“You fool. No man can kill me,” said the Witch-king of Angmar.
“I am no man!” Éowyn replied, “I am a newly discovered freshwater snail species from Brazil!”
Okay, maybe that isn’t exactly how it goes – but it’s our way of letting you know that two newly discovered snail species have been named in honour of Éowyn and Meriadoc from The Lord of the Rings.
Described in the open-access journalZoosystematics and Evolution, Idiopyrgus eowynae and Idiopyrgus meriadoci were named by fans of J.R.R. Tolkien’s iconic series (who happen to also be successful researchers).
Explaining the name Idiopyrgus eowynae, they said: “Éowyn exemplifies courage, resilience, and resistance against darkness, both internal and external, standing against Gríma Wormtongue and the Witch-king of Angmar.”
The discovered species are troglobitic and were found in a single limestone cave in the Serra do Ramalho karst area of Bahia state, northeastern Brazil. The gastropods belong to the family Tomichiidae, a group previously known for inhabiting surface freshwater environments but now shown to have adapted to subterranean ecosystems.
Both snails have unique periostracal hairs—thorn-like structures—on their shells, a feature uncommon among Brazilian freshwater snails. Their cave-specific adaptations include reduced pigmentation, fragile shells, and small size.
The Gruna do Pedro Cassiano cave, where the snails were discovered, is a fragile ecosystem threatened by water extraction, deforestation, and climate change. Due to the species’ limited habitat and environmental threats to their subterranean ecosystem, the authors recommend a ‘Vulnerable’ classification. The findings highlight the importance of protecting Brazil’s subterranean biodiversity and raise concerns about the impact of human activities on these delicate ecosystems.
These concerns played a part in the naming of Idiopyrgus meriadoci, as the researchers state: “Besides standing with Éowyn against the Witch-king in the Battle of the Pelennor Fields, Merry is also an example of the fight for nature conservation in Middle-earth, pushing the Ents into action and ultimately ending Saruman’s threat to Fangorn Forest.”
On his choice of Tolkien-inspired names for the new species, lead author Dr Rodrigo B. Salvador of the Finnish Museum of Natural History said: “I tend to use lots of pop culture references in my species names—from books, comics, Dungeons & Dragons, and video games. If we think about it, there is a long-standing tradition in taxonomy of using names from mythology and literature to name species.
“Granted, in the old days, those names mostly came from Greek and Roman myths and Shakespeare. Today, we have newer mythologies and literature classics, so in a way, we’re just continuing that tradition.”
Salvador was also resposible for naming a land snail after Shar of Dungeons and Dragons, and more recently Baldur’s Gate, fame. Read about it below!
Original source
Salvador RB, Bichuette ME (2024) Idiopyrgus Pilsbry, 1911 (Gastropoda, Tomichiidae): a relict genus radiating into subterranean environments. Zoosystematics and Evolution 100(4): 1543-1556. https://doi.org/10.3897/zse.100.136428
–
Follow ZSE on X and Facebook, and subscribe for its newsletter from the journal’s website.
Jake Lewis, an entomologist in the Environmental Science and Informatics Section at the Okinawa Institute of Science and Technology (OIST), is fascinated by weevils, a diverse group of beetles that includes many species with elephant trunk-like mouthparts (called a rostrum). Weevils provide various ecosystem services such as pollination and decomposition, but some species are serious pests known to decimate crop fields and timber forests.
Using x-ray microtomography, a 3D imaging technique that uses x-rays to visualize cross sections of the internal structure of objects, Lewis and his collaborators digitally removed scales that cover the cuticle of the weevils. They found that the underlying cuticle differs significantly between species and can therefore be used for taxonomic and classification purposes. Using this technique in combination with traditional light microscopy and DNA barcoding, they discovered, described, and named 12 new weevil species from Japan, Malaysia, Vietnam, and Taiwan. These species range from 1.5 – 3.0 mm in length and are comparatively quite small weevils.
