Latest results of myriapod research from the 18th International Congress of Myriapodology

Last year, the 18th International Congress of Myriapodology brought together 92 of the world’s top experts on the curious, yet still largely unknown multi-legged centipedes, millipedes, pauropods, symphylans (collectively referred to as myriapods) and velvet worms (onychophorans).

Held between 25th and 31st August 2019 at the Hungarian Natural History Museum in Budapest and co-organised by the Hungarian Biological Society, the biennial event saw the announcement of the latest findings related to the diversity, distribution and biology of these creatures. Now, the public gets the chance to learn about a good part of the research presented there on the pages of the open-access scholarly journal ZooKeys.


Find all articles published in ZooKeys here
?

The special issue in ZooKeys, “Proceedings of the 18th International Congress of Myriapodology (25-31 August 2019, Budapest, Hungary)“, features a total of 11 research articles reporting on species new to science, updates on the distribution and conservation of already known myriapods and discoveries about the biology, ecology and evolution of individual species. Together, the publications reveal new insights into the myriapod life on four continents: Europe, Asia, Africa and Australia.

Amongst the published research outputs worth mentioning is the comparison between regional and global Red Listings of Threatened Species that worryingly identifies a missing overlap between the myriapod species included in the global IUCN Red List and the regional ones. This first-of-its-kind overview of the current conservation statuses of myriapods from around the world highlights the lack of dedicated funding for the conservation of hundreds of threatened myriapods. As a result, the scientists behind the study urge for the establishment of a Myriapoda Specialist Group in the Species Survival Commission of the IUCN.

Meanwhile, to give us a hint about how many millipedes are out there unbeknownst to the world and any conservation authorities, at the congress, three research teams revealed a total of seven new to science species: three giant pill-millipedes from Vietnam, another three from the biodiversity hotspot Madagascar and a spirostreptid millipede inhabiting Sao Tome and Principe.

Amongst the rest of the papers is the curious discovery of two Tasmanian species of flat-backed millipedes of the genus Tasmaniosoma whose neighbouring populations have seemingly come to their own terms to keep distance between each other, save for a little stretch of land, for no obvious reason. Not a single site where both species occur together was found by Dr Bob Mesibov, the millipede expert behind the study. How is the parapatric boundary maintained? How, when and where did the parapatry originate? These are the big mysteries that the already retired Australian scientist leaves for his successors to resolve.

###

All articles published in the “Proceedings of the 18th International Congress of Myriapodology (25-31 August 2019, Budapest, Hungary” special issue, edited by Dr. Zoltan Korsos (now University of Veterinary Medicine Budapest) and Dr. Laszlo Danyi (Hungarian Natural History Museum), are publicly available in the online, open-access, peer-reviewed scholarly journal ZooKeys.

###

Follow ZooKeys journal on Twitter and Facebook. Use #Myriapoda2019 to learn more about the studies published in the special issue.

Dwarfs under dinosaur legs: 99-million-year-old millipede discovered in Burmese amber

A 3D reconstruction of the fossil allowed for the description of an entirely new suborder


The newly described millipede (Burmanopetalum inexpectatum) rendered using 3D X-ray microscopy. Image by Leif Moritz.

Even though we are led to believe that during the Cretaceous the Earth used to be an exclusive home for fearsome giants, including carnivorous velociraptors and arthropods larger than a modern adult human, it turns out that there was still room for harmless minute invertebrates measuring only several millimetres.

Such is the case of a tiny millipede of only 8.2 mm in length, recently found in 99-million-year-old amber in Myanmar. Using the latest research technologies, the scientists concluded that not only were they handling the first fossil millipede of the order (Callipodida) and also the smallest amongst its contemporary relatives, but that its morphology was so unusual that it drastically deviated from its contemporary relatives.

As a result, Prof. Pavel Stoev of the National Museum of Natural History (Bulgaria) together with his colleagues Dr. Thomas Wesener and Leif Moritz of the Zoological Research Museum Alexander Koenig (Germany) had to revise the current millipede classification and introduce a new suborder. To put it in perspective, there have only been a handful of millipede suborders erected in the last 50 years. The findings are published in the open-access journal ZooKeys.

To analyse the species and confirm its novelty, the scientists used 3D X-ray microscopy to ‘slice’ through the Cretaceous specimen and look into tiny details of its anatomy, which would normally not be preserved in fossils. The identification of the millipede also presents the first clue about the age of the order Callipodida, suggesting that this millipede group evolved at least some 100 million years ago. A 3D model of the animal is also available in the research article.

Curiously, the studied arthropod was far from the only one discovered in this particular amber deposit. On the contrary, it was found amongst as many as 529 millipede specimens, yet it was the sole representative of its order. This is why the scientists named it Burmanopetalum inexpectatum, where “inexpectatum” means “unexpected” in Latin, while the generic epithet (Burmanopetalum) refers to the country of discovery (Myanmar, formerly Burma).

