Special ZooKeys memorial volume open to submissions to commemorate our admirable founding Editor-in-Chief Terry Erwin

In recognition of the love and devotion that Terry expressed for the study of the World’s biodiversity, ZooKeys invites contributions to this memorial issue, covering all subjects falling within the area of systematic zoology. Titled “Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020)”.

In tribute to our beloved friend and founding Editor-in-Chief, Dr Terry Erwin, who passed away on 11th May 2020, we are planning a special memorial volume to be published on 11 May 2021, the date Terry left us. Terry will be remembered by all who knew him for his radiant spirit, charming enthusiasm for carabid beetles and never-ceasing exploration of the world of biodiversity! 

In recognition of the love and devotion that Terry expressed for study of the World’s biodiversity, ZooKeys invites contributions to this memorial issue, titled “Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020)”, to all subjects falling within the area of systematic zoology. Of special interest are papers recognising Terry’s dedication to collection based research, massive biodiversity  surveys and origin of biodiversity hot spot areas. The Special will be edited by John Spence, Achille Casale, Thorsten Assmann, James Liebherr and Lyubomir Penev.

Article processing charges (APCs) will be waived for: (1) Contributions to systematic biology and diversity of carabid beetles, (2) Contributions from Terry’s students and (3) Contributions from his colleagues from the Smithsonian Institution. The APC for articles which do not fall in the above categories will be discounted at 30%.

The submission deadline is 31st December 2020.

Contributors are also invited to send memories and photos which shall be published in a special addendum to the volume.

The memorial volume will also include a joint project of Plazi, Pensoft and the Biodiversity Literature Repository aimed at extracting of taxonomic data from Terry Erwin’s publications and making it easily accessible to the scientific community.

Spider eat spider: Scientists discover 18 new spider-hunting pelican spiders in Madagascar

In 1854, a curious-looking spider was found preserved in 50 million-year-old amber. With an elongated neck-like structure and long mouthparts that protruded from the “head” like an angled beak, the arachnid bore a striking resemblance to a tiny pelican. A few decades later when living pelican spiders were discovered in Madagascar, arachnologists learned that their behavior is as unusual as their appearance, but because these spiders live in remote parts of the world they remained largely unstudied–until recently.

At the Smithsonian’s National Museum of Natural History, curator of arachnids and myriapods Hannah Wood has examined and analyzed hundreds of pelican spiders both in the field in Madagascar and through study of pelican spiders preserved in museum collections. Her analysis, focused on spiders of the Eriauchenius and Madagascarchaea genera, sorted the spiders she studied into 26 different species–18 of which have never before been described. Wood and colleague Nikolaj Scharff of the University of Copenhagen describe all 26 pelican spider species in the Jan. 11 issue of the journal Zookeys.

159795_webWood says pelican spiders are well known among arachnologists not only for their unusual appearance, but also for the way they use their long “necks” and jaw-like mouthparts to prey on other spiders. “These spiders attest to the unique biology that diversified in Madagascar,” she said.

Pelican spiders are active hunters, prowling the forest at night and following long silk draglines that lead them to their spider prey. When a pelican spider finds a victim, it swiftly reaches out and impales it on its long, fang-tipped “jaws,” or chelicerae. Then it holds the capture away from its body, keeping itself safe from potential counterattacks, until the victim dies.

Today’s pelican spiders are “living fossils,” Wood says–remarkably similar to species found preserved in the fossil record from as long as 165 million years ago. Because the living spiders were found after their ancestors had been uncovered in the fossil record and presumed extinct, they can be considered a “Lazarus” taxon. In addition to Madagascar, modern-day pelican spiders have been found in South Africa and Australia–a distribution pattern that suggests their ancestors were dispersed to these landmasses when the Earth’s supercontinent Pangaea began to break up around 175 million years ago.

Madagascar is home to vast numbers of plant and animal species that exist only on the island, but until recently, only a few species of pelican spiders had been documented there. In 2000, the California Academy of Sciences launched a massive arthropod inventory in Madagascar, collecting spiders, insects and other invertebrates from all over the island.159828_web

Wood used those collections, along with specimens from other museums and spiders that she collected during her own field work in Madagascar, to conduct her study. Her detailed observations and measurements of hundreds of specimens led to the identification of 18 new species–but Wood says there are almost certainly more to be discovered. As field workers continue to collect specimens across Madagascar, “I think there’s going to be a lot more species that haven’t yet been described or documented,” she said.