Two of these new species are present in Japan: Aphanerostethus magnus (Oo-daruma-kuchikakushi-zoumushi) and Aphanerostethus japonicus (Nippon-daruma-kuchikakushi-zoumushi). One of these, Aphanerostethus japonicus, is also found in Yanbaru National Park, Okinawa. This is the first time x-ray microtomography has been used to remove obscuring scales to examine underlying differences in morphology for taxonomic purposes. The findings from this study have been published in the open-access journal ZooKeys.
The researchers showed that removing scales using x-ray microtomography reveals significant morphological differences between species, which cannot be easily observed using other methods. Consequently, this technique may gain more popularity as a tool for identifying new insect species, especially those covered in scales or debris.
Lewis, OIST’s Insect Collection Manager and lead author of the paper, examined specimens from collections in Canada, Germany, Japan, Malaysia, Taiwan, and the Netherlands. One of the primary goals was to investigate the use of x-ray microtomography as a tool in weevil taxonomy. The genus Aphanerostethus was poorly studied in the past, but many undescribed species were discovered in museum collections around the world, including the two new species from Japan.
Multiple methods to find new species
The researchers used traditional methods such as light microscopy and dissections to observe differences between species, including the scales along the elytra (back), leg spines, and the shape of the rostral canal (a canal that protects the rostrum). They also used DNA barcoding to analyze their genes and create a phylogenetic tree of eight of the species. Some species were not as easy to separate based on morphology alone, but as the gene sequences differ between species, the phylogenetic tree was informative and provided additional evidence of new species.
Although the above methods are standard practice in taxonomy, the researchers’ use of X-ray microtomography was novel and was successfully used to examine the structure of not only the hidden cuticle, but also the hindwings. Aphanerostethus weevils have lost the ability to fly due to the gradual reduction of their hindwings, however the degree of reduction was shown to differ between species. Normally, specimens would have to be dissected to view the hindwings, but because x-ray microtomography allows for non-destructive examination of internal anatomy, it is invaluable when working with rare or precious specimens that cannot be dissected or altered.
The presence of partially reduced wings in some species offers a fascinating glimpse into the ongoing process of evolutionary change: “Some species have almost completely lost their hindwings, while others still have non-functional half-wings with remaining vein patterns. The differing degrees in hindwing loss is not only useful for taxonomy and systematics, but also shows how different species within the same group can be at different stages of losing a historically highly important organ that played a crucial role in insect evolution,” Lewis explained.
Investing in Japan’s natural heritage
The discovery of new weevil species can be challenging for two main reasons. Firstly, weevils are incredibly diverse, making complete cataloging time consuming and tedious. Secondly, many weevil species are highly host-specific, may only inhabit very particular microhabitats, and may only be active for a short period of time as adults. For example, some species feed on a single tree species and may only occupy a certain part of a tree, such as the canopy. Furthermore, some species of weevils are strictly nocturnal and rarely observed during the daytime.
This extreme specialization and variation in natural history means that unless researchers investigate at night and day, across seasons, and focus on specific parts of many different plant species, they will inevitably overlook certain species.
Dr. Dan Warren, a research fellow at the Gulbali Institute for Applied Ecology and former leader of the Environmental Science and Informatics Section, emphasized the importance of investing in specimen collections: “These specimen collections are crucial for discovering new species and documenting biodiversity changes, both from human activities and natural cycles. They are essential tools for scientific research and conservation biology,” he stated. “Without proper support for them and the people who maintain them, we risk losing irreplaceable information on species and ecosystems, potentially before we even discover them.”
“These new weevil species are part of Japan’s natural heritage, and although still poorly known ecologically, discovering and naming them is the first step towards an understanding of their biology,” Lewis added. Protected areas like Yanbaru National Park, home to the newly discovered A. japonicus, are essential to the protection of the island’s rich and endemic biodiversity.