Lead author Prof. Pavel Stoev says:

We were so lucky to find this specimen so well preserved in amber! With the next-generation micro-computer tomography (micro-CT) and the associated image rendering and processing software, we are now able to reconstruct the whole animal and observe the tiniest morphological traits which are rarely preserved in fossils. This makes us confident that we have successfully compared its morphology with those of the extant millipedes. It came as a great surprise to us that this animal cannot be placed in the current millipede classification. Even though their general appearance have remained unchanged in the last 100 million years, as our planet underwent dramatic changes several times in this period, some morphological traits in Callipodida lineage have evolved significantly.


The newly described millipede seen in amber. Image by Leif Moritz.

Co-author Dr. Thomas Wesener adds:

“We are grateful to Patrick Müller, who let us study his private collection of animals found in Burmese amber and dated from the Age of Dinosaurs. His is the largest European and the third largest in the world collection of the kind. We had the opportunity to examine over 400 amber stones that contain millipedes. Many of them are now deposited at the Museum Koenig in Bonn, so that scientists from all over the world can study them. Additionally, in our paper, we provide a high-resolution computer-tomography images of the newly described millipede. They are made public through MorphBank, which means anyone can now freely access and re-use our data without even leaving the desk.”

Leading expert in the study of fossil arthropods Dr. Greg Edgecombe (Natural History Museum, London) comments:

“The entire Mesozoic Era – a span of 185 million years – has until now only been sampled for a dozen species of millipedes, but new findings from Burmese amber are rapidly changing the picture. In the past few years, nearly all of the 16 living orders of millipedes have been identified in this 99-million-year-old amber. The beautiful anatomical data presented by Stoev et al. show that Callipodida now join the club.”

###

Original source:

Stoev P, Moritz L, Wesener T (2019) Dwarfs under dinosaur legs: a new millipede of the order Callipodida (Diplopoda) from Cretaceous amber of Burma. ZooKeys 841: 79-96. https://doi.org/10.3897/zookeys.841.34991

Scientists discover over 450 fossilised millipedes in 100-million-year-old amber

Since the success of the Jurassic Park film series, it is widely known that insects from the Age of the Dinosaurs can be found exceptionally well preserved in amber, which is in fact fossilised tree resin.

Especially diverse is the animal fauna preserved in Cretaceous amber from Myanmar (Burma). Over the last few years, the almost 100-million-year-old amber has revealed some spectacular discoveries, including dinosaur feathers, a complete dinosaur tail, unknown groups of spiders and several long extinct groups of insects.

However, as few as three millipede species, preserved in Burmese amber, had been found prior to the study of Thomas Wesener and his PhD student Leif Moritz at the Zoological Research Museum Alexander Koenig – Leibniz Institute for Animal Biodiversity (ZFMK). Their research was recently published in the open-access journal Check List.

One of the newly discovered fossilised millipedes. Photo by Dr Thomas Wesener.

Having identified over 450 millipedes preserved in the Burmese amber, the scientists confirmed species representing as many as 13 out of the 16 main orders walking the Earth today. The oldest known fossils for half of these orders were found within the studied amber.

The researchers conducted their analysis with the help of micro-computed tomography (micro-CT). This scanning technology uses omni-directional X-rays to create a 3D image of the specimen, which can then be virtually removed from the amber and digitally examined.

The studied amber is mostly borrowed from private collections, including the largest European one, held by Patrick Müller from Käshofen. There are thought to be many additional, scientifically important specimens, perhaps even thousands of them, currently inaccessible in private collections in China.

Over the next few years, the newly discovered specimens will be carefully described and compared to extant species in order to identify what morphological changes have occurred in the last 100 million years and pinpoint the speciation events in the millipede Tree of Life. As a result, science will be finally looking at solving long-standing mysteries, such as whether the local millipede diversity in the southern Alps of Italy or on the island of Madagascar is the result of evolutionary processes which have taken place one, ten or more than 100-million years ago.

According to the scientists, most of the Cretaceous millipedes found in the amber do not differ significantly from the species found in Southeast Asia nowadays, which is an indication of the old age of the extant millipede lineages.

On the other hand, the diversity of the different orders seems to have changed drastically. For example, during the Age of the Dinosaurs, the group Colobognatha – millipedes characterised by their unusual elongated heads which have evolved to suck in liquid food – used to be very common. In contrast, with over 12,000 millipede species living today, there are only 500 colobognaths.

Another curious finding was the discovery of freshly hatched, eight-legged juveniles, which indicated that the animals lived and reproduced in the resin-producing trees.

“Even before the arachnids and insects, and far ahead of the first vertebrates, the leaf litter-eating millipedes were the first animals to leave their mark on land more than 400-million-years ago,” explain the scientists. “These early millipedes differed quite strongly from the ones living today – they would often be much larger and many had very large eyes.”

The larger species in the genus Arthropleura, for example, would grow up to 2 m (6.5 ft) long and 50-80 cm (2-3 ft) wide – the largest arthropods to have ever crawled on Earth. Why these giants became extinct and those other orders survived remains unknown, partly because only a handful of usually badly preserved fossils from the whole Mesozoic era (252-66-million years ago) has been retrieved. Similarly, although it had long been suspected that the 16 modern millipede orders must be very old, a fossil record to support this assumption was missing.