The spiders Wood personally collected, including holotypes (the exemplar specimens) for several of the new species, will join the U.S. National Entomological Collection at the Smithsonian, the second-largest insect collection in the world, where they will be preserved and accessible for further research by scientists across the globe.

All of the pelican spiders that Wood described live only in Madagascar, an island whose tremendous biodiversity is currently threatened by widespread deforestation. The new species add to scientists’ understanding of that biodiversity, and will help Wood investigate how pelican spiders’ unusual traits have evolved and diversified over time. They also highlight the case for conserving what remains of Madagascar’s forests and the biodiversity they contain, she says.

###

Funding for this study was provided by the Danish National Research Foundation and the National Science Foundation.

###

Original source:

Wood HM, Scharff N (2018) A review of the Madagascan pelican spiders of the genera Eriauchenius O. Pickard-Cambridge, 1881 and Madagascarchaea gen. n. (Araneae, Archaeidae). ZooKeys 727: 1-96. https://doi.org/10.3897/zookeys.727.20222

Artificial neural networks could power up curation of natural history collections

Deep learning techniques manage to differentiate between similar plant families with up to 99 percent accuracy, Smithsonian researchers reveal

Millions, if not billions, of specimens reside in the world’s natural history collections, but most of these have not been carefully studied, or even looked at, in decades. While containing critical data for many scientific endeavors, most objects are quietly sitting in their own little cabinets of curiosity.

Thus, mass digitization of natural history collections has become a major goal at museums around the world. Having brought together numerous biologists, curators, volunteers and citizens scientists, such initiatives have already generated large datasets from these collections and provided unprecedented insight.

Now, a study, recently published in the open access Biodiversity Data Journal, suggests that the latest advances in both digitization and machine learning might together be able to assist museum curators in their efforts to care for and learn from this incredible global resource.

A team of researchers from the Smithsonian Department of BotanyData Science Lab, and Digitization Program Office recently collaborated with NVIDIA to carry out a pilot project using deep learning approaches to dig into digitized herbarium specimens.

Smithsonian researchers classifying digitized herbarium sheets.
Smithsonian researchers classifying digitized herbarium sheets.

Their study is among the first to describe the use of deep learning methods to enhance our understanding of digitized collection samples. It is also the first to demonstrate that a deep convolutional neural network–a computing system modelled after the neuron activity in animal brains that can basically learn on its own–can effectively differentiate between similar plants with an amazing accuracy of nearly 100%.

In the paper, the scientists describe two different neural networks that they trained to perform tasks on the digitized portion (currently 1.2 million specimens) of the United States National Herbarium.

The team first trained a net to automatically recognize herbarium sheets that had been stained with mercury crystals, since mercury was commonly used by some early collectors to protect the plant collections from insect damage. The second net was trained to discriminate between two families of plants that share a strikingly similar superficial appearance.

Sample herbarium specimen image of stained clubmoss
Sample herbarium specimen image of stained clubmoss.

The trained neural nets performed with 90% and 96% accuracy respectively (or 94% and 99% if the most challenging specimens were discarded), confirming that deep learning is a useful and important technology for the future analysis of digitized museum collections.

“The results can be leveraged both to improve curation and unlock new avenues of research,” conclude the scientists.

“This research paper is a wonderful proof of concept. We now know that we can apply machine learning to digitized natural history specimens to solve curatorial and identification problems. The future will be using these tools combined with large shared data sets to test fundamental hypotheses about the evolution and distribution of plants and animals,” says Dr. Laurence J. Dorr, Chair of the Smithsonian Department of Botany.

 

###

Original source:

Schuettpelz E, Frandsen P, Dikow R, Brown A, Orli S, Peters M, Metallo A, Funk V, Dorr L (2017) Applications of deep convolutional neural networks to digitized natural history collections. Biodiversity Data Journal 5: e21139. https://doi.org/10.3897/BDJ.5.e21139

Fishy “juveniles” from the Caribbean to be recognized as a new species, the Hourglass basslet

Living in deep reefs in the Atlantic Ocean, the banded basslet, a small and colorful species with a wide range of distribution, has long been thought to undergo significant changes during its growth into an adult. Suspiciously, the juveniles appeared much more heavily banded. Recently, however, American scientists figured out that the ‘juveniles’ were in fact a new species.

lipogramma-levinsoni-img-2In a paper published in the open access journal ZooKeys, Dr. Carole C. Baldwin, Ai Nonaka, Dr. Luke Tornabene, all affiliated with the National Museum of Natural History, Smithsonian Institution, and Dr. Ross Robertson, Smithsonian Tropical Research Institute, Panama, describe two new basslet species discovered in the Caribbean off the southern coast of Curaçao. Their finding comes as part of the Smithsonian’s Deep Reef Observation Project (DROP), devoted to documenting the biodiversity in the poorly studied depth zone of 50–300 m with the help of a special submersible, called Curasub.