Research article:
Citation: Lewis JH, Kojima H, Suenaga M, Petsopoulos D, Fujisawa Y, Truong XL, Warren DL (2024) The era of cybertaxonomy: X-ray microtomography reveals cryptic diversity and concealed cuticular sculpture in Aphanerostethus Voss, 1957 (Coleoptera, Curculionidae). ZooKeys 1217: 1–45. https://doi.org/10.3897/zookeys.1217.126626
A new-to-science carnation species from Hawaii is likely the first plant to be identified and collected using drone technology.
Check out the video below to see how it happened!
Published in the open-access journal PhytoKeys, the discovery was facilitated by the National Tropical Botanical Garden‘s (NTBG) botanical drone program, which deploys unmanned aircraft to explore remote cliff environments.
Via drone photography, researchers spotted Schiedea waiahuluensis growing on steep, inaccessible cliffs in the Waiahulu region of the island of Kauai. To gather samples, they suspended ‘the Mamba’ – a remote plant collection device – from a drone and used it to grab, cut, and collect the plant for study.
The new species belongs to a well-studied Hawaiian lineage in the carnation family. Its genus, Schiedea, consists of 36 species spread across the Hawaiian Islands, with 12 species found only on Kauai.
Schiedea waiahuluensis grows only on the dry cliffs of Waiahulu, with an estimated population of around 345 individuals, primarily growing on bare rock surfaces in small pockets of soil.
Their fragile habitat is under threat from invasive plant species and feral goats, making conservation efforts crucial. Researchers are planning further studies to assess the full distribution and conservation needs of the species.
“S. waiahuluensis has a combination of traits that would have been very difficult to predict, and upended our notions about diversity in Schiedea, even after decades of research on this genus.”
Following more than 40 years of research on Schiedea on Kauai, this finding demonstrates the potential for future discoveries of native plants across the Hawaiian Islands through drone technology, and highlights the burgeoning role of drones in advancing conservation efforts and preventing plant extinctions.
“The new development of the NTBG drone program provides a major new tool in biodiversity research that has allowed for better assessment of species distribution and status as shown by drone missions on the inaccessible cliffs of the major canyons on Kauai.
It has revealed populations of species presumed extinct such as the recent rediscovery of Hibiscadelphus woodii, a relative of Hibiscus, mapped populations of Schiedea waiahuluensis, and collected seeds via drone for establishment of a conservation collection of this species.”
While drone-technology innovators were not likely thinking about botany, Schiedea waiahuluensis serves as a reminder that science can benefit from technologic advancements from seemingly unrelated fields.
For another ‘miraculous’ discovery, read our blog on Amalophyllon miraculum, an incredible little plant from Ecuador!
Original study:
Wagner WL, Weller SG, Sakai AK, Nyberg B, Wood KR (2024) Schiedea waiahuluensis (Caryophyllaceae), an enigmatic new species from Kaua’i, Hawaiian Islands and the first species discovered by a drone collection system. PhytoKeys 247: 111-121. https://doi.org/10.3897/phytokeys.247.130241
A new species of clearwing moth, Carmenta brachyclados, has been found in Port Talbot, Wales, and described by Natural History Museum scientists
Not a native to the UK, the moth is a denizen of the tropical jungles of South America
The two Welsh specimens had been accidentally brought into Europe, in a boot bag brought back from a photography trip to Guyana
A new species of moth has been described far away from home following a cross-continent detective journey that included Natural History Museum scientists from separate fields, a budding young ecologist with a knack for community science, a globe-trotting photographer, and two moths new to science which travelled over 4,500 miles from their native country.
The species is a clearwing moth and has been named Carmenta brachyclados, in reference to a characteristically short hindwing vein. Despite having never been catalogued in its native country, Guyana, a surprising sequence of events led to its being described after being spotted flying around a home in Port Talbot, Wales.
