse of the black coral species in its natural habitat. Image courtesy of Illuminating Biodiversity in Deep Waters of Puerto Rico 2022

The new black coral species was discovered in April 2022 during a joint Smithsonian and National Oceanic and Atmospheric (NOAA) expedition to a stretch of the Caribbean Sea just south of Puerto Rico. Here, the seafloor bottoms out into a network of deep-sea canyons and seamounts that remain largely unexplored.

The expedition, led by research zoologist Andrea Quattrini, the museum’s curator of corals and one of Horowitz’s co-authors on the new paper, aimed to explore some of this abyssal terrain and catalog some of the creatures that reside there. Many of these animals live far deeper than human divers can go. So the researchers deployed a remotely operated unmanned vehicle (ROV) called the Global Explorer to depths as deep as 4,000 feet below the ocean’s surface.

Andrea Quattrini, the expedition’s lead researcher, aboard the Nancy Foster research vessel. Image courtesy of Illuminating Biodiversity in Deep Waters of Puerto Rico 2022

Over seven dives, the ROV mapped 180 square nautical miles of the deep-sea floor. It collected a suite of biological samples and hours of footage for the researchers to parse on the research vessel above. They observed ghostly, blob-like predators called tunicates, gangly bristle stars, vibrant comb jellies and tiny crustaceans with fused eyes that live inside glass sponges. They even collected a colony of small invertebrates called bryozoa that had not been collected since a Smithsonian expedition to the Puerto Rico Trench in 1933.

One of the deep-sea anemones observed during the expedition. Image courtesy of Illuminating Biodiversity in Deep Waters of Puerto Rico 2022

They also found a multitude of species new to science. While exploring a canyon nearly 1,200 feet below the surface, the ROV came across a scraggly patch of black coral reminiscent of a deep-sea tumbleweed. As the ROV snipped off one of the coral’s spindly branches, Quattrini sent Horowitz, who was back in Washington, a picture of the coral on the ROV’s live feed. “She shared a picture of this coral and I immediately had no idea what it was,” Horowitz said.

When the expedition’s trove of specimens arrived in Washington, Horowitz could finally take a closer look at the puzzling coral. With long, coiled branches emanating from a short stalk like a tiny tree, the coral sported features found in multiple genera, or groups, of black coral that diverged long ago.

A microscopic close-up of the black coral’s spines taken with the help of the museum’s scanning electron microscope. Credit: Jeremy Horowitz, NMNH

To assign the new species in the right group, Horowitz placed a fragment of the coral specimen underneath a high-powered scanning electron microscope at the museum. That gave him a microscopic view of the miniscule spines that line the coral skeleton. Like a fingerprint, a coral species’ spines have their own distinct shape. Comparing these spines to known black coral species allowed Horowitz to get a better idea of where this new species may slot into the black coral family tree. To be sure, the researchers also used cutting edge techniques to compare the new species’ genetic code with other corals.

All this work allowed the researchers to find a taxonomic home for the new species in the genus Aphanipathes. They christened the black coral with the species name puertoricoensis in homage to the island near where it was found.

Discarded fishing gear sits on a thicket of black coral in the deep sea off of Puerto Rico. Image courtesy of Illuminating Biodiversity in Deep Waters of Puerto Rico 2022

Horowitz believes its resemblance to other groups of black coral reveals how helpful a simple body type is for survival in the deep-sea. “This simple morphological structure is evolving over and over again, probably because the conditions are the same in these different areas,” he said.  “This simple structure is what works.”

The team is still examining the specimens collected and expects to name additional new species in the near future. There are also plans to go back and conduct further field research in the deep-sea canyons and ridges off Puerto Rico. “Every time we go back to this region, we find new species,” Horowitz said.

But there is also plenty to uncover closer to home. The piece of black coral from Puerto Rico recently joined the museum’s 4,000 other black coral specimens — the largest such collection in the world. Many of these black coral specimens likely represent undescribed species hiding in plain sight. According to Horowitz, “we don’t even have to go offshore to find new species.”

Reference:

Horowitz J, Opresko DM, González-García MP, Quattrini AM (2023) Description of a new species of black coral in the family Aphanipathidae (Anthozoa, Antipatharia) from Puerto Rico. ZooKeys 1173: 97-110. https://doi.org/10.3897/zookeys.1173.104141

Story originally published by the Smithsonian Magazine. Republished with permission.

