New semi-slug species named after Pensoft’s founder Prof. Lyubomir Penev

Ostracolethe penevi, an endemic semi-slug, was described as a new species living in the leaves of northern Vietnam’s moisture-loving shrubs and grasses

Prof. Lyubomir Penev

Pensoft is delighted to announce that a new species of semi-slug was named after our CEO and founder, Prof. Lyubomir Penev.

Endemic to Vietnam,Ostracolethe penevi was described as new to science in a study in ZooKeys 1249th issue.

“The new species is named after Prof. Dr Lyubomir Penev for his incredible contribution to the reputation of Bulgarian science and his tireless, friendly support over the years,” the authors write in their paper, which was published in Pensoft’s flagship, open-access zoology journal.

ZooKeys’ 1249th issue

In 2023, Dr. Ivailo Dedov of the Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, Prof. Quang Manh Vu of the Hoa Binh University in Hanoi, and Dr. Tuan Trieu Anh of Vietnam’s Hung Vuong University collected slugs and semi-slugs of the superfamily Helicarionoidea in northern Vietnam.

“About 15 km from Sa Pa town in northern Vietnam, a pure stream of water cascades down from a mountain cleft about 200 meters high. From a distance, the waterfall appears like a silver-white silk ribbon shimmering amid the immense greenery, which is why it is called the ‘Silver Waterfall.’ It marks the beginning of the Ô Quy Hồ Pass—a meeting place for nature lovers, adventurers, and creative spirits alike,” says prof. Vu.

A waterfall cascades into a calm pool, surrounded by lush greenery and rocky terrain.
The locality of Ostracolethe penevi Dedov in Vietnam’s Lào Cai Province.

“In my second expedition to Vietnam we managed to collect many slugs and semi-slugs (that have a reduced shell which can’t fit their entire body). Later, in Sofia, when we started identifying our specimens, two species grabbed our attention with their unusual anatomy,” Dr. Dedov explains.

A white structure with interconnected loops and shapes, set against a black background.
Ostracolethe penevi’s net structure.

“I dissected a specimen that turned out to be a new species, probably of the genus Ostracolethe. In it, I found an unusual structure consisting of eight interconnected ‘Olympic rings’ in two rows whose functions for now remain unknown.”

“When I found out I had a new species, I had no hesitation on the name: Ostracolethe penevi. I had been looking forward to naming a curious species after my friend and PhD supervisor Prof. Lyubomir Penev, a man who made the world look up to Bulgarian science and also changed the way taxonomy and biodiversity information is published worldwide; someone who has helped me a lot through the years.”

“This newly described species deserves a name that reflects the generosity of nature, the advancement of science, and the enduring friendship between Vietnam and Bulgaria,” Prof. Vu adds.

Ostracolethe penevi is about 4 cm long and lives in the leaves of moisture-loving shrubs and grasses. Its slender body is mostly light-yellowish-ocher in colour, with gray-blackish stripes on the neck and yellowish tentacles.

A close-up photo of a brown semi-slug on a green leaf, displaying with a slimy body and two prominent antennae.
Ostracolethe penevi.

“An unusually structured species dedicated to an extraordinary personality!,” concludes Dr. Dedov.

The other semi-slug the research team explored in their ZooKeys study, Ostracolethe fruhstorfferi, can actually change colours, not unlike a chameleon.

“While I was trying to take a good photograph of a live specimen, placing it on different kinds of surfaces, I found the animal changed colouration depending on the substrate,” Dr. Dedov explains.

“When a specimen was photographed on a stone surface it looked whitish transparent, and only melanin kept the pattern of colouration. The very same specimen photographed on tree bark became more colourful, and pinkish, ocher, brownish, and yellowish colours appeared,” the team write in their paper.

Two close-up images of a slimy mollusk, labeled A and B, showcasing different angles and textures on a natural surface.
The same specimen of Ostracolethe fruhstorfferi A. On rock surface, and B. On tree bark.