In February this year, the new species was spotted flying around the home of ecologist Daisy Cadet and her mother, Ashleigh, a professional photographer. Captured by the moth’s striking appearance, which stood out as being out of the ordinary for a house moth in the UK during winter, Daisy uploaded an image to social media which set the chain of events into motion.
Daisy was referred to Natural History Museum lepidoptera experts, Mark Sterling and David Lees, having been advised she had stumbled upon something out of the ordinary by social media users. Mark and David started seeking a match of the Wales specimens in terms of appearance to the clearwing collection contained within the 13.5 million Lepidoptera specimens housed at the NHM – the world’s largest and most diverse collection.
Taking the investigation a step further, Sterling and Lees aided by the museum’s Jordan Beasley, carried out DNA sequencing on the moth and found that its closest match was a group of seed-feeding clearwing moths, Carmenta, which occur in Central America and South America. This finding prompted Daisy to look inside Ashleigh’s bag, which had accompanied her on a photography assignment in Guyana.
Two delicate pupal casings, still intact, were found among the mud from the boots she’d worn on the trip along with a small piece of woody vegetation with what looked like bore holes made by the caterpillars of the moths.
Mark Sterling, a Scientific Associate at the Natural History Museum, commented:“Clearwing moths are notoriously difficult to find, even by professional entomologists. They are even more difficult to rear from larvae or pupae, which usually dry out or go mouldy within a few days of collection.
“The chances of two clearwing moths from the Neotropics successfully emerging in South Wales, over three months after they arrived, in cold Welsh winter, and being preserved in good condition, is extraordinary.”
“The improbability of this event defies rational explanation. However, whilst in Guyana, Ashleigh was told that if she left an offering of tobacco to the jungle spirits she would be shown something beautiful from the jungle, so that is what she did. We conclude in the paper that it must have been very good tobacco.”
Dr David Lees, Senior Curator for Microlepidoptera at the Natural History Museum, added: “To add to the improbability of this story is the fact that due to the incredible piece of community science from Daisy, we have photographs of a living holotype (an original specimen which forms the basis of the name and description of that species), which is highly unusual.”
Along with now having a country of origin for this new species, they also had a small piece of the host plant on which the larvae had evidently fed. The plant fragment was sent to Natural History Museum botanist, Sandy Knapp, who advised it was likely to be a seed pod of a species of Mora, a suggestion confirmed by DNA sequencing by Jordan. A large leguminous tree, Moraexcelsa grows in the jungles of Central America and South America.
The final step was to compare Daisy’s moth specimens to the vast number of species within the Carmenta genus – where only half of the 100 described species have been DNA barcoded. Using analyses of DNA and the specimens’ body plan compared to others on record, Mark and David concluded that this was indeed an undescribed species.
This paper ‘A success for community science: Carmenta brachyclados sp. nov. (Lepidoptera, Sesiidae, Synanthedonini), a clearwing moth from Guyana discovered with its hostplant indoors in Wales (United Kingdom)’ was published in Nota Lepidopterologica and can be accessed here https://nl.pensoft.net/issue/4736/
Research article:
Sterling MJ, Cadet DT, Beasley J, Lees DC (2024) A success for community science: Carmenta brachyclados sp. nov. (Lepidoptera, Sesiidae, Synanthedonini), a clearwing moth from Guyana discovered with its hostplant indoors in Wales (United Kingdom). Nota Lepidopterologica 47: 201-218. https://doi.org/10.3897/nl.47.130138
A newly identified wasp species, Chrysonotomyia susbelli, has been discovered in Houston, Texas, marking the 18th new species identified by Rice University’s Scott Egan and his research team since 2014. The discovery, the fourth wasp species found on the university grounds in seven years, reveals the hidden world of parasitoid wasps and the intricate ecosystems that thrive outside our doors.
Chrysonotomyia susbelli is a parasitoid wasp, about 1 millimeter long, that emerges from galls, or tumorlike growths created by the gall wasp Neuroterus bussae found on southern live oak leaves. The galls serve as microhabitats within which larvae feed, develop and pupate. The research team’s study was published in the journal ZooKeys on Sept. 18.