Having been previously confused with the banded basslet’s juveniles, one of the new species was discovered after the submersible’s hydraulic arms collected specimens with smaller size and thicker bands from shallower depths. Subsequent study of the specimens revealed additional morphological, as well as molecular, evidence that suggest the specimens represent a new species.

The species is characterized by predominantly white to tan colored body with three vertical blackish bands, one running across its head, and two along the body. The latter often appear hourglass-shaped, with their middles being narrower and lighter. Due to this resemblance, the authors suggest that the new species is commonly called Hourglass basslet, while its scientific name is Lipogramma levinsoni, in recognition of the generous and continuing support of research on neotropical biology at the Smithsonian Tropical Research Institute (Panamá) made by Frank Levinson.

The second new basslet from Curaçao can be distinguished by the three dusky bars likewise running across its head and body. Its ground color is yellow to white, with the bar at the rear being much lighter than the rest. Reflecting its appearance, its common name is proposed to be Yellow-banded basslet, while its scientific identity is Lipogramma haberi, in recognition of Spencer and Tomoko Haber, who funded and participated in one of the submersible dives that resulted in the collection of a paratype of the new species.the-second-newly-described-basslet-species-lipogramma-haberi

In their study, the researchers also point out that it is likely that there are at least two additional cryptic species belonging to the same genus. Those species are  currently being analyzed in ongoing investigations of the Caribbean deep-reef ecosystems.

Past discoveries made as part of the DROP Project at Curaçao include adorable fishes such as the Stellate scorpionfish and the Godzilla goby. To recognize all involved in the DROP research program, the team have described the small blenny fish as Haptoclinus dropi, after the project itself, while another goby species, Coryphopterus curasub, bears the name of the submersible used in the dives.  

Original source:

Baldwin CC, Robertson RD, Nonaka A, Tornabene L (2016) Two new deep-reef basslets (Teleostei, Grammatidae, Lipogramma), with comments on the eco-evolutionary relationships of the genus. ZooKeys 638: 45-82. https://doi.org/10.3897/zookeys.638.10455

Scorpionfish too deep for SCUBA divers caught by submersible turns out to be a new species

Smithsonian Institution’s DROP project describes a tenth new fish species near the Caribbean island of Curaçao

Discovered by scientists using the manned submersible Curasub in the deep-reef waters of the Caribbean island of Curaçao, a new scorpionfish species is the latest one captured with the help of the sub’s two robotic arms.

Found by Dr. Carole C. Baldwin, lead scientist of the Smithsonian’s Deep Reef Observation Project (DROP) and based at the Smithsonian Institution in Washington, DC, Ms. Diane Pitassy, also affiliated with the Smithsonian in Washington, and Dr. Ross Robertson, Smithsonian Tropical Research Institute, Panama, the new species is described in the open access journal ZooKeys. In their paper, the authors also discuss the depth distributions and relationships of western Atlantic members of its genus.

The new scorpionfish is distinguished from other similar scorpionfishes by a number of physical traits, including its distinctive bright orange-red colors, more elongated fin rays, and DNA. Inhabiting depths between 95 m and 160 m, it is also the deepest-living member of its genus in the western Atlantic Ocean.

The new scorpionfish is officially called Scorpaenodes barrybrowni in honor of Substation Curaçao and freelance photographer Barry Brown, who “has patiently, diligently, and expertly taken photographs of hundreds of fishes and invertebrates captured alive by DROP Investigators,” explain the authors. “He has generously shared his photographs, and they have enhanced numerous scientific and educational publications. It is an honor to recognize Barry Brown’s contributions to science through his photography.”

8590_Image2
Another scorpionfish species belonging to the same genus.

“Fish specimens that are brought up from deep reefs only occasionally surface alive,” explains Baldwin. When DROP scientists return to the surface in the Curasub with a living fish, Barry races it to his aquarium and begins to work his photographic magic.”

The new fish already has a common name as well. For the public, it will be known as the Stellate Scorpionfish, deriving from its star-shaped yellowish spots and the radiating pigment markings accentuating its eyes.

The manned submersible Curasub reaches depths up to 300 m and is used by DROP and other marine scientists to search for tropical marine fishes and invertebrates, while conventional SCUBA divers are unable to reach deeper than 30 – 50 metres below the water surface.