“It turned out that I was observing the first land snail with what is called metachrosis: changing colours for the purpose of blending in with the environment and passive protection,” says Dr. Dedov.

The research team suggests this might be possible thanks to a torus-toroid (doughnut-like) structure described in literature as “enigmatic and with unknown functions.”

“Congratulations on the discovery and formal description of a new species for science—Ostracolethe penevi—named in honor of Prof. Penev, a sincere and esteemed friend of Vietnam, as well as the Founder and CEO of Pensoft,” says Prof. Vu in conclusion.

Research article:

Dedov I, Manh Vu Q, Trieu Anh T (2025) Slugs and semi-slugs of the superfamily Helicarionoidea (Gastropoda, Stylommatophora) collected in North Vietnam during the 2023 Bulgarian Zoological Expedition, with emphasis on the genus Ostracolethe. ZooKeys 1249: 317-338. https://doi.org/10.3897/zookeys.1249.155684

New agamid lizard described from China

At 6–7 cm long with a wheat-coloured tongue and distinct markings, it’s the 47th Diploderma species recorded in China.

Researchers from China just described a new species of mountain lizard from the upper Dadu River Valley in the Hengduan mountains of Sichuan Province.

Since 2018, the research team conducted numerous surveys in the upper reaches of the Dadu River. There, they encountered a lizard species that showed unique characteristics not previously observed among known Diploderma species in the region. Through molecular biological analyses and morphological studies, they confirmed that this was indeed a previously unrecognized species and gave it the name Diploderma bifluviale, referencing the location where it was found: the confluence of two rivers, Chuosijia and Jiaomuzu.

A photo of a brown lizard with intricate patterns scurrying over rocky terrain, near green plant shoots.

Diploderma bifluviale is the 47th species of Diplodermain China. The genus Diplodermais distributed across East Asia and the northern part of the Indochinese Peninsula.

With a length of 6-7 cm, D. bifluviale has many distinctive features, such as its wheat-coloured tongue and unique coloration. Unlike its closest relatives, it lives in semi-arid shrublands in warm-dry valleys at elevations of 2,100 to 2,500 m, residing in arid shrublands with small leaves and scattered rock piles.

A camouflaged lizard rests on a rocky, sandy surface.

“This discovery highlights the understudied biodiversity of the upper Dadu River,” the researchers say in their paper, which was published in the open-access journal ZooKeys.

Research article:

Liu F, Wu Y, Zhang J, Yang G, Liu S, Chen X, Chang J, Xie Q, Cai B (2025) A new species of Diploderma Hallowell, 1861 (Squamata, Agamidae) discovered in the upper Dadu River valley of the Hengduan Mountains, Sichuan, China. ZooKeys 1251: 17-38. https://doi.org/10.3897/zookeys.1251.153705

Image credit: Bo Cai

A wasp for the wild: New parasitoid species named in honor of the National Geographic Society

The name “natgeo” was chosen in honor of the Society’s legacy of exploration, conservation, and storytelling.

“During the Siang Expedition, funded by the National Geographic Society and Felis Creations, we arrived in the remote village of Yingku in Arunachal Pradesh, knowing we were stepping into one of the last frontiers of biodiversity in India. What we didn’t know was that tucked among the forests and farmlands was a tiny creature that had never been formally introduced to science until now,” say researchers Dr. A.P. Ranjith (Integrative Insect Ecology Research Unit, Department of Biology, Chulalongkorn University, Thailand) and Associate Professor Dr. Buntika A. Butcher (Integrative Insect Ecology Research Unit, Department of Biology, Chulalongkorn University, Thailand). “On the very first day, we collected a pair both male and female of this amazing, enchanting new species!”

A close-up photo of a wasp with delicate wings, elongated antennae, and a slender body.
Heinrichiellus natgeo. Photo credit Dr. A.P. Ranjith

Meet Heinrichiellus natgeo, a newly discovered species of parasitoid wasp. The species was described by Dr. Ranjith and Dr. Gavin R. Broad (The Natural History Museum, London, UK), under the supervision of Additionally, genetic data helped them determine the new species’ systematic placement, with the assistance of Dr. Bernardo F. Santos (Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Berlin, Germany).