“Chrysonotomyia susbelli represents the sixth species of its genus described from North America and the first globally known to parasitize cynipid gall wasps,” said Egan, an associate professor of ecology and evolutionary biology.
The wasp was discovered and named by Brendan O’Loughlin, a Rice senior and the study’s first author. “The wasp’s goldenrod color is almost identical to the official colors of Wiess College, my residential college,” O’Loughlin said.
To confirm the uniqueness of the species, the research team conducted a genetic analysis and a detailed study of the wasp’s physical features under a microscope. Its investigation also included a review of the historical literature to ensure that the species had not been previously described.
This research was complemented by DNA barcode data and observations of the wasp’s natural history, including host associations and a unique leaf-scanning behavior exhibited by female wasps. The researchers also modified the identification key of New World members, groups of species found exclusively in the Americas, to incorporate this new species.
Egan emphasized the importance of studying local biodiversity. “You don’t have to travel to a distant rainforest to find new and beautiful things — you just have to step outside and look,” he said.
The discovery hints at a previously unexplored ecological niche involving Chrysonotomyia parasitoids, cynipid gall wasps, and oaks, suggesting that there may be many more undiscovered species within this system.
“Generations of Chrysonotomyia susbelli have likely lived unnoticed on the oaks of Rice University since its founding,” Egan said.
Co-authors of the study include Pedro FP Brandão-Dias, Ph.D. graduate of ecology and evolutionary biology at Rice and current postdoctoral scholar at the University of Washington, and Michael Gates, parasitoid wasp specialist of the U.S. Department of Agriculture’s Systematic Entomology Laboratory at the Smithsonian National Museum of Natural History.
Originally published by Rice University. Republished with permission.
Research article:
O’Loughlin B, Brandão-Dias PFP, Gates MW, Egan SP (2024) Description of a new species of Chrysonotomyia Ashmead from Houston, Texas, USA (Hymenoptera, Chalcidoidea, Eulophidae). ZooKeys 1212: 241-254. https://doi.org/10.3897/zookeys.1212.127537
Despite its small size of less than 2 centimeters, the grumpy dwarfgoby has a surprisingly menacing appearance. Its large canines and fierce expression give it a rather intimidating look for such a small fish.
Lucía Pombo-Ayora, who gave the species its grumpy common name, comments on its distinctive appearance: “I imagine in its own tiny world, it is a fearsome predator. Its grumpy expression and large canines certainly make it look the part, despite its small size.”
The species’ bright red coloration actually helps it blend into its natural habitat. It can be found on the walls and overhangs of coral reefs, covered in red coralline algae. There, it lives in small holes and crevices, using its large canines to capture tiny invertebrates. The grumpy dwarfgoby appears to be a relatively rare species, which is likely why it remained undiscovered until now.
The researchers found the first specimens in the Farasan Banks in Saudi Arabia, with additional specimens later found near Thuwal in the Red Sea. It was researcher Viktor Nunes Peinemann who first found it during a diving expedition to explore the coral reef fish diversity. Initially, the researchers thought they had rediscovered the fiery dwarfgoby, Sueviota pyrios, which is only known from a single specimen collected in 1972. However, upon closer examination, they realized they were dealing with an entirely new, undescribed species.
“The ongoing discovery of distinctive new species like this grumpy dwarfgoby shows how much biodiversity remains undiscovered in the Red Sea,” Viktor Nunes Peinemann explains. “This is concerning given the recent environmental changes in the region. In some cases, species could go extinct before we even describe them.”
The region is known for its high levels of endemic species and the Grumpy dwarf goby is another addition to this unique fauna. Much of the Red Sea has experienced major disturbances resulting from climate change in recent years, including widespread coral bleaching and mortality. The fact that new species are still being discovered in this rapidly changing environment highlights the urgency of continued research and conservation efforts, the researchers believe.
