New DNA barcoding project aims at tracking down the “dark taxa” of Germany’s insect fauna

New dynamic article collection at Biodiversity Data Journal is already accumulating the project’s findings

About 1.4 million species of animals are currently known, but it is generally accepted that this figure grossly underestimates the actual number of species in existence, which likely ranges between five and thirty million species, or even 100 million. 

Meanwhile, a far less well-known fact is that even in countries with a long history of taxonomic research, such as Germany, which is currently known to be inhabited by about 48,000 animal species, there are thousands of insect species still awaiting discovery. In particular, the orders Diptera (flies) and Hymenoptera (especially the parasitoid wasps) are insect groups suspected to contain a strikingly large number of undescribed species. With almost 10,000 known species each, these two insect orders account for approximately two-thirds of Germany’s insect fauna, underlining the importance of these insects in many ways.

The conclusion that there are not only a few, but so many unknown species in Germany is a result of the earlier German Barcode of Life projects: GBOL I and GBOL II, both supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) and the Bavarian Ministry of Science under the project Barcoding Fauna Bavarica. 

In its previous phases, GBOL aimed to identify all German species reliably, quickly and inexpensively using DNA barcodes. Since the first project was launched twelve years ago, more than 25,000 German animal species have been barcoded. Among them, the comparatively well-known groups, such as butterflies, moths, beetles, grasshoppers, spiders, bees and wasps, showed an almost complete coverage of the species inventory.

In 2020, another BMBF-funded DNA barcoding project, titled GBOL III: Dark Taxa, was launched, in order to focus on the lesser-known groups of Diptera and parasitoid Hymenoptera, which are often referred to as “dark taxa”. The new project commenced at three major German natural history institutions: the Zoological Research Museum Alexander Koenig (Bonn), the Bavarian State Collection of Zoology (SNSB, Munich) and the State Museum of Natural History Stuttgart, in collaboration with the University of Würzburg and the Entomological Society Krefeld. Together, the project partners are to join efforts and skills to address a range of questions related to the taxonomy of the “dark taxa” in Germany.

As part of the initiative, the project partners are invited to submit their results and outcomes in the dedicated GBOL III: Dark Taxa article collection in the peer-reviewed, open-access Biodiversity Data Journal. There, the contributions will be published dynamically, as soon as approved and ready for publication. The articles will include taxonomic revisions, checklists, data papers, contributions to methods and protocols, employed in DNA barcoding studies with a focus on the target taxa of the project.

“The collection of articles published in the Biodiversity Data Journal is an excellent approach to achieving the consortium’s goals and project partners are encouraged to take advantage of the journal’s streamlined publication workflows to publish and disseminate data and results that were generated during the project,”

says the collection’s editor Dr Stefan Schmidt of the Bavarian State Collection of Zoology.

***

Find and follow the dynamic article collection GBOL III: Dark Taxa in Biodiversity Data Journal.

Follow Biodiversity Data Journal on Twitter and Facebook.

Surprising exotic flies in the backyard: New gnat species from Museum Koenig’s garden

Little did scientists Kai Heller and Björn Rulik expect to discover a new species in Germany’s Alexander Koenig Museum‘s garden upon placing a malaise trap for testing purposes. Not only did an unknown and strikingly coloured gnat get caught, but it turned out to be a species, which showed to have much more in common with its relatives from New Zealand. Their study is published in the open access Biodiversity Data Journal (BDJ).

While the genus, which the new dark-winged fungus gnat species belongs to, likely originates from the Australasian region, it was so far represented by only three species in Europe. None of them, however, stands out with the contrasting colouration of the presently announced fourth one.

The new gnat, called Ctenosciara alexanderkoenigi after the German museum’s founder, is described based on a single specimen caught in the framework of the German Barcode of Life Project (GBOL). Over three days, the scientists observed the flying insects getting caught in a malaise trap, placed among the predominantly non-native plants in the Alexander Koenig Museum’s garden. This tent-like structure is designed to catch flying insects. Once they fly into its walls, they get funnelled into a collecting bottle.

Upon noticing the beautiful striking colour of the fly, the two specialists were convinced they had just discovered a new to science species. Most of these flies are bright brownish, and the only other orange European dark-winged fungus gnat – almost uniformly orange. In contrast, the new species stands out with a mixture of reddish, black and yellowish-white hues. Based on the DNA-barcode match with New Zealand specimens, the authors concluded that the species must have arrived from the Australasian region in Europe quite recently.

oo_47399

“It is a rare occurrence, that a species from the opposite end of the world is represented by a single specimen only and it is not yet clear, whether Ctenosciara alexanderkoenigi has a permanent population in Germany or if it was only introduced casually with plants or soil,” they explain. “Probably, the species was recently introduced from the Australasian Region. If it was a permanent member of the European fauna, a striking species like this would likely have been found earlier.”

In conclusion, the scientists note that modern technologies such as the high quality photo documentation, established as a standard by the BOLD project, DNA barcodes assigned with BINs, as well as facilitated by speedy publishing, have largely aided taxonomists to build on the biodiversity knowledge.

“We believe that the rapid description of Ctenosciara alexanderkoenigi, coupled with the BDJ reviewing system, might be a robust and ground-breaking way to accelerate and stabilise taxonomy in the future,” they finish their paper.

###

Original source:

Heller K & Rulik B (2016) Ctenosciara alexanderkoenigi sp. n. (Diptera: Sciaridae), an exotic invader in Germany? Biodiversity Data Journal 4: e6460. doi: 10.3897/BDJ.4.e6460