“The 50-300 m tropical ocean zone is poorly studied – too deep for conventional SCUBA and too shallow to be of much interest to really deep-diving submersibles,” notes Baldwin. “The Curasub is providing scientists with the technology needed to remedy this gap in our knowledge of Caribbean reef biodiversity.”

The sub relies on two hydraulic arms, one equipped with a suction hose, and the other designed to immobilize the fish with an anaesthetizing chemical. Once anesthetized, the individuals are collected with the suction hose, which empties into a vented plexiglass cylinder attached to the outside of the sub.

In January, the team of Drs. Luke Tornabene, Robertson and Baldwin discovered the Godzilla goby. About a year ago, Baldwin and Robertson stumbled upon another new goby species, which amazed the scientists with its love for the depths so much that they named it after the Curasub. In 2013, the authors recognized the DROP research program in the name of a beautiful new species of small blenny fish, Haptoclinus dropi.

“Stay tuned for more new discoveries,” suggests Baldwin. “We have only scratched the surface of our understanding of the biodiversity of tropical deep reefs.”

###

Original source:

Baldwin CC, Pitassy DE, Robertson DR (2016) A new deep-reef scorpionfish (Teleostei, Scorpaenidae, Scorpaenodes) from the southern Caribbean with comments on depth distributions and relationships of western Atlantic members of the genus. ZooKeys 606: 141-158. doi: 10.3897/zookeys.606.8590

More assassins on the radar: As many as 24 new species of assassin bugs described

As many as 24 assassin bugs new to science were discovered and described by Dr. Guanyang Zhang and his colleagues. In their article, published in the open access Biodiversity Data Journal, they describe the new insects along with treating another 47 assassin bugs in the same genus. To do this, the scientists examined more than 10,000 specimens, coming from both museum collections and newly undertaken field trips.

Assassin bugs are insects that prey upon other small creatures, an intriguing behavior that gives the common name of their group. There are some 7000 described species of assassin bugs, but new species are still being discovered and described every year.

The new species described by scientists Drs Guanyang Zhang, University of California, Riverside, and Arizona State University, Elwood R. Hart, Iowa State University, and Christiane Weirauch, University of California, Riverside, belong to the assassin bug genus Zelus.

Linnaeus, the Swedish scientist, who established the universally used Linnean classification system, described the first species (Zelus longipes) of Zelus in 1767. Back then, he placed it in the genus Cimex, from where it was subsequently moved to Zelus. All of Zhang & Hart’s new species are from the Americas. Mexico, Panama, Peru, Colombia and Brazil are some of the top countries harboring new species.

To conduct the research, Zhang examined more than 10,000 specimens and nearly all of them have been databased. These specimen records are now freely and permanently available to everybody. Zhang’s work demonstrates the value of natural history collections. The specimens used in his work come from 26 museums in nine countries. The discovery of the new species would not have been possible without these museums actively collecting and maintaining their insect collections.

It took more than a century for some of the new species to be formally recognized and described. The first specimens of the species Zelus panamensis and Zelus xouthos, for example, had been collected in 1911 and 1915 from Panama and Guatemala. However, since then they had been waiting quietly in the collection of the Smithsonian National Museum of Natural History, USA. Now, over 100 years later, they are finally discovered and given scientific names.

Meanwhile, more recently collected specimens also turned out to be new species. Specimens of Zelus lewisi and Zelus rosulentus were collected in 1995 and 1996 from Costa Rica and Ecuador, about two decades ago, a timeframe considered relatively short for taxonomic research. These interesting patterns of time lapse between specimen collecting and scientific description suggest that it is equally important to examine both long deposited in museums specimens and those newly collected from the field.

The kind of research performed by Zhang and his colleagues is called revisionary taxonomy. In revisionary taxonomy a researcher examines a large number of specimens of a group of organisms of his or her interest. This can be either a monophyletic lineage or organisms from a particular region. The scientist’s goal is to discover and describe new species, but also examine and revise previously published species.

Besides describing new species, the present taxonomic monograph treats another 47 previously described species. Nearly all species now have images of both males and females and illustrations of male genitalia. Some of these insects are strikingly brightly colored and some mimic wasps.

