If you follow any of Pensoft’s social media accounts, you will know that we have been counting down our top 10 favourite species described as new-to-science in our journals this year.
The list is—of course—entirely arbitrary, but it is also a fun way to look back on a year in which several weird and wonderful animals, plants and fungi were discovered.
In this blog post, we will tell you more about each species, share some honourable mentions, and reveal our number 1 spot!
Honourable mentions
The league of legends crab
When it was time to name a tiny, ‘furry’ new species of gorilla crab from China, researchers drew unlikely inspiration from the video game League of Legends.
Gothus teemo was named after the character Teemo thanks to its distinctive appearance and has drawn a lot of attention from fans of the franchise.
The new species is thought to have resembled a modern sandtiger shark (pictured).
Calling anything on this list a ‘new species’ is not accurate—rather, they are just new to published science. Nothing exemplifies this more than Palaeohypotodus bizzocoi, a long-extinct shark species that lived 65 million years ago, shortly after the fall of the dinosaurs.
What makes this discovery remarkable is that it was partially accidental. Find out how a 100-year-old box of teeth in Alabama led to the discovery of this ancient shark below.
Sometimes, it is the way in which a new species is discovered that makes it so special.
Such is the case for Schiedea waiahuluensis, a carnation species from Hawaii that is likely the first plant to be identified and collected using drone technology. Learn all about it below!
With its all-black colouration, Tylototriton gaowangjienensis, a crocodile newt from China, has drawn comparisons to Toothless from How to Train Your Dragon.
However, this alluring amphibian hides flashes of orange beneath its tail and toes! Find more pictures and information below.
Besides its adorable appearance, Hoplitis onosmaevae is remarkable due to its distribution. It is currently only known from a small region of the French Alps, and areas >2,000 km away in the mountains of Turkey and Iraq.
Another interesting aspect of Hoplitis onosmaevae is its specialised ecological niche: it is thought to only collect pollen from Onosma species. This narrow ecological niche makes it vulnerable to factors like climate change and changes in agricultural practices.
John L. Clark with Amalophyllon miraculum. Credit @phinaea on Instagram.
The discovery of Amalophyllon miraculum—in an area assumed to be a barren agricultural landscape of plant extinctions—represents an inspiration for biodiversity conservation. This “miracle” plant, as its name suggests, was found surviving in one of the small, isolated forest fragments that remain in the Centinela region of western Ecuador.
This spiky amphibian was discovered on Cerro Candelaria, a mountain in the Tungurahua province. The discovery of this new species in the upper Rio Pastaza watershed suggests this area might be a centre of rapid evolution for these fascinating frogs.
Entomologists and citizen scientists teamed up to discover this new species of flea beetle in the lush rainforests of Borneo. The discovery was made during a Taxon Expeditions trip, where non-scientist people got the chance to work alongside scientists to identify and describe new species.
What makes this discovery particularly exciting is the beetle’s size—it’s actually one of the largest among its relatives! Flea beetles that live in the leaf litter of tropical forests are typically much smaller, and as a result, we know very little about their ecology and diversity.
Discovered in the Red Sea, the ‘grumpy dwarf goby’ (Sueviota aethon) was published as a new species in ZooKeys. You can probably guess how it earned its name! This tiny fish, measuring less than 2 centimetres long, sports a permanent frown thanks to its large canines and fierce expression. Despite its small size, the grumpy dwarfgoby is thought to be a fearsome predator in its coral reef habitat.
Thismia malayanais a mycoheterotrophic plant, meaning it doesn’t photosynthesise. Instead, it acts as a parasite, stealing carbon resources from the fungi on its roots!
By stealing nutrients from fungi, it can thrive in the low-light conditions of dense forest understories where its highly specialised flowers are pollinated by fungus gnats and other small insects.
While the Tiputini velvet worm—Oroperipatus tiputini—may look friendly, it is an accomplished hunter that shoots a sticky substance from a pair of glands to trap its prey. This “living fossil” is a rare and unique invertebrate that evolved over 500 million years ago. The new species was discovered in the Ecuadorian Amazon at the Tiputini Biodiversity Station, which is part of the Yasuní Biosphere Reserve.
They say that life imitates art, but this new gecko species is proof that life can imitate art too! Researchers in India have discovered a gecko with such a unique and beautiful colouration that they named it after painter Vincent van Gogh. The “Starry Night” gecko, or Cnemaspis vangoghi, was discovered in the Southern Western Ghats and stands out due to the male’s yellow head and forebody with light blue spots on the back, a striking combination reminiscent of the famous painting.
Yet another hectic year has passed for our team at Pensoft, so it feels right to look back at the highlights from the last 12 months, as we buckle up for the leaps and strides in 2025.
In the past, we have used the occasion to take you back to the best moments of our most popular journals (see this list of 2023 highlights from ZooKeys, MycoKeys, PhytoKeys and more!); share milestones related to our ARPHA publishing platform (see the new journals, integrations and features from 2023); or let you reminisce about the coolest research published across our journals during the year(check out our Top 10 new species from 2021).
In 2022, when we celebrated our 30th anniversary on the academic scene, we extended our festive spirit throughout the year as we dived deep into those fantastic three decades. We put up Pensoft’s timeline and finished the year with a New Species Showdown tournament, where our followers on (what was back then) Twitter voted twice a week for their favourite species EVER described on the pages of our taxonomic journals.
Spoiler alert: we will be releasing our 2024 Top 10 New Species on Monday, 23 December, so you’d better go to the right of this screen and subscribe to our blog!
As we realised we might’ve been a bit biased towards our publishing activities over the years, this time, hereby, we chose to present you a retrospection that captures our best 2024 moments from across the departments, and shed light on how the publishing, technology and project communication endeavours fit together to make Pensoft what it is.
In truth, we take pride in being an exponentially growing family of multiple departments that currently comprises over 60 full-time employees and about a dozen freelancers working from all corners of the world, including Australia, Canada, Belgium and the United Kingdom. Together, we are all determined to make sure we continuously improve our service to all who have trusted us: authors, reviewers, editors, client journals, learned societies, research institutions, project consortia and other external collaborators.