They have published their discovery in the open-access scientific journal ZooKeys.
Photos by Viktor Nunes Peinemann
Research article:
Nunes Peinemann V, Pombo-Ayora L, Tornabene L, Berumen ML (2024) The Grumpy dwarfgoby, a new species of Sueviota (Teleostei, Gobiidae) from the Red Sea. ZooKeys 1212: 17-28.https://doi.org/10.3897/zookeys.1212.121135
A new species of tarantula spider, Aphonopelma jacobii, has been discovered from the Chiricahua Mountains in southeastern Arizona. This small, black and grey tarantula species has fiery red hairs on its abdomen and can be found in the high-elevation habitats of the Chiricahua Mountains, where it survives through bitterly cold winters.
The discovery was rather unexpected. “We often hear about new species being discovered from remote corners of Earth, but it is remarkable that these spiders are found in our own backyard, albeit in somewhat difficult-to-access areas of our backyard,” said Dr. Chris Hamilton, assistant professor at the University of Idaho and co-lead author of a study in ZooKeys that reports on the spider. “With Earth in the midst of a human-mediated extinction crisis, it is astonishing how little we know about our planet’s biodiversity, even for conspicuous and charismatic groups such as tarantulas.”
The Chiricahuas, renowned for their exceptional biodiversity and high levels of endemism, compose part of the Madrean Archipelago (colloquially referred to as the Madrean Sky Islands), a complex of forested mountain ranges that span the cordilleran gap between the Colorado Plateau and Rocky Mountains in the southwestern United States and the Sierra Madre Occidental in northwestern Mexico. These montane forest “islands”—separated from each other by low-elevation deserts and arid grasslands—have evolved in isolation, leading to the origin of numerous short-range endemic species, and resulting in a mosaic of biodiversity unlike that of any other region in the United States.
The forests where these tarantulas live are threatened by several factors, perhaps most notably from climate change. Recent studies in the sky island region suggest that these forests will be “pushed off” the mountains over the next several decades as temperatures and precipitation continue to increase and decrease, respectively. Organisms adapted to these cooler and more humid mountain tops—such as these spiders—will likely become extinct as suitable habitat disappears.
Dr. Brent Hendrixson, professor at Millsaps College and co-lead author of the study adds, “These fragile habitats are also threatened by increased exurban development in the San Simon Valley and Portal areas, destructive recreational activities, and wildfires. In addition, there is some concern that these tarantulas will be exploited for the exotic pet trade due to their rarity, striking coloration, and docile disposition. We must consider the impact that unethical collectors might have on these spiders when determining the threats to this species and the implications for its conservation.”
Aphonopelma jacobii is named after Michael A. Jacobi, who helped find several of the first specimens which led to the description of this new species.
“This discovery represents the 30th species of tarantula documented from the United States. Aphonopelma is the most species diverse tarantula genus on the planet (at least for documented species). Our research adds to this number and continues to advance our understanding of the true species diversity in this incredibly interesting and important biodiversity hotspot,”Dr. Hamilton says in conclusion.
Research article:
Hamilton CA, Hendrixson BE, Silvestre Bringas K (2024) Discovery of a new tarantula species from the Madrean Sky Islands and the first documented instance of syntopy between two montane endemics (Araneae, Theraphosidae, Aphonopelma): a case of prior mistaken identity. ZooKeys 1210: 61-98.https://doi.org/10.3897/zookeys.1210.125318
Accelerating global change continues to threaten Earth’s vast biodiversity, including in the oceans, which remain largely unexplored. To date, only a small fraction of an estimated two million total living marine species have been named and described. A major challenge is the time it takes to scientifically describe and publish a new species, which is a crucial step in studying and protecting these species. The current scientific and publishing landscape often results in decade-long delays (20-40 years) from the discovery of a new species to its official description. As an alternative to this, the Ocean Species Discoveries initiative was launched, offering a new platform for rapid but thorough taxonomic description of marine invertebrate species.
