All microgastrinae wasps from around the world finally together in a 1,089-page monograph

With 3,000 known species and thousands more left to describe, the wasps of the subfamily Microgastrinae are the single most important group of parasitoids attacking the larvae of butterflies and moths, many of which are economically important pests. Consequently, these wasps have a significant impact on both the world’s economy and biodiversity.

Due to their affinities, these wasps are widely used in biological control programs to manage agricultural and forestry pests around the globe. Further, they have also been prominently featured in many basic and applied scientific research (e.g. chemical ecology, biodiversity studies, conservation biology, genomics, behavioural ecology). However, the information about Microgastrinae species is scattered across hundreds of papers, some of which are difficult to find. To make matters worse, there has never been an authoritative checklist of the group at a planetary scale.

All currently available information about the group is now brought together in a large monograph of 1,089 pages, published in the open-access, peer-reviewed journal ZooKeys. The publication presents a total of 2,999 valid extant species belonging to 82 genera. On top of that, the monograph features fossil species and genera, unavailable names and the institutions that store the primary types of all listed species.

Moreover, the researchers have included extensive colour illustrations of all genera and many species (thousands of images in 250 image plates); brief characterisation and diagnosis of all genera; detailed species distributions (within biogeographical regions and per individual country); synopsis of what is known on host-parasitoid associations; summary of available DNA barcodes; estimations of the group diversity at world and regional levels; as well as notes on individual species upon request.

“Compiling this annotated checklist was, more than anything, a labour of love,”

says Dr. Jose Fernandez-Triana of the Canadian National Collection of Insects, lead author of the paper.

Monograph paper openly published in ZooKeys at
https://doi.org/10.3897/zookeys.920.39128

“For the past six or seven years, we have spent thousands of hours pouring through hundreds of publications, reading original descriptions in old manuscripts, checking type specimens in many collections worldwide, exchanging information with colleagues from all continents. For the past year or so, I basically stopped all other ongoing research projects I was involved with, to focus solely (almost obsessively!) on finishing this manuscript. The work was often tedious and mind-numbing, and many times I had the temptation to delay the completion of the paper for a later time. However, I was lucky that the other co-authors were just as passionate as myself, and we all pushed each other to finish the task when energy ran low.”

Fifteen species of microgastrinae wasps showing the incredible diversity within the subfamily. Note the variety of colours and shapes.
Image by Dr. Jose Fernandez-Triana

“For the past few years, the Microgastrinae wasps have been one of the most intensively studied groups of insects, at least from a taxonomic perspective,” he adds. “Just to give you an idea: between 2014 and 2019 a total of 720 new species of Microgastrinae were described worldwide. That is an average of one new species every three days, sustained over a six-year period and showing no signs of slowing down.”

He also points out that many scientists from many different countries and biogeographical regions have been involved in the description of the new species. The paper recognises them all and their contributions in the Acknowledgements section.

“You could even say that we are witnessing a renaissance in the study of this group of wasps. However, even then, what has been done is only the tip of the iceberg, as we estimated that only 5 to 10% of all Microgastrinae species have been described. That means that we do not have a name, let alone detailed knowledge, for 90-95% of the remaining species out there. Perhaps, there could be up to 50,000 Microgastrinae wasp species worldwide. It is truly humbling when you consider the magnitude of the work that lies ahead.”

Yet, it is not only a matter of counting huge numbers of species. More importantly, many of those species either have already been put in use as biocontrol agents against a wide range of agricultural and forestry pests, or have the potential to be in the future.

For applied scientists, working with hyperdiverse and poorly known groups such as Microgastrinae is even more perplexing. Navigating the maze of old names, synonyms (species described more than one time under different names), homonyms (same names applied to different species), or unavailable names (names that do not conform to the rules of the International Commission of Zoological Nomenclature) is a daunting task. Often, that results in the same species being referred to in several different ways by different authors and academic works. Consequently, many historical references are full of misleading or even plainly wrong information. Meanwhile, it is very difficult to seek out the useful and correct information.

The present annotated checklist could work as a basic reference for anyone working with or interested in the parasitoid wasps of the subfamily Microgastrinae. In the future, the authors hope to produce revised editions, thus continuing to incorporate new information as it is generated, and to also correct possible mistakes.

“We welcome all kinds of criticisms and suggestions. And we hope that biocontrol practitioners will also help us, the taxonomists, to improve future versions of this work. However, for the time being, let me say that it is a tremendous relief to get this first version out!”

concludes Dr. Fernandez-Triana.

***

Original source:

Fernandez-Triana J, Shaw MR, Boudreault C, Beaudin M, Broad GR (2020) Annotated and illustrated world checklist of Microgastrinae parasitoid wasps (Hymenoptera, Braconidae). ZooKeys 920: 1-1089. https://doi.org/10.3897/zookeys.920.39128.

The Alps are home to more than 3,000 lichens

Historically, the Alps have always played an emblematic role, being one of the largest continuous natural areas in Europe. With its numerous habitats, the mountain system is easily one of the richest biodiversity hotspots in Europe.

Lichens are curious organisms comprising a stable symbiosis between a fungus and one or more photosynthetic organisms, for example green algae and/or cyanobacteria. Once the symbiosis is established, the new composite organism starts to function as a whole new one, which can now convert sunlight into essential nutrients and resist ultraviolet light at the same time.

A common fruticose lichen in the Alps (Flavocetraria nivalis). Photo: Dr Peter O. Bilovitz
A common fruticose lichen in the Alps (Flavocetraria nivalis).
Photo: Dr Peter O. Bilovitz

Being able to grow on a wide range of surfaces – from tree bark to soil and rock, lichens are extremely useful as biomonitors of air quality, forest health and climate change.