A close-up photo of a wasp's head, showcasing large compound eyes and intricate mouthparts against a blurred background.
Heinrichiellus natgeo. Photo credit Dr. A.P. Ranjith

“The name natgeo isn’t a coincidence – we chose it in honor of the National Geographic Society, whose legacy of exploration, conservation, and storytelling has inspired thousands of people. This discovery is our way of saying thank you for their outstanding commitment to the environment,” Dr. Butcher says.

Despite its small size, this insect plays an outsized role in keeping ecosystems balanced. It is a natural enemy of several pest species, ensuring that nature’s checks and balances continue working quietly in the background.

In the field, the wasp didn’t shout for attention no bright colors or loud buzzing. Instead, it was a patient hunter, seeking out the eggs or larvae of its host species. “It’s a reminder that some of nature’s most important work happens in complete silence,” says Dr. Ranjith Even though the researchers do not yet have biological data, they assume that this remarkable species will play a significant role in the forest ecosystem by helping to regulate insect pest populations.

Close-up photo of a wasp's head and thorax.
Heinrichiellus natgeo. Photo credit Dr. A.P. Ranjith

“And here’s a fun twist in the story: we collected both the male and female specimens using a yellow pan trap a deceptively simple tool that works by tapping into parasitoid wasps’ irresistible attraction to the color yellow. It’s fieldwork science at its most charming: a splash of color in the forest that quietly lures in tiny wonders,” Dr. Butcher says.

“Discoveries like this matter not just for the sake of science, but for the health of ecosystems and the future of conservation, particularly in the world’s biodiversity hotspots,” the researchers say in conclusion. ”In a time when species are disappearing faster than we can document them, every new find is both a small victory for biodiversity and an encouragement for more young talents to engage in biodiversity research.”

Lush green mountains and rolling hills under a partly cloudy blue sky, with fog lingering in the valleys.
Landscape view of Yingku village in Arunachal Pradesh. Photo credit Sandesh Kadur/Felis Images.

Alongside this, the researchers also uncovered two more new species, Heinrichiellus brevispinus from Thailand and Heinrichiellus vedani from South India. These exciting finds remind us that India and Thailand still hold countless hidden treasures of biodiversity, waiting to be discovered. They published their study in the Journal of Hymenoptera Research.

Research article:

Ranjith AP, Broad GR, Santos BF, Butcher BA (2025) First report of the genus Heinrichiellus Tereshkin, 2009 (Hymenoptera, Ichneumonidae) from the Oriental region with the description of three new species. Journal of Hymenoptera Research 98: 757-778. https://doi.org/10.3897/jhr.98.158760

About the Research team:

Dr. A.P. Ranjith, a post-doctoral fellow at Chulalongkorn University, Thailand, is an expert taxonomist specializing in hymenopteran parasitoids, with more than ten years of experience in taxonomy and systematics. He has described over 100 species and 11 genera new to science.

Dr. Gavin R. Broad, based at the Natural History Museum, UK, has several decades of experience in the phylogeny and systematics of ichneumonid parasitoid wasps. He has described several hundred new species and numerous new genera.

Dr. Bernardo F. Santos, from the Museum für Naturkunde, Germany, possesses extensive knowledge of the evolution and phylogeny of parasitoid wasps, with a strong background in parasitoid taxonomy.

Dr. Buntika A. Butcher, who supervised the study, is an Associate Professor at Chulalongkorn University. She is an experienced researcher with strong expertise in the taxonomy and systematics of braconid parasitoid wasps and their biology.

The team focuses primarily on documenting biodiversity in understudied countries such as India and Thailand, while raising awareness of the ecological importance of insect diversity.