After all, great deeds are only possible when you team up with great like-minded people!
In 2024, at Pensoft, we were hugely pleased to see a significant growth in the published output at almost all our journals, including record-breaking numbers in both submissions and publications at flagship titles of ours, including the Biodiversity Data Journal, PhytoKeys and MycoKeys.
Later in 2024, our colleagues, who work together with our clients to ensure their journals comply with the requirements of the top scholarly databases before they apply for indexation, informed us that another two journals in our portfolio have had their applications to Clarivate’s Web of Science successfully accepted. These are the newest journal of the International Association of Vegetation Science: Vegetation and Classification, and Metabarcoding and Metagenomics: a journal we launched in 2017 in collaboration with a team of brilliant scientists working together at the time within the DNAquaNet COST Action.
In 2024, we also joined the celebrations of our long-time partners at the Museum für Naturkunde Berlin, whose three journals: Zoosystematics and Evolution, Deutsche Entomologische Zeitschrift and Fossil Record are all part of our journal portfolio. This year marked the 10th Open Access anniversary of the three journals.
In the meantime, we also registered a record in new titles either joining the Pensoft portfolio or opting for ARPHA Platform’s white-label publishing solution, where journal owners retain exclusivity for the publication of their titles, yet use ARPHA’s end-to-end technology and as many human-provided services as necessary.
Pensoft’s CEO and founder Prof. Dr. Lyubomir Penev with Prof. Dr. Marc Stadler, Editor-in-Chief of IMA Fungus and President of the International Mycological Association at the Pensoft booth at the 12th International Mycological Congress (August, the Netherlands).
Amongst our new partners are the International Mycological Association who moved their official journal IMA Fungus to ARPHA Platform. As part of Pensoft’s scholarly portfolio, the renowned journal joins another well-known academic title in the field of mycology: MycoKeys, which was launched by Pensoft in 2011. The big announcement was aptly made public at this year’s 12th International Mycological Congress where visitors of the Pensoft stand could often spot newly elected IMA President and IMA Fungus Chief editor: Marc Stadler chatting with our founder and CEO Lyubomir Penev by the Pensoft/MycoKeys booth.
On our end, we did not stop supporting enthusiastic and proactive scientists in their attempt to bridge gaps in scientific knowledge. In January, we launched the Estuarine Management and Technologies journal together with Dr. Soufiane Haddout of the Ibn Tofail University, Morocco.
Later on, Dr. Franco Andreone (Museo Regionale di Scienze Naturali, Italy) sought us with the idea to launch a journal addressing the role of natural history museums and herbaria collections in scientific progress. This collaboration resulted in the Natural History Collections and Museomics journal, officially announced at the joint TDWG-SPNHC conference in Okinawa, Japan in August.
Around this time, we finalised our similarly exciting journal project in partnership with Prof. Dr. Volker Grimm (UFZ, Germany), Prof. Dr. Karin Frank (UFZ, Germany), Prof. Dr. Mark E. Hauber (City University of New York) and Prof. Dr. Florian Jeltsch (University of Potsdam, Germany). The outcome of this collaboration is called Individual-based Ecology: a journal that aims to promote an individual-based perspective in ecology, as it closes the knowledge gap between individual-level responses and broader ecological patterns.
The three newly-launched journals are all published under the Diamond Open Access model, where neither access, nor publication is subject to charges.
As you can see, we have a lot to be proud of in terms of our journals. This is also why in 2024 our team took a record number of trips to attend major scientific events, where we got the chance to meet face-to-face with long-time editors, authors, reviewers and readers of our journals. Even more exciting was meeting the new faces of scientific research and learning about their own take on scholarship and academic journals.
Pensoft’s CEO and founder Prof. Dr. Lyubomir Penev welcomed editors at PhytoKeys to the Pensoft-PhytoKeys-branded booth at the XX International Botanical Congress in July 2024 (Spain).
We cannot possibly comment on Pensoft’s tech progress in 2024 without mentioning the EU-funded project BiCIKL (acronym for Biodiversity Community Integrated Knowledge Library) that we coordinated for three years ending up last April.
This 36-month endeavour saw 14 member institutions and 15 research infrastructures representing diverse actors from the biodiversity data realm come together to improve bi-directional links between different platforms, standards, formats and scientific fields.
Following these three years of collaborative work, we reported a great many notable research outputs from our consortium (find about them in the open-science project collection in the Research Ideas and Outcomes journal, titled “Towards interlinked FAIR biodiversity knowledge: The BiCIKL perspective”) that culminated in the Biodiversity Knowledge Hub: a one-stop portal that allows users to access FAIR and interlinked biodiversity data and services in a few clicks; and also a set of policy recommendations addressing key policy makers, research institutions and funders who deal with various types of data about the world’s biodiversity, and are thereby responsible to ensuring there findability, accessibility, interoperability and reusability (FAIR-ness).
Apart from coordinating BiCIKL, we also worked side-by-side with our partners to develop, refine and test each other’s tools and services, in order to make sure that they communicate efficiently with each other, thereby aligning with the principles of FAIR data and the needs of the scientific community in the long run.
During those three years we made a lot of refinements to our OpenBiodiv: a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System, and our ARPHA Writing Tool. The latter is an XML-based online authoring environment using a large set of pre-formatted templates, where manuscripts are collaboratively written, edited and submitted to participating journals published on ARPHA Platform. What makes the tool particularly special is its multiple features that streamline and FAIRify data publishing as part of a scientific publication, especially in the field of biodiversity knowledge. In fact, we made enough improvements to the ARPHA Writing Tool that we will be soon officially releasing its 2.0 version!
OpenBiodiv – The Open Biodiversity Knowledge Management System
ARPHA Writing Tool 2.0
Amongst our collaborative projects are the Nanopublications for Biodiversity workflow that we co-developed with KnowledgePixels to allow researchers to ‘fragment’ their most important scientific findings into machine-actionable and machine-interpretable statements. Being the smallest units of publishable information, these ‘pixels of knowledge’ present an assertion about anything that can be uniquely identified and attributed to its author and serve to communicate a single statement, its original source (provenance) and citation record (publication info).