Failure to respond to a coral disease epizootic in Florida: causes and consequences

By 2020, losses of corals have been observed throughout Florida and into the greater Caribbean basin in what turned out to be likely the most lethal recorded case of Stony Coral Tissue Loss Disease. A Perspectives paper, published in the open-access peer-reviewed journal Rethinking Ecology, provides an overview of how Florida ended up in a situation, where the best that could be done is rescuing genetic material from coral species at risk of regional extinction.

Guest blog post by William F. Precht

A colony of the large grooved brain coral, Colpophyllia natans, infected by Stony Coral Tissue Loss Disease. The photo shows the progressive, rapid advance of disease, left-to-right, across the colony.
Image by William Precht.

Dredging projects conducted in association with coral reefs typically generate concern by environmental groups, resulting in careful monitoring by government agencies. Even though the aim of those dredge projects is to widen or deepen existing ship channels, while minimizing damage to coral reef resources, there are often the intuitive negative assumptions that dredging kills corals.

The recent Port Miami Dredge Project started as an uncomplicated case story. However, significant problems arose, caused by a concurrent and unprecedented coral disease epidemic that killed large numbers of corals, which was initiated following a regional thermal anomaly and coral bleaching event.

The coral disease, known as Stony Coral Tissue Loss Disease (SCTLD), was first observed in September 2014 near Virginia Key, Florida. In roughly six years, the disease has spread throughout Florida and into the greater Caribbean basin. The high prevalence of SCTLD and the resulting high mortality in coral populations, coupled with the large number of susceptible species affected, suggest that this disease outbreak is one of the most lethal ever recorded on contemporary coral reefs. The disease is still presently active and continues to ravage coral reefs throughout the region.

The initial response to this catastrophic disease by resource managers with purview over the ecosystem in Southeast Florida was slow. There is generally a noticeably short window of opportunity to intervene in disease amelioration or eradication in the marine environment. This slow response enabled the disease to spread unchecked. Why was the response to the loss of our coral reefs to a coral disease epidemic such a massive failure? This includes our failure as scientists, regulators, resource managers, local media, and policy makers alike. With this Perspectives paper, published in Rethinking Ecology, my intention was to encapsulate the numerous reasons for our failures during the first few years of the outbreak, reminiscent of the early failures in the U.S. response to the COVID-19 pandemic.

First, the Port Miami dredging project was ongoing when the coral disease epidemic began. Some managers and local environmental groups blamed dredging, rather than SCTLD for the coral losses, reported in the project’s compliance monitoring program. Second, this blame was amplified in the media, because dredging projects are intuitively assumed to be bad for coral reefs. Third, during this same time, the State of Florida prohibited government employees from acknowledging global warming in their work. This was problematic because ocean warming is a proximal cause of many coral diseases.

As a result, some managers ignored the well-known links between warming and coral disease. A consequence of this policy was that the dredging project provided an easy target to blame for the coral mortality noted in the monitoring program, despite convincing data that suggested otherwise. 

Specifically, the intensive compliance monitoring program, conducted by trained scientific divers, was statistically significant. SCTLD that was killing massive numbers of corals throughout the region was also killing corals at the dredge site. Further, this was happening in the same proportions and among the same suite of species. 

Finally, when the agencies responded to the outbreak, their efforts were too little and much too late to make a meaningful difference. While eradication of the disease was never a possibility, early control measures may have slowed its spread, or allowed for the rescue of significant numbers of large colonies of iconic species. Because of the languid management response to this outbreak, we are now sadly faced with a situation where much of our management efforts are focused on the rescue of genetic material from coral species already at risk of regional extinction.

The delayed response to this SCTLD outbreak in Southeast Florida has many similarities to the COVID-19 pandemic response in the United States and there are lessons learned from both that will improve disease response outcomes in the future, to the benefit of coral reefs and human populations.

Publication:

Precht W (2021) Failure to respond to a coral disease epizootic in Florida: causes and consequences. Rethinking Ecology 6: 1-47. https://doi.org/10.3897/rethinkingecology.6.56285

Three new species of zoantharians described from coral reefs across the Indo-Pacific

One of them was named after the president of Palau, Tommy Remengesau, in honour of his and the nation’s support to the authors and marine conservation

Three new species of zoantharians were discovered by researchers from the University of the Ryukyus and Kagoshima University, Japan, and the Palau International Coral Reef Center. Despite not being previously known, all three species were found widely across the Indo-Pacific, with at least two species found in the Red Sea, the Maldives, Palau, and southern Japan.