The project coordinated 25 different researchers and produced data on thirteen marine invertebrate taxa, including one new genus, eleven new species, and one redescription and reinstatement. The species, which originate from all over the globe and at depths from 5.2 to 7081 meters, are brought together in an open-access publication in the Biodiversity Data Journal.
This is the first of a series of publications related to SOSA’s initiative, in collaboration with Biodiversity Data Journal, presenting a revolutionary approach in new species descriptions, thanks to which the publication of new species takes years, sometimes even decades, less. The ARPHA publishing platform, which powers the Biodiversity Data Journal, further expedites species descriptions and their use in studies and conservation programs by employing a streamlined data publishing workflow. ARPHA automatically exports all species data, complete with images and descriptions, to GBIF—the Global Biodiversity Information Facility and the Biodiversity Literature Repository at Zenodo, from where other researchers can easily find and use them.
One of the new species described in the Ocean Species Discoveries is Cunicolomaera grata, a curious amphipod whose burrows along the seafloor perplexed scientists. Another is a wrinkly-shelled limpet called Lepetodrilus marianae that lives on hydrothermal vents, underwater volcanoes in the deep-sea where temperatures can reach 400 degrees C. Normally, the descriptions for these two very different species wouldn’t be in the same publication, but this new publication format allows for species descriptions from different marine invertebrate taxa to be published together in one ‘mega-publication,’ offering a huge incentive for researchers to make their discoveries public.
“Currently, there’s a notable delay in naming and describing new animals, often because journals expect additional ecological or phylogenetic insights. This means many marine species go undescribed due to lack of data. OSD addresses this by offering concise, complete taxonomic descriptions without requiring a specific theme, refocusing attention on taxonomy’s importance,” says Dr. Torben Riehl, who is one of the researchers featured in Ocean Species Discoveries.
Reducing the time it takes to get from discovering a new animal to a public species description is crucial in our era of increasing biodiversity loss. The wrinkly-shelled limpet and two other species described in the Ocean Species Discoveries live in hydrothermal vent zones – an environment threatened by deep-sea mining. Another OSD species, Psychropotes buglossa, a purple sea cucumber (sometimes also called a gummy squirrel), lives in the North Atlantic, but similar species live in areas of high economic interest, where polymetallic-nodule extraction could soon endanger sea life. Threats like these risk driving species to extinction before we even get the chance to know and study them. Through efforts like SOSA’s Ocean Species Discoveries, we can get closer to understanding the biodiversity of our oceans and protecting it before it’s too late.
“Only by leveraging the collective strengths of global progress, expertise, and technological advancements, will we be able to describe the estimated 1.8 million unknown species living in our oceans. Every taxonomist specialized on some group of marine invertebrates is invited to contribute to the Ocean Species Discoveries,” says Prof. Dr. Julia Sigwart in conclusion.
Research article:
(SOSA) SOSA, Brandt A, Chen C, Engel L, Esquete P, Horton T, Jażdżewska AM, Johannsen N, Kaiser 5, Kihara TC, Knauber H, Kniesz K, LandschoffJ, Lörz A-N, Machado FM, Martínez-Muñoz CA, Riehl T, Serpell-Stevens A, Sigwart JD, Tandberg AHS, Tato R, Tsuda M, Vončina K, Watanabe HK, Went C, Williams JD (2024) Ocean Species Discoveries 1-12 — A primer for accelerating marine invertebrate taxonomy. Biodiversity Data Journal 12: e128431. https://doi.org/10.3897/BDJ.12.e128431
Denver Museum of Nature & Science researchers discovered of a new species of cave-dwelling pseudoscorpion near the Flatirons in City of Boulder Open Space and Mountain Parks. David Steinmann, a research associate with the Zoology Department at the Denver Museum of Nature & Science, found the new pseudoscorpion along with his wife Debbie and son Nathan. The newly discovered species, Larca boulderica named after Boulder, marks the sixth cave-adapted species of the Larca genus from caves in North America.