Nanopublications for Biodiversity
In partnership with the Swiss-based Text Mining group of Patrick Ruch at SIB and the text- and data-mining association Plazi, we brought the SIB Literature Services (SIBiLS) database one step closer to solidifying its “Biodiversity PMC” portal and working title.
Understandably, we spent a lot of effort, time and enthusiasm in raising awareness about our most recent innovations, in addition to our long-standing workflows, formats and tools developed with the aim to facilitate open and efficient access to scientific data; and their integration into published scholarly work, as well as receiving well-deserved recognition for their collection.
We just can’t stress it enough how important and beneficial it is for everyone to have high-quality FAIR data, ideally made available within a formal scientific publication!
🗨️Imagine if ALL these links were provided as hyperlinks within a #scholarly publication!
Pensoft’s CTO Teodor Georgiev talks about innovative methods and good practices in the publication of biodiversity data in scholarly papers at the First national meeting of the Bulgarian Barcode of Life (BgBOL) consortium (December, Bulgaria).
🤔What is a Data Paper?
👍 A means to describe a #dataset – like the ones on @GBIF – in a standardised, widely accepted #scientific article format.
👇🧵Highlights from @LyuboPenev's talk at the int'l symposium "#BiodiversityData in montane & arid Eurasia" in Kazakhstan 🇰🇿
Pensoft’s CEO and founder Prof. Dr. Lyubomir Penev presenting his “Data papers on biodiversity” talk at the “Biodiversity data in montane and arid Eurasia” symposium jointly organized by GBIF and by the Institute of Zoology of Republic of Kazakhstan (November, Kazakhstan).
.
📸Today, at the @EASEeditors symposium, our @teodorpensoft gave a sneak peek into the AI-assisted tools at @ARPHAplatform we have been working on (e.g. Word -> JATS XML conversion) and the #ARPHA Writing Tool 2.0 (coming up in early 2025)!🎉
Pensoft’s CTO Teodor Georgiev presents new features and workflows currently in testing at the ARPHA Writing Tool 2.0 at the EASE Autumn Symposium 2024 (online event).Pensoft’s Head of Journal development, Marketing and PR Iva Boyadzhieva talks about Pensoft’s data publishing approach and innovations at the German Ecological Society 53rd Annual Conference (September, Germany).
Pensoft as a science communicator
At our Project team, which is undoubtedly the fastest developing department at Pensoft, science communicators are working closely with technology and publishing teams to help consortia bring their scientific results closer to policy actors, decision-makers and the society at large.
Ultimately, bridging the notorious chasm between researchers and global politics boils down to mutual understanding and dialogue.
Pensoft’s communication team attended COP16 (November 2024, Colombia) along with partners at the consortia of CO-OP4CBD, BioAgora and RESPIN: three Horizon Europe projects, whose communication and dissemination is led by Pensoft.
Throughout 2024, the team, comprising 20 science communicators and project managers, has been working as part of 27 EU-funded project consortia, including nine that have only started this year (check out all partnering projects on the Pensoft website, ordered from most recently started to oldest). Apart from communicating key outcomes and activities during the duration of the projects, at many of the projects, our team has also been actively involved in their grant proposal drafting, coordination, administration, platform development, graphic and web design and others (see all project services offered by Pensoft to consortia).
📸As leaders of the “Stakeholder engagement, comms & dissemination” WP at @BCubedProject, we joined the annual meeting to report on project branding, #scicomm & #DataManagement.
Naturally, we had a seat on the front row during many milestones achieved by our partners at all those 27 ongoing projects, and communicated to the public by our communicators.
Amongst those are the release of the InsectsCount web application developed within the Horizon 2020 project SHOWCASE. Through innovative gamification elements, the app encourages users to share valuable data about flower-visiting insects, which in turn help researchers gain new knowledge about the relationship between observed species and the region’s land use and management practices (learn more about InsectsCount on the SHOWCASE prroject website).
Another fantastic project output was the long-awaited dataset of maps of annual forest disturbances across 38 European countries derived from the Landsat satellite data archive published by the Horizon Europe project ForestPaths in April (find more about the European Forest Disturbance Atlas on the ForestPaths project website).
In a major company highlight, last month, our project team participated in COP29 in Baku, Azerbaijan with a side event dedicated to the role of open science and science communication in climate- and biodiversity-friendly policy.
Pensoft’s participation at COP29 – as well as our perspective on FAIR data and open science – were recently covered in an interview by Exposed by CMD (a US-based news media accredited to cover the event) with our science communicator Alexandra Korcheva and project manager Boris Barov.
You see, A LOT of great things worth celebrating happened during the year for us at Pensoft: all thanks to ceaselessly flourishing collaboration based on transparency, trust and integrity. Huge ‘THANK YOU!’ goes to everyone who has joined us in our endeavours!
Here’s to many more shared achievements coming up in 2025!
***
Now, to keep up with our next steps in real time, we invite you to follow Pensoft on social media on BlueSky,X,Facebook,InstagramandLinkedin!
Don’t forget to also enter your email to the right to sign up for new content from this blog!
“You fool. No man can kill me,” said the Witch-king of Angmar.
“I am no man!” Éowyn replied, “I am a newly discovered freshwater snail species from Brazil!”
Okay, maybe that isn’t exactly how it goes – but it’s our way of letting you know that two newly discovered snail species have been named in honour of Éowyn and Meriadoc from The Lord of the Rings.
Described in the open-access journalZoosystematics and Evolution, Idiopyrgus eowynae and Idiopyrgus meriadoci were named by fans of J.R.R. Tolkien’s iconic series (who happen to also be successful researchers).
Idiopyrguseowynae.
Explaining the name Idiopyrgus eowynae, they said: “Éowyn exemplifies courage, resilience, and resistance against darkness, both internal and external, standing against Gríma Wormtongue and the Witch-king of Angmar.”
The discovered species are troglobitic and were found in a single limestone cave in the Serra do Ramalho karst area of Bahia state, northeastern Brazil. The gastropods belong to the family Tomichiidae, a group previously known for inhabiting surface freshwater environments but now shown to have adapted to subterranean ecosystems.