Til moth do us part: new species marks 42 years of marriage

“It is without a doubt the prettiest species I have encountered in my long scientific career,” said Huemer, who named the moth after his wife.

European Lepidoptera (butterflies and moths) are generally considered well-known and thoroughly researched. Nevertheless, researchers discover new species every year; most of which are inconspicuous, so-called ‘cryptic’ species, previously overlooked.

Colourful species, on the other hand, have been largely catalogued in Europe as they attract a lot of attention, which made the surprise and delight at the discovery of an extraordinarily striking, and previously unnamed, moth all the greater.

Moth specimen.
Ingrid-Maria’s carcina (Carcina ingridmariae). Credit: Peter Huemer/Ferdinandeum.

A newly discovered, pink species has now been named Carcina ingridmariae by Peter Huemer, a scientist at the Tyrolean State Museum Ferdinanduem (Innsbruck, Austria). Huemer published his discovery in the open-access journal Alpine Entomology.

According to current knowledge, the moth is widespread in the eastern Mediterranean region: distributed from Croatia across large parts of Greece and Cyprus to Turkey. However, more detailed studies on its distribution are still pending.

Seemingly unmistakable

Ingrid-Maria’s carcina belongs to a species-poor group of butterflies. In Europe, there is only one other species of the same genus, the oak carcina (Carcina quercana).

Moth on a leaf.
The oak carcina (Carcina quercana). Credit: mazzeip via iNaturalist.

This widespread moth was described as early as 1775 by the famous naturalist Johann Christian Fabricius based on specimens from Saxony, and is distributed from North Africa across large parts of Europe to the Balkans.

Due to its unusual colour, the species has always been considered unmistakable. In fact, it is so popular even among amateur researchers that it adorns the cover of an important British identification book.

But, hiding in plain sight, was a second species, mistaken for the oak carcina for more than 100 years.

As a result of its apparent unmistakability, Carcina ingridmariae was always misidentified and was first published – incorrectly – as the oak wood carcina from Crete in 1916.

Mountain landscape.
Habitat of Carcina ingridmariae in north Cyprus (eastern part of Five Finger Mountains near Kantara). Credit: Peter Huemer/Ferdinandeum.

It was only the introduction of new molecular identification methods that put researchers at the Ferdinandeum on the trail of the nameless moth. DNA barcodes, also known as genetic fingerprints, showed huge differences of more than 6% between the two species.

Subsequent morphological examination of the sexual organs led to the famous “wow” effect. And, upon closer inspection, the two species could not be confused at all, despite the confusingly similar external appearance of the species: namely, a wingspan of about 2 centimeters, a pink base colour with yellow spots, and strikingly long antennae.

A special gift for a 42nd wedding anniversary

Peter Huemer has described more than 200 species from Europe in 35 years, but is particularly enthusiastic about this new species. He said: “It is without doubt the prettiest species I have encountered in my long scientific career, even though it was still unnamed.”

It was therefore obvious to Huemer that he should dedicate the new species to his wife, Ingrid Maria, on their 42nd wedding anniversary. The researcher justifies this choice of name above all with his wife’s decades of support for his work.

Original source

Huemer P (2025) The supposedly unmistakable mistaken: Carcina ingridmariae sp. nov., a surprising example of overlooked diversity from Europe and the Near East (Lepidoptera, Peleopodidae). Alpine Entomology 9: 51-63. https://doi.org/10.3897/alpento.9.158239

Follow Alpine Entomology on Bluesky and Facebook.

Manga mollusc: new deep-sea species named after ONE PIECE character

Found 6 km beneath the Pacific, the limpet’s unusually large size inspired its name.

Whether its naming a spider after Venom (and Tom Hardy), a crab after a League of Legends raccoon-thing, or a giant isopod after Darth Vader, researchers have a long history of honouring their favourite pop-culture characters when naming new species.

So, when researchers from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) discovered a new limpet species deep below the northwestern Pacific Ocean, it should come as no surprise that they looked to a nautical manga series for inspiration.