###

Original source:

Wesener T, Moritz L (2018) Checklist of the Myriapoda in Cretaceous Burmese amber and a correction of the Myriapoda identified by Zhang (2017). Check List 14(6): 1131-1140. https://doi.org/10.15560/14.6.1131

New species of extremely leggy millipede discovered in a cave in California

Along with many spiders, pseudoscorpions, and flies discovered and catalogued by the cave explorers, a tiny threadlike millipede was found in the unexplored dark marble caves in Sequoia National Park.

The enigmatic millipede was sent to diplopodologists (scientists who specialize in the study of millipedes) Bill Shear and Paul Marek, who immediately recognized its significance as evolutionary cousin of the leggiest animal on the planet, Illacme plenipes. The new species may possess “only” 414 legs, compared to its relative’s 750, yet, it has a similar complement of bizarre anatomical features, including a body armed with 200 poison glands, silk-secreting hairs, and 4 penises. The study was published in the open access journal ZooKeys.image-3

This new millipede, named Illacme tobini after cave biologist Ben Tobin of the National Park Service, is described by its discoverer Jean Krejca, at Zara Environmental LLC, and millipede taxonomists Paul Marek at Virginia Tech and Bill Shear, Hampden-Sydney College.

“I never would have expected that a second species of the leggiest animal on the planet would be discovered in a cave 150 miles away,” says Paul Marek, Assistant Professor in the Entomology Department at Virginia Tech. It’s closest relative lives under giant sandstone boulders outside of San Juan Bautista, California.

In addition to the new millipede’s legginess, it also has bizarre-looking mouthparts of a mysterious function, four legs that are modified into penises, a body covered in long silk-secreting hairs, and paired nozzles on each of its over 100 segments that squirt a defense chemical of an unknown nature.

In conclusion, the authors note that by exploring our world and documenting the biodiversity of this planet we can prevent anonymous extinction, a process in which a species goes extinct before we know of its role in the ecosystem, potential benefit to humanity, or its beauty.

###

Original source:

Marek PE, Krejca JK, Shear WA (2016) A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida). ZooKeys 626: 1-43. doi: 10.3897/zookeys.626.9681

Dragons out of the dark: 6 new species of Dragon millipedes discovered in Chinese caves

Six new species of Chinese dragon millipedes, including species living exclusively in caves, are described as a result of an international cooperation of research institutes from China, Russia and Germany. These cave species have unusually long legs and antennae, with one of them resembling a stick insect, only with a lot more legs. Others appear ghostly white and semi-transparent. The study is published in the open-access journal ZooKeys.

Underresearched in many tropical countries, numerous millipede species are still awaiting discovery and description in China as well. In the present study, three researchers from South China Agricultural University, the Russian Academy of Sciences, and Zoological Research Museum Alexander Koenig describe six particularly extraordinary new species of so-called ‘dragon millipedes’ from the two southern Chinese regions of Guangdong and Guangxi Zhuang. Both areas host a large number of spectacular caves, which have only recently been thoroughly surveyed. Four of the species never leave their underground homes.

Dragon millipedes, a genus of millipedes living in southeastern Asia, are characterised with their ‘armour’ of unusual spine-like projections. Furthermore, some of these species produce toxic hydrogen cyanide to ward off predators.

Among the public, the genus gained particular attention when the “Shocking pink dragon millipede” was discovered in Thailand in 2007. This discovery highlighted a large number of unknown millipede species in the Mekong region and worldwide. While the newly described cave dragon millipedes from China lack the “shocking” warning colour of their surface-living relatives, they are no less spectacular.

7825_Millipedes mating couple of Desmoxytes laticollis sp n

One of the new millipedes has received a formal name translating to the “stick insect dragon millipede” because of its extremely long legs and antennae. Therefore, it looks a lot like a stick insect, only with much more legs. Another two of the species have fully lost their colours, which is a common characteristic among exclusively cave-living animals. As a result, they appear ghostly white and even semi-transparent.

Miss Liu Weixin, PhD candidate at the South China Agricultural University in Guangzhou, China, and co-author of the present study, has conducted the research at the Centre of Taxonomy at the Research Museum Koenig (ZFMK), Leibniz Institute for Animal Biodiversity in Bonn, Germany as a part of her PhD, which focuses on Chinese cave millipedes. She worked along with her advisor and lead author Prof. Tian Mingyi, and renowned millipede expert Dr. Sergei Golovatch from the Russian Academy of Sciences, Moscow.

Over the course of her PhD, Miss Liu Weixin has explored more than 200 Chinese caves, where she has discovered over 20 new millipede species. The dragon millipedes are among her most spectacular discoveries as they exhibit extreme cave adaptations including loss of pigmentation and extremely elongated legs and antennae.

Still on her guest research year in Germany, Liu is currently busy describing additional batch of more than two dozen millipede species, she collected from the Chinese caves, literally bringing to light an unknown world.

###

Original source:

Liu WX, Golovatch SI, Tian MY (2016) Six new species of dragon millipedes, genus Desmoxytes Chamberlin, 1923, mostly from caves in China (Diplopoda, Polydesmida, Paradoxosomatidae).ZooKeys 577: 1-24. doi: 10.3897/zookeys.577.7825