Nevertheless, while the Alps are one of the best studied parts of the world in terms of their biogeography, no overview of the Alpine lichens had been provided up until recently, when an international team of lichenologists, led by Prof. Pier Luigi Nimis, University of Trieste, Italy, concluded their 15-year study with a publication in the open access journal MycoKeys.

Sunrise in the Julian Alps. Photo: Dr Pier Luigi Nimis
Sunrise in the Julian Alps.
Photo: Dr Pier Luigi Nimis

The scientists’ joint efforts produced the first ever checklist to provide a complete critical catalogue of all lichens hitherto reported from the Alps. It comprises a total of 3,138 entries, based on data collected from eight countries – Austria, France, Germany, Italy, Liechtenstein, Monaco, Slovenia and Switzerland. In their research paper, the authors have also included notes on the lichens’ ecology and taxonomy.

A common lichen in the Alps (Xanthoria elegans). Photo: Dr Tomi Trilar
A common lichen in the Alps (Xanthoria elegans).
Photo: Dr Tomi Trilar

They point out that such catalogue has been missing for far too long, hampering research all over the world. The scientists point out that this has been “particularly annoying”, since the data from the Alps could have been extremely useful for comparisons between mountainous lichen populations from around the globe. It turns out that many lichens originally described from the Alps have been later identified in other parts of the world.

It was a long and painstaking work, which lasted almost 15 years, revealing a surprisingly high number of yet to be resolved taxonomic problems that will hopefully trigger further research in the coming years,” say the authors.

We think that the best criterion to judge whether a checklist has accomplished its task for the scientific community is the speed of it becoming outdated,” they conclude paradoxically.

The new checklist is expected to serve as a valuable tool for retrieving and accessing the enormous amount of information on the lichens of the Alps

A widespread alpine lichen (Thamnolia vermicularis). Photo: Dr Peter O. Bilovitz
A widespread alpine lichen (Thamnolia vermicularis).
Photo: Dr Peter O. Bilovitz

that has accumulated over centuries of research. It offers a basis for specimen revisions, critical re-appraisal of poorly-known species and further exploration of under-explored areas. Thus, it could become a catalyst for new, more intensive investigations and turn into a benchmark for comparisons between mountains systems worldwide.

###

Original source:

Nimis PL, Hafellner J, Roux C, Clerc P, Mayrhofer H, Martellos S, Bilovitz PO (2018) The lichens of the Alps – an annotated checklist. MycoKeys 31: 1-634. https://doi.org/10.3897/mycokeys.31.23568

Lichenologists at work in the Carnic Alps. Photo: Dr Pier Luigi Nimis
Lichenologists at work in the Carnic Alps.
Photo: Dr Pier Luigi Nimis

More assassins on the radar: As many as 24 new species of assassin bugs described

As many as 24 assassin bugs new to science were discovered and described by Dr. Guanyang Zhang and his colleagues. In their article, published in the open access Biodiversity Data Journal, they describe the new insects along with treating another 47 assassin bugs in the same genus. To do this, the scientists examined more than 10,000 specimens, coming from both museum collections and newly undertaken field trips.

Assassin bugs are insects that prey upon other small creatures, an intriguing behavior that gives the common name of their group. There are some 7000 described species of assassin bugs, but new species are still being discovered and described every year.

The new species described by scientists Drs Guanyang Zhang, University of California, Riverside, and Arizona State University, Elwood R. Hart, Iowa State University, and Christiane Weirauch, University of California, Riverside, belong to the assassin bug genus Zelus.

Linnaeus, the Swedish scientist, who established the universally used Linnean classification system, described the first species (Zelus longipes) of Zelus in 1767. Back then, he placed it in the genus Cimex, from where it was subsequently moved to Zelus. All of Zhang & Hart’s new species are from the Americas. Mexico, Panama, Peru, Colombia and Brazil are some of the top countries harboring new species.

To conduct the research, Zhang examined more than 10,000 specimens and nearly all of them have been databased. These specimen records are now freely and permanently available to everybody. Zhang’s work demonstrates the value of natural history collections. The specimens used in his work come from 26 museums in nine countries. The discovery of the new species would not have been possible without these museums actively collecting and maintaining their insect collections.

It took more than a century for some of the new species to be formally recognized and described. The first specimens of the species Zelus panamensis and Zelus xouthos, for example, had been collected in 1911 and 1915 from Panama and Guatemala. However, since then they had been waiting quietly in the collection of the Smithsonian National Museum of Natural History, USA. Now, over 100 years later, they are finally discovered and given scientific names.

Meanwhile, more recently collected specimens also turned out to be new species. Specimens of Zelus lewisi and Zelus rosulentus were collected in 1995 and 1996 from Costa Rica and Ecuador, about two decades ago, a timeframe considered relatively short for taxonomic research. These interesting patterns of time lapse between specimen collecting and scientific description suggest that it is equally important to examine both long deposited in museums specimens and those newly collected from the field.

The kind of research performed by Zhang and his colleagues is called revisionary taxonomy. In revisionary taxonomy a researcher examines a large number of specimens of a group of organisms of his or her interest. This can be either a monophyletic lineage or organisms from a particular region. The scientist’s goal is to discover and describe new species, but also examine and revise previously published species.

Besides describing new species, the present taxonomic monograph treats another 47 previously described species. Nearly all species now have images of both males and females and illustrations of male genitalia. Some of these insects are strikingly brightly colored and some mimic wasps.

###

 

Original source:

Zhang G, Hart E, Weirauch C (2016) A taxonomic monograph of the assassin bug genusZelusFabricius (Hemiptera: Reduviidae): 71 species based on 10,000 specimens. Biodiversity Data Journal 4: e8150.doi: 10.3897/BDJ.4.e8150