Deep-sea photograph showing a limpet on the sea floor.
Photograph of the new species with a clear feeding trail behind. Credit: Chen et al.

Published as a new species in the open-access journal Zoosystematics and Evolution (follow the journal on Bluesky here), the deep-sea limpet was found on hard volcanic rock 500 kilometres southeast of Tokyo at a depth of almost 6 km, the deepest known habitat for any true limpet (subclass Patellogastropoda).

The gastropod measures up to 40.5 mm in shell length, which is a remarkably large size for a true limpet from such depths and another source of inspiration for the species’ name.

So, what is that name?

The research team named the new species Bathylepeta wadatsumi, which is both a reference to Wadatsumi, the god of the sea in Japanese mythology, and the character “Large Monk” Wadatsumi, from the manga series ONE PIECE.

“Large Monk” Wadatsumi, from the manga series ONE PIECE.
“Large Monk” Wadatsumi. Credit: One Piece Wiki.

In ONE PIECE,”Large Monk” Wadatsumi is a giant fish-man and a member of the Sun Pirates. To avoid spoilers, that’s all we will say about the character, but as far as the reference goes: Wadatsumi is big, the limpet is big, and the authors love ONE PIECE.

So much so, that they paid further homage to the world’s most popular manga series in the acknowledgements section of their paper, writing:

“We also take this opportunity to salute Eiichiro Oda for continuing to chart the epic voyage of ONE PIECE (1997–), which reminds us that the greatest voyages are driven by freedom, camaraderie, and an insatiable thirst for discovery.”

Their own discovery was made possible by access to sophisticated submersible technology.

The new species was collected using the crewed submersible DSV Shinkai 6500, making it the first time a member of the genus Bathylepeta has been observed and photographed live on its natural rocky substrate, rather than being dredged using a net. The use of submersibles is instrumental in accessing these habitats, allowing for direct observation and collection of previously overlooked organisms. 

Submersible entering the sea.
JAMSTEC’s DSV Shinkai 6500 submersible.

“Even in an age of sophisticated remotely operated vehicles, there’s often an edge to the human eye on the seafloor. Crewed submersibles like Shinkai 6500 let us explore with intention and nuance—spotting lifeforms like Bathylepeta wadatsumi that might otherwise be missed entirely.

Dr Chong Chen, lead author.

Beyond its taxonomic significance, the study has broader ecological implications as B. wadatsumi appears to graze on sediment layers over rock, indicating a specialised role in processing organic matter in deep-sea ecosystems.

The findings underscore the need for more comprehensive explorations of rocky abyssal habitats using submersibles to reveal the true diversity and distribution of Bathylepeta and other animals relying on such habitats.

While it remains to be seen whether Luffy and co. will ever find the “One Piece,” we can be sure that their adventures will continue to inspire researchers in their own journies of discovery.

Original source

Chen C, Tsuda M, Ishitani Y (2025) A new large-sized lepetid limpet from the abyssal northwestern Pacific is the deepest known patellogastropod. Zoosystematics and Evolution 101(3): 1249-1058. https://doi.org/10.3897/zse.101.156207

Cover image credit: Limpet photograph: Chen et al.; Illustration: ONE PIECE (TV series) Toei Animation.

Follow Zoosystematics and Evolution on Bluesky and Facebook

Two new species of wart sea slugs discovered from North Sulawesi, Indonesia

The discovery adds to the rich biodiversity of the Indo-Pacific region.

Five women scientists from Germany, Indonesia, and Wales have discovered two new species of wart sea slugs from North Sulawesi, Indonesia — Phyllidia ovata and Phyllidia fontjei.

Wart sea slugs in the family Phyllidiidae are common inhabitants of the Indo-Pacific Ocean, preying on sponges and stealing toxins from their prey for their own defence. To scientists and nature enthusiasts alike, they are renowned for their warning coloration and their chemical defence mechanisms. Approximately 350 species of sea slugs have been documented in North Sulawesi, and some 100 of these are new to science and still need to be formally identified, but now, two colourful species, much rarer than most of their relatives, have been named and described.