Both snails have unique periostracal hairs—thorn-like structures—on their shells, a feature uncommon among Brazilian freshwater snails. Their cave-specific adaptations include reduced pigmentation, fragile shells, and small size.
The Gruna do Pedro Cassiano cave, area and entrance.
The Gruna do Pedro Cassiano cave, where the snails were discovered, is a fragile ecosystem threatened by water extraction, deforestation, and climate change. Due to the species’ limited habitat and environmental threats to their subterranean ecosystem, the authors recommend a ‘Vulnerable’ classification. The findings highlight the importance of protecting Brazil’s subterranean biodiversity and raise concerns about the impact of human activities on these delicate ecosystems.
These concerns played a part in the naming of Idiopyrgus meriadoci, as the researchers state: “Besides standing with Éowyn against the Witch-king in the Battle of the Pelennor Fields, Merry is also an example of the fight for nature conservation in Middle-earth, pushing the Ents into action and ultimately ending Saruman’s threat to Fangorn Forest.”
Idiopyrgusmeriadoci.
On his choice of Tolkien-inspired names for the new species, lead author Dr Rodrigo B. Salvador of the Finnish Museum of Natural History said: “I tend to use lots of pop culture references in my species names—from books, comics, Dungeons & Dragons, and video games. If we think about it, there is a long-standing tradition in taxonomy of using names from mythology and literature to name species.
“Granted, in the old days, those names mostly came from Greek and Roman myths and Shakespeare. Today, we have newer mythologies and literature classics, so in a way, we’re just continuing that tradition.”
Salvador was also resposible for naming a land snail after Shar of Dungeons and Dragons, and more recently Baldur’s Gate, fame. Read about it below!
Salvador RB, Bichuette ME (2024) Idiopyrgus Pilsbry, 1911 (Gastropoda, Tomichiidae): a relict genus radiating into subterranean environments. Zoosystematics and Evolution 100(4): 1543-1556. https://doi.org/10.3897/zse.100.136428
–
Follow ZSE on X and Facebook, and subscribe for its newsletter from the journal’s website.
Jake Lewis, an entomologist in the Environmental Science and Informatics Section at the Okinawa Institute of Science and Technology (OIST), is fascinated by weevils, a diverse group of beetles that includes many species with elephant trunk-like mouthparts (called a rostrum). Weevils provide various ecosystem services such as pollination and decomposition, but some species are serious pests known to decimate crop fields and timber forests.
OIST entomologist and Insect Collection Manager, Jake Lewis, searches for weevils on Okinawa Island, Japan. He and his collaborators collected weevils from Japan, Taiwan, Vietnam, and Malaysia, and discovered 12 new species. Photo credit: Merle Naidoo, OIST
Using x-ray microtomography, a 3D imaging technique that uses x-rays to visualize cross sections of the internal structure of objects, Lewis and his collaborators digitally removed scales that cover the cuticle of the weevils. They found that the underlying cuticle differs significantly between species and can therefore be used for taxonomic and classification purposes. Using this technique in combination with traditional light microscopy and DNA barcoding, they discovered, described, and named 12 new weevil species from Japan, Malaysia, Vietnam, and Taiwan. These species range from 1.5 – 3.0 mm in length and are comparatively quite small weevils.
Two of these new species are present in Japan: Aphanerostethus magnus (Oo-daruma-kuchikakushi-zoumushi) and Aphanerostethus japonicus (Nippon-daruma-kuchikakushi-zoumushi). One of these, Aphanerostethus japonicus, is also found in Yanbaru National Park, Okinawa. This is the first time x-ray microtomography has been used to remove obscuring scales to examine underlying differences in morphology for taxonomic purposes. The findings from this study have been published in the open-access journal ZooKeys.
Researchers have discovered, described, and named 12 new weevil species in Japan, Malaysia, Vietnam, and Taiwan. Aphanerostethus magnus and Aphanerostethus japonicus are found in Japan, with the latter also found in Yanbaru National Park, Okinawa. Photo credit: Lewis et al., 2024
The researchers showed that removing scales using x-ray microtomography reveals significant morphological differences between species, which cannot be easily observed using other methods. Consequently, this technique may gain more popularity as a tool for identifying new insect species, especially those covered in scales or debris.
Lewis, OIST’s Insect Collection Manager and lead author of the paper, examined specimens from collections in Canada, Germany, Japan, Malaysia, Taiwan, and the Netherlands. One of the primary goals was to investigate the use of x-ray microtomography as a tool in weevil taxonomy. The genus Aphanerostethus was poorly studied in the past, but many undescribed species were discovered in museum collections around the world, including the two new species from Japan.
X-ray microtomography generated 3D models of weevil species from the genus Aphanerostethus with the right elytron (forewing) removed, revealing differences in the length, width, and pattern of veins in the hindwing. A lateral view of the full body is shown below each closeup for reference. The red, blue, and yellow arrows indicate the base, midpoint, and apex of the hindwing, respectively. A: Aphanerostethus bifidus; B: A. decoratus; C: A. japonicus; D: A. magnus. Image credit: Lewis et al., 2024
Multiple methods to find new species
The researchers used traditional methods such as light microscopy and dissections to observe differences between species, including the scales along the elytra (back), leg spines, and the shape of the rostral canal (a canal that protects the rostrum). They also used DNA barcoding to analyze their genes and create a phylogenetic tree of eight of the species. Some species were not as easy to separate based on morphology alone, but as the gene sequences differ between species, the phylogenetic tree was informative and provided additional evidence of new species.
: Phylogenetic tree of eight Aphanerostethus species constructed by comparing genetic information to see how closely related different species are. This helped Lewis and his team verify their predictions about species classification by using DNA analysis instead of only physical traits. The colored, vertical bars represent different species and includes the two new species from Japan. Image credit: Lewis et al., 2024
Although the above methods are standard practice in taxonomy, the researchers’ use of X-ray microtomography was novel and was successfully used to examine the structure of not only the hidden cuticle, but also the hindwings. Aphanerostethus weevils have lost the ability to fly due to the gradual reduction of their hindwings, however the degree of reduction was shown to differ between species. Normally, specimens would have to be dissected to view the hindwings, but because x-ray microtomography allows for non-destructive examination of internal anatomy, it is invaluable when working with rare or precious specimens that cannot be dissected or altered.