###

 

Original source:

Zhang G, Hart E, Weirauch C (2016) A taxonomic monograph of the assassin bug genusZelusFabricius (Hemiptera: Reduviidae): 71 species based on 10,000 specimens. Biodiversity Data Journal 4: e8150.doi: 10.3897/BDJ.4.e8150

The Godzilla goby is the latest new species discovered by the Smithsonian DROP project

As part of the Deep Reef Observation Project (DROP), initiated by the Smithsonian Institution, a new goby fish species was discovered in the southern Caribbean. Living at depths greater than conventional SCUBA divers can access, yet too shallow to be of interest for deep-diving submersibles, the fish will now be known under the common name of the Godzilla goby.

Its discoverers Drs Luke Tornabene, Ross Robertson and Carole C. Baldwin, all affiliated with the Smithsonian Institution, have described the species in the open access journal ZooKeys.

Formally called Varicus lacerta, the species name translates to ‘lizard’ in Latin and refers to the reptilian appearance of the fish. Its prime colors are bright yellow and orange, while the eyes are green.

The new goby also has a disproportionately large head and multiple rows of recurved canine teeth in each jaw. This is also why the research team has chosen the common name of the Godzilla goby.

Apart from its lovely coloration, the new fish stands out with its branched, feather-like pelvic-fin rays and the absence of scales.

The scientists caught the Godzilla goby thanks to the manned submersible Curasub, which had already helped in discovering several species over the course of the project. Last year, Drs Ross Robertson and Carole Baldwin had another new goby published in ZooKeys. That time, they even named it after the submersible. Earlier this year, the DROP team also described nine additional new species, many of which were collected by the Curasub.

The manned submersible Curasub reaches depths up to 300 m in search of tropical marine fishes and invertebrates. As a result, it provides new information on the fauna that inhabits poorly studied deep-reef ecosystems.

The sub relies on two hydraulic arms, one equipped with a suction hose, and the other designed to immobilize the fish with an anaesthetizing chemical. That way, not only do the researchers gather live specimens, which once collected, are deposited into a vented acrylic cylinder attached to the outside of the sub, but also individuals suitable for critical DNA analyses.

Img 2 Baldwin Robertson

###

Original source:

Tornabene L, Robertson DR, Baldwin CC (2016) Varicus lacerta, a new species of goby (Teleostei, Gobiidae, Gobiosomatini, Nes subgroup) from a mesophotic reef in the southern Caribbean. ZooKeys 596: 143-156. doi: 10.3897/zookeys.596.8217

1,541 snout moth species and counting in the United States and Canada

The present snout moth list contains a ten-percent increase in the number of species since 1983. For the last thirty-three years snout moth specialists in the United States and Canada have been describing species new to science and recording species new to these two countries. Scientists have also published studies resulting in major changes to the classification above the species level, for example by studying snout moth “ears” (tympanal organs) and utilizing genes to study their relationships.

This check list was compiled over a three-year period by Dr. Brian Scholtens and Dr. M. Alma Solis. Brian Scholtens is a professor at the College of Charleston, South Carolina, and M. Alma Solis is a research entomologist at the Agriculture Research Service’s Systematic Entomology Laboratory, and curator of the U.S. National Pyraloidea Collection located at the Smithsonian Institution, National Museum of Natural History, Washington, D.C. Their results have been published in the open-access journal ZooKeys.

“A check list is one of the most important pieces of research, with many applications,” says Dr. Solis. “Knowing the fauna of a geographic area makes it possible to track species and, in this case, potential invasive species. The caterpillars of snout moths are economically important worldwide as pests of planted crops for food or biofuel, of forest trees, and of stored products such as wheat and nuts.”

“Many species, for example, the stored product pests, occur worldwide, but others, such as pest species of grasses including corn, can be restricted or only exist in certain geographic areas,” the scientist further explains. “It is important to be able to recognize as soon as possible that a particular species is not native to the United States or Canada.”

Scientists use Latin scientific names as “unique tags” to communicate about the morphological or molecular identity and habits of a species. One of the functions of taxonomists is to determine if a species is new or if it has already been described. Historically, confusion is created when the same species is described more than once (called a synonym) in other parts of the world.

A regional check list such as this one and a worldwide check list can work together to reinforce precision in the definition and communication about species, especially decreasing confusion about synonyms. Most worldwide check lists exist as online databases that can be updated. Dr. Solis said that they had cited new discoveries relevant to the North American snout moth fauna found in GLOBIZ, or the Global Information System on Pyraloidea, an electronic list of over 15,500 snout moth species names for which she is a collaborator.

###

Original source:

Scholtens, B. & M. A. Solis. 2015. Annotated check list of the Pyraloidea (Lepidoptera) of America North of Mexico. Zookeys.535:1-1136. doi: 10.3897/zookeys.535.6086.