In 2008, the Steinmann family went looking for invertebrates in a small cave west of Boulder when David saw an unusual-looking pseudoscorpion clinging to the bottom of a jagged stone. Steinmann sent the specimens to Mark Harvey, a pseudoscorpion expert at the Western Australian Museum, and Harvey determined that the tiny animals represent a new species. Harvey and Steinmann described and named Larca boulderica in a paper recently published in ZooKeys. The specimen used in the species description will now be deposited in the arachnology collection at the Denver Museum of Nature & Science.
“Dave Steinmann’s discovery of new species of pseudoscorpions from Colorado’s cave systems demonstrates how much we still have to discover about this planet’s biodiversity,” said Paula Cushing, senior curator of invertebrate zoology at the Museum. “Dave’s work in these challenging and unique habitats is critical in such discoveries.”
About the size of a sesame seed with crab-like pincers, Larca boulderica survives in dry and dusty habitats such as packrat middens. Boulder is the only place in the world they are known to live. Pseudoscorpions have been around for millions of years, including when Tyrannosaurus rex roamed the planet.
“Pseudoscorpions are fascinating creatures. They look like tiny scorpions without a stinger. Few people encounter them, and even fewer find them in caves,” said Frank Krell, senior curator of entomology at the Museum. “David Steinmann has found many tiny creatures in Colorado caves that nobody has found before. The city of Boulder is now immortalized in the name of this new species.”
Research article:
Harvey MS, Steinmann DB (2024) A new troglomorphic species of Larca (Pseudoscorpiones, Larcidae) from Colorado. ZooKeys 1198: 279-294. https://doi.org/10.3897/zookeys.1198.120353
It was discovered while working on the 1001 Seaforest Species project, which focuses on raising awareness about the rich kelp bed ecosystems of South Africa.
Published in the scientific journal ZooKeys, the study focuses on four species of galeommatoidean bivalves collected from the Western Cape region of South Africa. Among these is one new species, Brachiomya ducentiunus. This small clam, which is only 2 mm (less than 1/8th inch) in length, spends its life crawling between the spines of sea urchins.
The new species has so far only been found in one locality in False Bay, South Africa, where it was found attached to the burrowing sea urchin Spatagobrissus mirabilis in coarse gravel at a depth of about 3 m. It has not been observed free-living, without the host urchin.
Brachiomya ducentiunus was discovered while preparing and working on the 1001 Seaforest Species project, a research and storytelling program aimed at increasing awareness of regional kelp bed ecosystems colloquially referred to as ‘the Great African Seaforest’.
“This study marks a significant advancement in our understanding of the biodiversity and ecological interactions of galeommatoidean bivalves,” says lead author Paul Valentich-Scott. “By uncovering the hidden lives of these small but ecologically important organisms, we hope to contribute to the broader knowledge of marine biodiversity and the conservation of these unique habitats.”
Co-author Charles L. Griffiths, emeritus professor at the University of Cape Town, says, “A large proportion of smaller marine invertebrates remain undescribed in western South Africa and almost any project that samples specialized habitats turns up many new records and species.”
In a similar vein, co-author Jannes Landschoff, marine biologist at the Sea Change Trust, says “Creating foundational biodiversity knowledge is a most important step to the humbling realization of how fascinating and uniquely diverse a place is. I see this every day through our work in the rich coastal waters of Cape Town, where an extensive underwater kelp forest, the ‘Great African Seaforest,’ grows.”
Research article:
Valentich-Scott P, Griffiths C, Landschoff J, Li R, Li J (2024) Bivalves of superfamily Galeommatoidea (Mollusca, Bivalvia) from western South Africa, with observations on commensal relationships and habitats. ZooKeys 1207: 301-323. https://doi.org/10.3897/zookeys.1207.124517