X-ray microtomography generated 3D models of Aphanerostethus pronota with scales removed, revealing otherwise hidden differences in underlying puncture morphology A–C Aphanerostethus magnus D–F Aphanerostethus morimotoi. Image credit: Lewis et al., 2024
The presence of partially reduced wings in some species offers a fascinating glimpse into the ongoing process of evolutionary change: “Some species have almost completely lost their hindwings, while others still have non-functional half-wings with remaining vein patterns. The differing degrees in hindwing loss is not only useful for taxonomy and systematics, but also shows how different species within the same group can be at different stages of losing a historically highly important organ that played a crucial role in insect evolution,” Lewis explained.
Investing in Japan’s natural heritage
The discovery of new weevil species can be challenging for two main reasons. Firstly, weevils are incredibly diverse, making complete cataloging time consuming and tedious. Secondly, many weevil species are highly host-specific, may only inhabit very particular microhabitats, and may only be active for a short period of time as adults. For example, some species feed on a single tree species and may only occupy a certain part of a tree, such as the canopy. Furthermore, some species of weevils are strictly nocturnal and rarely observed during the daytime.
Episomus mori weevils. Photo credit: Jake H. Lewis
This extreme specialization and variation in natural history means that unless researchers investigate at night and day, across seasons, and focus on specific parts of many different plant species, they will inevitably overlook certain species.
Dr. Dan Warren, a research fellow at the Gulbali Institute for Applied Ecology and former leader of the Environmental Science and Informatics Section, emphasized the importance of investing in specimen collections: “These specimen collections are crucial for discovering new species and documenting biodiversity changes, both from human activities and natural cycles. They are essential tools for scientific research and conservation biology,” he stated. “Without proper support for them and the people who maintain them, we risk losing irreplaceable information on species and ecosystems, potentially before we even discover them.”
Euthycus weevils. Photo credit: Jake H. Lewis
“These new weevil species are part of Japan’s natural heritage, and although still poorly known ecologically, discovering and naming them is the first step towards an understanding of their biology,” Lewis added. Protected areas like Yanbaru National Park, home to the newly discovered A. japonicus, are essential to the protection of the island’s rich and endemic biodiversity.
Research article:
Citation: Lewis JH, Kojima H, Suenaga M, Petsopoulos D, Fujisawa Y, Truong XL, Warren DL (2024) The era of cybertaxonomy: X-ray microtomography reveals cryptic diversity and concealed cuticular sculpture in Aphanerostethus Voss, 1957 (Coleoptera, Curculionidae). ZooKeys 1217: 1–45. https://doi.org/10.3897/zookeys.1217.126626
A new-to-science carnation species from Hawaii is likely the first plant to be identified and collected using drone technology.
Check out the video below to see how it happened!
Video by Ben Nyberg.
Published in the open-access journal PhytoKeys, the discovery was facilitated by the National Tropical Botanical Garden‘s (NTBG) botanical drone program, which deploys unmanned aircraft to explore remote cliff environments.
Via drone photography, researchers spotted Schiedea waiahuluensis growing on steep, inaccessible cliffs in the Waiahulu region of the island of Kauai. To gather samples, they suspended ‘the Mamba’ – a remote plant collection device – from a drone and used it to grab, cut, and collect the plant for study.
Collecting arm hanging from drone. Photo by Ben Nyberg.
The new species belongs to a well-studied Hawaiian lineage in the carnation family. Its genus, Schiedea, consists of 36 species spread across the Hawaiian Islands, with 12 species found only on Kauai.
Schiedea waiahuluensis grows only on the dry cliffs of Waiahulu, with an estimated population of around 345 individuals, primarily growing on bare rock surfaces in small pockets of soil.
Flower of drone collected specimen. Photo by KR Wood.
Their fragile habitat is under threat from invasive plant species and feral goats, making conservation efforts crucial. Researchers are planning further studies to assess the full distribution and conservation needs of the species.
“S. waiahuluensis has a combination of traits that would have been very difficult to predict, and upended our notions about diversity in Schiedea, even after decades of research on this genus.”
Following more than 40 years of research on Schiedea on Kauai, this finding demonstrates the potential for future discoveries of native plants across the Hawaiian Islands through drone technology, and highlights the burgeoning role of drones in advancing conservation efforts and preventing plant extinctions.
Schiedea waiahuluensis habitat. A) Waiahulu branch of Waimea Canyon, drone photo. B) non-collected individual, drone photo. Photos by Ben Nyberg.
“The new development of the NTBG drone program provides a major new tool in biodiversity research that has allowed for better assessment of species distribution and status as shown by drone missions on the inaccessible cliffs of the major canyons on Kauai.
It has revealed populations of species presumed extinct such as the recent rediscovery of Hibiscadelphus woodii, a relative of Hibiscus, mapped populations of Schiedea waiahuluensis, and collected seeds via drone for establishment of a conservation collection of this species.”
While drone-technology innovators were not likely thinking about botany, Schiedea waiahuluensis serves as a reminder that science can benefit from technologic advancements from seemingly unrelated fields.
For another ‘miraculous’ discovery, read our blog on Amalophyllon miraculum, an incredible little plant from Ecuador!
Wagner WL, Weller SG, Sakai AK, Nyberg B, Wood KR (2024) Schiedea waiahuluensis (Caryophyllaceae), an enigmatic new species from Kaua’i, Hawaiian Islands and the first species discovered by a drone collection system. PhytoKeys 247: 111-121. https://doi.org/10.3897/phytokeys.247.130241
A new species of clearwing moth, Carmenta brachyclados, has been found in Port Talbot, Wales, and described by Natural History Museum scientists
Not a native to the UK, the moth is a denizen of the tropical jungles of South America
The two Welsh specimens had been accidentally brought into Europe, in a boot bag brought back from a photography trip to Guyana
Carmenta brachyclados. Photo by Mark Sterling
A new species of moth has been described far away from home following a cross-continent detective journey that included Natural History Museum scientists from separate fields, a budding young ecologist with a knack for community science, a globe-trotting photographer, and two moths new to science which travelled over 4,500 miles from their native country.