Zoantharians, or colonial anemones, include species popular in the pet trade such as Zoanthus or Palythoa, but the new species are all much more cryptic, living in marine caves, cracks, or at depths below most recreational SCUBA diving (>20 m). The research was published December 29, 2017, in the open-access journal ZooKeys.

The three new species belong to the genus Antipathozoanthus, which contains species that only live on top of black coral colonies. However, surprisingly, one of the new species does not live on black corals, but instead in narrow cracks in coral reefs.

obscurus“We think that the new species, Antipathozoanthus obscurus, has evolved away from needing to be on top of black corals to take advantage of the available space in coral reef cracks”, said lead researcher Hiroki Kise.

“This is yet another example of how much diversity is right underneath our noses, but we still know nothing about it.”

Coral reefs, which are widely threatened by rising temperatures from global warming, are generally believed to harbour very high numbers of species, including yet many undescribed or unknown species.

Amongst the other two new species is Antipathozoanthus remengesaui, named after the current president of Palau, Tommy Remengesau.

“Much of our work was based in Palau”, said senior author Dr. James Reimer, “and we wished to acknowledge the fantastic support we have received from the nation. Palau is considered at the forefront of marine conservation, and much of this is thanks to President Remengesau’s vision.”

While the new discoveries shed more light on our understanding of coral reef biodiversity, this work is far from done. In fact, the researchers themselves estimate they still have up to ten more zoantharian species to describe from the waters of Palau and Okinawa.

“Marine diversity of coral reefs is amazing, with new surprises all the time”, said Kise, “and biodiversity scientists still have a lot more work to do.”

###

Original source:

Kise H, Fujii T, Masucci GD, Biondi P, Reimer JD (2017) Three new species and the molecular phylogeny of Antipathozoanthus from the Indo-Pacific Ocean (Anthozoa, Hexacorallia, Zoantharia). ZooKeys 725: 97-122. https://doi.org/10.3897/zookeys.725.21006

A new species of hard coral from the World Heritage-listed Lord Howe Island, Australia

The discovery of a new species of hard coral, found on Lord Howe Island, suggests that the fauna of this isolated location in the Tasman Sea off south eastern Australia is even more distinct than previously recognised.

In a recent paper in ZooKeys, Prof. Andrew Baird and Dr. Mia Hoogenboom from James Cook University, Townsville Australia and Dr. Danwei Huang from the National University of Singapore, describe the new species Cyphastrea salae.

Cyphastrea salae holotype macro 81_1530 IMG_1528

“The animal itself is quite non-descript from a distance, although it is beautifully symmetrical up close like most corals,” says Dr. Hoogenboom. “But we believe this is the first of many new hard coral species to be found in this World Heritage-listed marine protected area.”

Lord Howe Island is famous for its many unique plant and animal species, known from nowhere else on Earth, including at least four species of palms, nine reef fish and 47 algae. However, the coral fauna remains largely unexplored, particularly using modern genetic techniques.

While some of the earliest work on coral reef ecology was done on Lord Howe Island, the species lists were compiled using a morphological taxonomy that has since been revised.

“On my very first dive in the lagoon at Lord Howe I knew I was looking at something very special,” says Prof. Baird. “Twenty years of diving all over the globe had not prepared me for what I saw. I could hardly put a name on any coral!”

Now, six years later, and largely due to the molecular skills of colleague Dr. Huang, the team is ready to name its first species.

“Interestingly, Cyphastrea salae looks almost exactly like other closely-related corals. However, its gene sequences are distinct and there is no doubt it is a species that is new to science,” says Dr. Huang.

The team now have hundreds of specimens to work through, but they are confident that there are more new coral species left to describe.

“The Acropora, in particular, look highly promisingly,” says Prof. Baird. “There are at least five species that look unlike anything I have seen anywhere else in my travels”.

LHI Lagoon IMG_6585Lord Howe Island lies over 900 km south of the next major area of coral diversity, the Great Barrier Reef, and therefore the populations on Lord Howe are highly isolated. Such isolation creates the potential for speciation, however, C. salae is the first new local coral species described to date. The discovery of this new species greatly increases the conservation significance of Lord Howe Island and reinforces the need for strong management measures to protect this unique fauna.