  • A photo of a vibrant black and white nudibranch with orange tips resting on the ocean floor.
  • A photo of a colorful nudibranch with a black and pale pink mottled pattern crawling over a sandy ocean floor.
  • A photo of a vibrant sea slug with a bumpy, orange and yellow patterned body resting on the ocean floor, surrounded by underwater vegetation.
  • A colorful sea slug with a pink-orange body and black stripes is photographed on rocky ocean floor, surrounded by algae and coral.
  • Close-up photo of a nudibranch with a pink body and prominent dark stripes, resting on a sandy ocean floor.
  • A photo of a vibrant, pale purple and black sea slug resting on sandy ocean floor.

Phyllidia ovata was named in reference to its unique appearance that resembles an egg, both in its shape and its pattern. It has been photographed several times by enthusiastic underwater photographers in Indonesia, Japan, Taiwan, the Philippines, and Australia during the past 23 years, but was only recognised as a new-to-science species now. This medium-sized, up to 5 cm long, wart sea slug has finally been given a name based on an animal collected by a scuba diver in North Sulawesi.

Phyllida Ovata. Photo by Heike Wägele

Phyllidia fontjei was named in honour of the late Dr. Fontje Kaligis, an Indonesian researcher who was instrumental in opening new avenues of international cooperation for the advancement of our knowledge of the — sometimes hidden — biodiversity in North Sulawesi. With a maximum documented size of 16 mm, this small species of wart sea slug is difficult to find. Nevertheless, Phyllidia fontjei has been photographed during the past 15 years – in Indonesia and Malaysia, but is more common in the Andaman Sea in the Indian Ocean. This species has been described based on a single reference animal, which scientists refer to as a holotype. The holotype has been histologically examined, allowing for a very detailed analysis of its anatomy.

Phyllidia fontjei. Photo by Heike Wägele

To a large extent, these discoveries were made possible thanks to people who do not have formal scientific education but are passionate about documenting and protecting Earth’s diversity. Photographs and data posted on citizen science platforms like iNaturalist, social media sites like Facebook, and dedicated sea slug communities such as NudiPixel and the now defunct Sea Slug Forum, provided the researchers with vital information for identifying these nudibranchs as new to science and establishing a more realistic geographical distribution when only few specimens are available for study.

“We all use these platforms in many different fields of taxonomy as they provide useful records when the species are distinctive, and have done so for more than two decades,” says Dr Nathalie Yonow of Swansea University, one of the authors of the study.

The discovery has been published in the open-access journal ZooKeys.

Research article:

Wägele H, Raubold LM, Papu A, Undap N, Yonow N (2025) On two new Phyllidia species (Gastropoda, Nudibranchia, Doridina) and some histology from the Coral Triangle. ZooKeys 1245: 1-18. https://doi.org/10.3897/zookeys.1245.153046

What are semi-double flowers? New species discovered with rare trait

Single-flowered plants are by far the most common species found in the wild.

More petals often equals more appeal for flower lovers. Double and semi-double blooms are popular among gardeners for their lush, ornate appearance. But, while they are common in cultivated varieties, they are exceptionally rare in the wild. 

So, when researchers from China discovered a new species with naturally occurring semi-double flowers, they knew they had found something special.

What are single, semi-double, and double flowers?

To appreciate this discovery, it’s helpful to understand what makes a flower “single,” “double,” or “semi-double.”

Three flowers, one with a single row of petals, one with a two, and one with several.
Left-to-right: single, semi-double, and double flowers in Rosaceae.
  • Single flowers have the typical number of petals for their species, arranged in a single row. This number is usually five in the rose family (Rosaceae). Single-flowered plants are by far the most common wild species.
  • Double flowers have been bred or mutated to have many extra petals, often replacing stamens, giving them a full, layered look. While they are popular for their aesthetic value, double flowers are often poor (or entirely useless) for pollinators.
  • Semi-double flowers are an intermediate form. They have more than the typical number of petals (often in two whorls), but fewer than fully double flowers, usually around 10–12 petals. Semi-double flowers are rare in the wild and – like double flowers – are almost always cultivated.