An individual of Carmenta brachyclados on the finger of Daisy Cadet. Photo by Daisy Cadet
The species is a clearwing moth and has been named Carmenta brachyclados, in reference to a characteristically short hindwing vein. Despite having never been catalogued in its native country, Guyana, a surprising sequence of events led to its being described after being spotted flying around a home in Port Talbot, Wales.
In February this year, the new species was spotted flying around the home of ecologist Daisy Cadet and her mother, Ashleigh, a professional photographer. Captured by the moth’s striking appearance, which stood out as being out of the ordinary for a house moth in the UK during winter, Daisy uploaded an image to social media which set the chain of events into motion.
An individual of Carmenta brachyclados on the finger of Daisy Cadet. Photo by Daisy Cadet
Daisy was referred to Natural History Museum lepidoptera experts, Mark Sterling and David Lees, having been advised she had stumbled upon something out of the ordinary by social media users. Mark and David started seeking a match of the Wales specimens in terms of appearance to the clearwing collection contained within the 13.5 million Lepidoptera specimens housed at the NHM – the world’s largest and most diverse collection.
Taking the investigation a step further, Sterling and Lees aided by the museum’s Jordan Beasley, carried out DNA sequencing on the moth and found that its closest match was a group of seed-feeding clearwing moths, Carmenta, which occur in Central America and South America. This finding prompted Daisy to look inside Ashleigh’s bag, which had accompanied her on a photography assignment in Guyana.
Two delicate pupal casings, still intact, were found among the mud from the boots she’d worn on the trip along with a small piece of woody vegetation with what looked like bore holes made by the caterpillars of the moths.
Mora excelsa plant fragment from which clearwings emerged with 50 p piece. Photo by Mark Sterling
Mark Sterling, a Scientific Associate at the Natural History Museum, commented:“Clearwing moths are notoriously difficult to find, even by professional entomologists. They are even more difficult to rear from larvae or pupae, which usually dry out or go mouldy within a few days of collection.
“The chances of two clearwing moths from the Neotropics successfully emerging in South Wales, over three months after they arrived, in cold Welsh winter, and being preserved in good condition, is extraordinary.”
“The improbability of this event defies rational explanation. However, whilst in Guyana, Ashleigh was told that if she left an offering of tobacco to the jungle spirits she would be shown something beautiful from the jungle, so that is what she did. We conclude in the paper that it must have been very good tobacco.”
Dr David Lees, Senior Curator for Microlepidoptera at the Natural History Museum, added: “To add to the improbability of this story is the fact that due to the incredible piece of community science from Daisy, we have photographs of a living holotype (an original specimen which forms the basis of the name and description of that species), which is highly unusual.”
A live female individual of Carmenta brachyclados. Photo by Daisy Cadet
Along with now having a country of origin for this new species, they also had a small piece of the host plant on which the larvae had evidently fed. The plant fragment was sent to Natural History Museum botanist, Sandy Knapp, who advised it was likely to be a seed pod of a species of Mora, a suggestion confirmed by DNA sequencing by Jordan. A large leguminous tree, Moraexcelsa grows in the jungles of Central America and South America.
Map of Guyana showing the most likely sampling positions (white circles: Turtle Mountains and Iwokrama Forest/Iwokrama River Lodge) for the seedpod of Mora excelsa with the two live pupae of Carmenta brachyclados inside. Credit: Google Earth/Landsat/Copernicus/Rivers_Guyana.mkl/Guyana regions english.png (CC by 2.5).
The final step was to compare Daisy’s moth specimens to the vast number of species within the Carmenta genus – where only half of the 100 described species have been DNA barcoded. Using analyses of DNA and the specimens’ body plan compared to others on record, Mark and David concluded that this was indeed an undescribed species.
This paper ‘A success for community science: Carmenta brachyclados sp. nov. (Lepidoptera, Sesiidae, Synanthedonini), a clearwing moth from Guyana discovered with its hostplant indoors in Wales (United Kingdom)’ was published in Nota Lepidopterologica and can be accessed here https://nl.pensoft.net/issue/4736/
Research article:
Sterling MJ, Cadet DT, Beasley J, Lees DC (2024) A success for community science: Carmenta brachyclados sp. nov. (Lepidoptera, Sesiidae, Synanthedonini), a clearwing moth from Guyana discovered with its hostplant indoors in Wales (United Kingdom). Nota Lepidopterologica 47: 201-218. https://doi.org/10.3897/nl.47.130138
A newly identified wasp species, Chrysonotomyia susbelli, has been discovered in Houston, Texas, marking the 18th new species identified by Rice University’s Scott Egan and his research team since 2014. The discovery, the fourth wasp species found on the university grounds in seven years, reveals the hidden world of parasitoid wasps and the intricate ecosystems that thrive outside our doors.
Chrysonotomyia susbelli. Photo credit: Rice University
Chrysonotomyia susbelli is a parasitoid wasp, about 1 millimeter long, that emerges from galls, or tumorlike growths created by the gall wasp Neuroterus bussae found on southern live oak leaves. The galls serve as microhabitats within which larvae feed, develop and pupate. The research team’s study was published in the journal ZooKeys on Sept. 18.
Scott Egan, left, and Brendan O’Loughlin, right. Photo of Egan by Brandon Martin/Rice University. Photo of O’Loughlin courtesy of Rice University.
“Chrysonotomyia susbelli represents the sixth species of its genus described from North America and the first globally known to parasitize cynipid gall wasps,” said Egan, an associate professor of ecology and evolutionary biology.
The wasp was discovered and named by Brendan O’Loughlin, a Rice senior and the study’s first author. “The wasp’s goldenrod color is almost identical to the official colors of Wiess College, my residential college,” O’Loughlin said.