###

Original source:

Baird AH, Hoogenboom MO, Huang D (2017) Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia, Merulinidae). ZooKeys 662: 49-66. https://doi.org/10.3897/zookeys.662.11454

Unusual new zoantharian species is the first described solitary species in over 100 years

A very unusual new species of zoantharian surprised Drs Takuma Fujii and James Davis Reimer, affiliated with Kagoshima University and University of the Ryukyus.

The scientists stumbled upon a solitary individual polyp while conducting SCUBA surveys around the southern Japanese island of Okinawa. They noticed that the creatures were buried almost completely in the soft sediment of the seafloor. It was only their oral disks and tentacles that were protruding above the surface.

Generally, most known zoantharians are colonial (hence their common name of ‘colonial anemones’), and many dwell in shallow waters of subtropical and tropical regions, where their large colonies can be found on coral reefs.

However, these newly discovered polyps were not only leading solitary lives. They were also found to lack zooxanthellae, single-celled organisms that coexist in symbiosis with certain marine invertebrates, also typical for the majority of zoantharians.

Image 1The discovery of this unusual new species is reported in the open access journal ZooKeys.

Solitary zoantharian species, such as this one, are known from scant few reports, and only three species are described, all reported more than 100 years ago from the Indo-Pacific region. Overall, very little is known about the hereby studied genus Sphenopus.

The new species, named Sphenopus exilis, is much smaller than the other three Sphenopus species, with its polyps measuring approximately 3 cm in length. It is currently only known from two bays on the east coast of Okinawa Island.

Both of the bays where Sphenopus exilis is found are threatened by development, with one of the bays currently the center of controversy over a proposed American military base expansion and landfill.

“This report demonstrates how much more research is needed on these understudied ecosystems”, stated lead author Dr. Takuma Fujii.

“The only reason this species was discovered was that the right person was in the right place at the right time”, added co-author Dr. James Reimer.

“Such research also shows how important it is to have specialist researchers participate in surveys — otherwise, we might be missing a lot of the biodiversity present in the marine realm simply because we don’t know what we are looking at,” he concluded.

###

Original source:

Fujii T, Reimer JD (2016) A new solitary free-living species of the genus Sphenopus (Cnidaria, Anthozoa, Zoantharia, Sphenopidae) from Okinawa-jima Island, Japan. ZooKeys 606: 11-24. doi: 10.3897/zookeys.606.9310

Two new zoantharian species found on eunicid worms in the dark in the Indo-Pacific ocean

While studying the abundant, yet poorly known fauna of the zoantharian Epizoanthus genus in the Indo-Pacific Ocean, Japanese graduate student Hiroki Kise and Dr. James Davis Reimer, both affiliated with University of the Ryukyus, Japan, focused on examining the species living on eunicid worm tubes. These Epizoanthus species form colonies and are only found living on the outside surfaces of tubes in which the eunicid worms live. Although these zoantharians often live in areas that are deeper than the range of SCUBA divers and tend to be indistinguishable on the outside, the present research, published in the open-access journal ZooKeys, reports the discovery of two new species.

 

Both new species have been found in low-light environments. While one of the species, scientifically named Epizoanthus inazuma, showed preference for coral reef slopes, reef floors, or the sides of their overhangs in Okinawa, the other one, E. beriber was seen to tolerate cave environments exclusively, and is found in Palau and Papua New Guinea. To recognise them as new species, the researchers turned to molecular analyses combined and compared to morphological data. Thus, this discovery presents yet another example of the utility of molecular methods as an effective tool in taxonomic and biodiversity research.

oo_77280

Forming colonies resembling a classic lightning-bolt shape, the new species Epizoanthus inazuma has reasonably been given a name meaning ‘lightning’ in Japanese. The second new species is also named in a reference to its lifestyle as it bears the name of the local Palauan folklore character Beriber, who lived in a cave.

 

The researchers believe that it is highly likely that there are other undescribed species in coral reefs. There is even greater likelihood that such are currently hidden in underwater cave habitats. The authors do not exclude the possibility that these new zoantharian species may be distributed across other locations in the Pacific, where they could easily be mistaken for other closely related species.

###

Original source:

Kise H, Reimer JD (2016) Unexpected diversity and a new species of Epizoanthus (Anthozoa, Hexacorallia) attached to eunicid worm tubes from the Pacific Ocean. ZooKeys 562: 49-71. doi: 10.3897/zookeys.562.6181