Double and semi-double blooms are prized for their beauty and prolonged flowering, but are typically only seen in cultivated ornamentals, not in wild populations.

Rubus semiplenus

Discovered in 2022 during a botanical expedition in Hunan Province’s Nanyue Hengshan National Nature Reserve, Rubus semiplenus is a rare example of a wild species with semi-double flowers. Scientists from Yunnan University and local botanical institutions confirmed it as a new species and published their findings in the open-access journal PhytoKeys.

Rubus semiplenus.

Unlike most of its Rubus relatives, R. semiplenus grows as a small herb or dwarf subshrub rather than a woody shrub. The bramble’s leaves are simple and nearly round, which is also unusual for the genus, and its flowers have 10–12 white petals arranged in two whorls, clearly distinguishing it from related species like Rubus hirsutus, which has the typical five-petaled, single flowers.

The floral trait seen in R. semiplenus is exceptionally rare in wild Rubus species. While some cultivated varieties and a few exceptions (like Rubus rosifolius var. coronarius) show similar traits, spontaneous semi-double flowers are almost unheard of in the wild. The discovery is also taxonomically significant. Genetic and morphological analyses place R. semiplenus within the section Rosaefolii, but it is the only known member of that group with both simple leaves and semi-double flowers, which may provide insight into floral evolution and development within the Rubus genus.

Original source

Wang T-T, Li M-H, Kuang D-Y, Xia J-L, Wang Q-P, Wang H-C (2025) Rubus semiplenus (Rosaceae), a new species with naturally occurring semi-double flowers from Hunan, China. PhytoKeys 257: 79-93. https://doi.org/10.3897/phytokeys.257.150519

Follow PhytoKeys on Bluesky and Facebook.

Celebrating One Year on Weibo

One year ago, Pensoft embarked on an exciting new journey to connect with the vibrant scientific community in China by launching our official Weibo account. This initiative was designed to foster closer ties with Chinese researchers, academics, and science enthusiasts—helping to broaden the reach of scientific knowledge and promote international collaboration.

Highlights from Our First Year

Over the past 12 months, we’ve shared a wide range of articles, research highlights, and updates from our diverse portfolio of open-access journals. Here are some of the most memorable moments from our first year:

Our most viewed video featured the discovery of three new species of Nautilus—the iconic deep-sea mollusks. Published in ZooKeys, the study described species from the Coral Sea and South Pacific. The video captivated marine biology fans and drew thousands of views. Videos are a powerful way to share science, and we encourage researchers to include video materials whenever possible!

Video by Gregory J. et al. 

Another example was the video from the study Kleptoparasitism in Micrurus mipartitus competing for the same Caecilia sp. in western Colombia, published in Herpetozoa. The footage documented a rare and dramatic interaction between coral snakes fighting over a caecilian, and it fascinated our followers with its unusual ecological behavior.

Video by Henrik Bringsøe, Niels Poul Dreyer

Our most viral post introduced the newly described supergiant Bathynomus vaderi—a massive deep-sea isopod discovered off the coast of Vietnam. Its name, vaderi, was inspired by the creature’s head, which bears a striking resemblance to the iconic helmet worn by Darth Vader in Star Wars.

Another popular post highlighted new mimetid spider species (Araneae, Mimetidae) discovered in Guizhou Province, published in Zoosystematics and Evolution. The study shed light on the region’s rich spider biodiversity and sparked strong engagement from our Chinese followers. It seems that spiders are a consistent fan favorite, with arachnid discoveries regularly going viral on our Weibo!