To confirm the uniqueness of the species, the research team conducted a genetic analysis and a detailed study of the wasp’s physical features under a microscope. Its investigation also included a review of the historical literature to ensure that the species had not been previously described.
Chrysonotomyia susbelli. Photo credit: Rice University
This research was complemented by DNA barcode data and observations of the wasp’s natural history, including host associations and a unique leaf-scanning behavior exhibited by female wasps. The researchers also modified the identification key of New World members, groups of species found exclusively in the Americas, to incorporate this new species.
Egan emphasized the importance of studying local biodiversity. “You don’t have to travel to a distant rainforest to find new and beautiful things — you just have to step outside and look,” he said.
The discovery hints at a previously unexplored ecological niche involving Chrysonotomyia parasitoids, cynipid gall wasps, and oaks, suggesting that there may be many more undiscovered species within this system.
“Generations of Chrysonotomyia susbelli have likely lived unnoticed on the oaks of Rice University since its founding,” Egan said.
Co-authors of the study include Pedro FP Brandão-Dias, Ph.D. graduate of ecology and evolutionary biology at Rice and current postdoctoral scholar at the University of Washington, and Michael Gates, parasitoid wasp specialist of the U.S. Department of Agriculture’s Systematic Entomology Laboratory at the Smithsonian National Museum of Natural History.
Originally published by Rice University. Republished with permission.
Research article:
O’Loughlin B, Brandão-Dias PFP, Gates MW, Egan SP (2024) Description of a new species of Chrysonotomyia Ashmead from Houston, Texas, USA (Hymenoptera, Chalcidoidea, Eulophidae). ZooKeys 1212: 241-254. https://doi.org/10.3897/zookeys.1212.127537
Despite its small size of less than 2 centimeters, the grumpy dwarfgoby has a surprisingly menacing appearance. Its large canines and fierce expression give it a rather intimidating look for such a small fish.
Lucía Pombo-Ayora, who gave the species its grumpy common name, comments on its distinctive appearance: “I imagine in its own tiny world, it is a fearsome predator. Its grumpy expression and large canines certainly make it look the part, despite its small size.”
The species’ bright red coloration actually helps it blend into its natural habitat. It can be found on the walls and overhangs of coral reefs, covered in red coralline algae. There, it lives in small holes and crevices, using its large canines to capture tiny invertebrates. The grumpy dwarfgoby appears to be a relatively rare species, which is likely why it remained undiscovered until now.
The researchers found the first specimens in the Farasan Banks in Saudi Arabia, with additional specimens later found near Thuwal in the Red Sea. It was researcher Viktor Nunes Peinemann who first found it during a diving expedition to explore the coral reef fish diversity. Initially, the researchers thought they had rediscovered the fiery dwarfgoby, Sueviota pyrios, which is only known from a single specimen collected in 1972. However, upon closer examination, they realized they were dealing with an entirely new, undescribed species.
“The ongoing discovery of distinctive new species like this grumpy dwarfgoby shows how much biodiversity remains undiscovered in the Red Sea,” Viktor Nunes Peinemann explains. “This is concerning given the recent environmental changes in the region. In some cases, species could go extinct before we even describe them.”
The region is known for its high levels of endemic species and the Grumpy dwarf goby is another addition to this unique fauna. Much of the Red Sea has experienced major disturbances resulting from climate change in recent years, including widespread coral bleaching and mortality. The fact that new species are still being discovered in this rapidly changing environment highlights the urgency of continued research and conservation efforts, the researchers believe.
They have published their discovery in the open-access scientific journal ZooKeys.
Photos by Viktor Nunes Peinemann
Research article:
Nunes Peinemann V, Pombo-Ayora L, Tornabene L, Berumen ML (2024) The Grumpy dwarfgoby, a new species of Sueviota (Teleostei, Gobiidae) from the Red Sea. ZooKeys 1212: 17-28.https://doi.org/10.3897/zookeys.1212.121135
A new species of tarantula spider, Aphonopelma jacobii, has been discovered from the Chiricahua Mountains in southeastern Arizona. This small, black and grey tarantula species has fiery red hairs on its abdomen and can be found in the high-elevation habitats of the Chiricahua Mountains, where it survives through bitterly cold winters.
A male and a female Aphonopelma jacobii. Their small size can be seen when compared to the acorn cap, pine needles, and oak leaf. Photo by Brent E. Hendrixson
The discovery was rather unexpected. “We often hear about new species being discovered from remote corners of Earth, but it is remarkable that these spiders are found in our own backyard, albeit in somewhat difficult-to-access areas of our backyard,” said Dr. Chris Hamilton, assistant professor at the University of Idaho and co-lead author of a study in ZooKeys that reports on the spider. “With Earth in the midst of a human-mediated extinction crisis, it is astonishing how little we know about our planet’s biodiversity, even for conspicuous and charismatic groups such as tarantulas.”
A mature female Aphonopelma jacobii. Photo by Brent E. Hendrixson
The Chiricahuas, renowned for their exceptional biodiversity and high levels of endemism, compose part of the Madrean Archipelago (colloquially referred to as the Madrean Sky Islands), a complex of forested mountain ranges that span the cordilleran gap between the Colorado Plateau and Rocky Mountains in the southwestern United States and the Sierra Madre Occidental in northwestern Mexico. These montane forest “islands”—separated from each other by low-elevation deserts and arid grasslands—have evolved in isolation, leading to the origin of numerous short-range endemic species, and resulting in a mosaic of biodiversity unlike that of any other region in the United States.
A mature male Aphonpelma jacobii. Photo by Brent E. Hendrixson
The forests where these tarantulas live are threatened by several factors, perhaps most notably from climate change. Recent studies in the sky island region suggest that these forests will be “pushed off” the mountains over the next several decades as temperatures and precipitation continue to increase and decrease, respectively. Organisms adapted to these cooler and more humid mountain tops—such as these spiders—will likely become extinct as suitable habitat disappears.
Dr. Brent Hendrixson, professor at Millsaps College and co-lead author of the study adds, “These fragile habitats are also threatened by increased exurban development in the San Simon Valley and Portal areas, destructive recreational activities, and wildfires. In addition, there is some concern that these tarantulas will be exploited for the exotic pet trade due to their rarity, striking coloration, and docile disposition. We must consider the impact that unethical collectors might have on these spiders when determining the threats to this species and the implications for its conservation.”
A photograph of Aphonopelma jacobii‘s habitat high up in the Chiricahua Mountains. Photo by Michael A. Jacobi
Aphonopelma jacobii is named after Michael A. Jacobi, who helped find several of the first specimens which led to the description of this new species.
“This discovery represents the 30th species of tarantula documented from the United States. Aphonopelma is the most species diverse tarantula genus on the planet (at least for documented species). Our research adds to this number and continues to advance our understanding of the true species diversity in this incredibly interesting and important biodiversity hotspot,”Dr. Hamilton says in conclusion.
Research article:
Hamilton CA, Hendrixson BE, Silvestre Bringas K (2024) Discovery of a new tarantula species from the Madrean Sky Islands and the first documented instance of syntopy between two montane endemics (Araneae, Theraphosidae, Aphonopelma): a case of prior mistaken identity. ZooKeys 1210: 61-98.https://doi.org/10.3897/zookeys.1210.125318
Accelerating global change continues to threaten Earth’s vast biodiversity, including in the oceans, which remain largely unexplored. To date, only a small fraction of an estimated two million total living marine species have been named and described. A major challenge is the time it takes to scientifically describe and publish a new species, which is a crucial step in studying and protecting these species. The current scientific and publishing landscape often results in decade-long delays (20-40 years) from the discovery of a new species to its official description. As an alternative to this, the Ocean Species Discoveries initiative was launched, offering a new platform for rapid but thorough taxonomic description of marine invertebrate species.
One of the newly described species, Lepechinella naces.
The project coordinated 25 different researchers and produced data on thirteen marine invertebrate taxa, including one new genus, eleven new species, and one redescription and reinstatement. The species, which originate from all over the globe and at depths from 5.2 to 7081 meters, are brought together in an open-access publication in the Biodiversity Data Journal.
Only by leveraging the collective strengths of global progress, expertise, and technological advancements, will we be able to describe the estimated 1.8 million unknown species living in our oceans.
Prof. Dr. Julia Sigwart
This is the first of a series of publications related to SOSA’s initiative, in collaboration with Biodiversity Data Journal, presenting a revolutionary approach in new species descriptions, thanks to which the publication of new species takes years, sometimes even decades, less. The ARPHA publishing platform, which powers the Biodiversity Data Journal, further expedites species descriptions and their use in studies and conservation programs by employing a streamlined data publishing workflow. ARPHA automatically exports all species data, complete with images and descriptions, to GBIF—the Global Biodiversity Information Facility and the Biodiversity Literature Repository at Zenodo, from where other researchers can easily find and use them.
One of the new OSD species – a hydrothermal vent limpet, Lepetodrilus marianae. Photo credit: Chong Chen, Hiromi Kayama Watanabe, and Miwako Tsuda
One of the new species described in the Ocean Species Discoveries is Cunicolomaera grata, a curious amphipod whose burrows along the seafloor perplexed scientists. Another is a wrinkly-shelled limpet called Lepetodrilus marianae that lives on hydrothermal vents, underwater volcanoes in the deep-sea where temperatures can reach 400 degrees C. Normally, the descriptions for these two very different species wouldn’t be in the same publication, but this new publication format allows for species descriptions from different marine invertebrate taxa to be published together in one ‘mega-publication,’ offering a huge incentive for researchers to make their discoveries public.
One of the new OSD species – a hole-making amphipod, Cunicolomaera grata. Photo credit: Anne Helene S. Tandberg and Anna M. Jażdżewska
“Currently, there’s a notable delay in naming and describing new animals, often because journals expect additional ecological or phylogenetic insights. This means many marine species go undescribed due to lack of data. OSD addresses this by offering concise, complete taxonomic descriptions without requiring a specific theme, refocusing attention on taxonomy’s importance,” says Dr. Torben Riehl, who is one of the researchers featured in Ocean Species Discoveries.
The reinstated OSD species – a purple long-tailed sea cucumber, Psychropotes buglossa. Photo credit: Amanda Serpell-Stevens, Tammy Horton, and Julia Sigwart
Reducing the time it takes to get from discovering a new animal to a public species description is crucial in our era of increasing biodiversity loss. The wrinkly-shelled limpet and two other species described in the Ocean Species Discoveries live in hydrothermal vent zones – an environment threatened by deep-sea mining. Another OSD species, Psychropotes buglossa, a purple sea cucumber (sometimes also called a gummy squirrel), lives in the North Atlantic, but similar species live in areas of high economic interest, where polymetallic-nodule extraction could soon endanger sea life. Threats like these risk driving species to extinction before we even get the chance to know and study them. Through efforts like SOSA’s Ocean Species Discoveries, we can get closer to understanding the biodiversity of our oceans and protecting it before it’s too late.
One of the new OSD species – a deep-sea chiton, Placiphorella methanophila. Photo credit: Katarzyna Vončina
“Only by leveraging the collective strengths of global progress, expertise, and technological advancements, will we be able to describe the estimated 1.8 million unknown species living in our oceans. Every taxonomist specialized on some group of marine invertebrates is invited to contribute to the Ocean Species Discoveries,” says Prof. Dr. Julia Sigwart in conclusion.
Research article:
(SOSA) SOSA, Brandt A, Chen C, Engel L, Esquete P, Horton T, Jażdżewska AM, Johannsen N, Kaiser 5, Kihara TC, Knauber H, Kniesz K, LandschoffJ, Lörz A-N, Machado FM, Martínez-Muñoz CA, Riehl T, Serpell-Stevens A, Sigwart JD, Tandberg AHS, Tato R, Tsuda M, Vončina K, Watanabe HK, Went C, Williams JD (2024) Ocean Species Discoveries 1-12 — A primer for accelerating marine invertebrate taxonomy. Biodiversity Data Journal 12: e128431. https://doi.org/10.3897/BDJ.12.e128431