This trend continued with our most popular longread, which told the story of Otacilia khezu sp. nov., a newly discovered cave-dwelling spider from Guangxi, China, published in the Biodiversity Data Journal. What truly captured readers’ imaginations—beyond the biological discovery—was the name itself. The spider was named after the Khezu, a wyvern from the popular video game Monster Hunter, known for its blindness and eerie appearance. Just like its namesake, Otacilia khezu completely lacks eyes — a striking adaptation to life in the dark.

We’re also thrilled to see research from Pensoft’s journals featured widely across Chinese media. Articles have appeared in blogs, popular outlets such as People’s Daily, Xinhua, Global Times, Science and Technology Daily, on CCTV, in local news, and even in print newspapers!

Looking Ahead

As we celebrate this milestone, we’re filled with excitement for what lies ahead. We look forward to continuing to share cutting-edge science, uncovering new discoveries, and building stronger connections with our Chinese readers and partners.

Thank you to everyone who has followed, shared, and supported us over the past year. Your engagement has made this journey meaningful and rewarding. 

Stay connected with us on Weibo: Pensoft’s Official Weibo Account

A prolific discovery: three new orchid species from Costa Rica and Panama

The new species utilise an unusual method of asexual reproduction known as prolification.

Researchers have discovered three new Pleurothallis orchid species in the cloud forests of Costa Rica and Panama. The new species utilise an unusual method of asexual reproduction known as prolification.

Pleurothallis winkeliana. Credit: Karremans et al.

Found in the cool, misty highlands of the Talamanca range at elevations between 1400 and 2550 metres, the newly discovered species, Pleurothallis matrisilvae, Pleurothallis pridgeoniana and Pleurothallis winkeliana are described in the open-access journal PhytoKeys

Prolific stems in species across Pleurothallidinae. Credit: Karremans et al.

Prolificating plants produce miniature plantlets directly from their flowering stems, allowing them to bypass seed production.

Whilst prolification is rarely a fixed feature within this group of orchids, it becomes common under stressful environmental conditions. The ability may be advantageous in the challenging conditions of cloud forests, but remains underexplored scientifically. Methods of asexual reproduction might also be important when pollinators are scarce.

Pleurothallis matrisilvae. Credit: Karremans et al.

The new species have each adapted to exhibit prolification in different ways, such as forming long chains or bushy growths. These adaptations helped researchers identify them as distinct species, despite their initial visual similarities with other plants. 

With close to 1700 species currently recorded, a third of which not known from anywhere else in the world, Costa Rica is a well-known orchid biodiversity hotspot. The discovery of these orchids displays the Talamanca range’s significance as a rich and largely unexplored area. 

Pleurothallis pridgeoniana. Credit: Karremans et al.

With these additions, Costa Rica now boasts 67 recognised species of Pleurothallis, though researchers believe many more await formal identification. Such abundance highlights the importance of conserving these unique ecosystems.

Thanks to Costa Rica’s robust system of protected areas (SINAC), local institutions such as Lankester Botanical Garden of the University of Costa Rica are able to uncover and describe floristic novelties in an effort to study and conserve the country’s unique biodiversity.

Original source

Karremans AP, Pupulin F, Gange J, Bogarín D (2025) Three new species of Pleurothallis (Orchidaceae) from Costa Rica and Panama, with a note on asexual reproduction by prolification in Pleurothallidinae. PhytoKeys 256: 197-220. https://doi.org/10.3897/phytokeys.256.140316

Follow PhytoKeys on XBluesky and Facebook.

New copepod species highlights fragile biodiversity in Bermuda’s caves

It is the only member of the Tetragoniceps genus living in caves and could represent an ancient, early-diverging member of its evolutionary lineage.

Bermuda’s Walsingham cave system harbors a wide diversity of cave-dwelling animals not found anywhere else in the world; now, one more joins their ranks as researchers of the University of Cambridge, the Bermuda Institute of Ocean Sciences and Senckenberg am Meer German Centre for Marine Biodiversity Research have discovered a new copepod species.

Three close-up views of a translucent shrimp-like creature, showcasing its segmented body and delicate antennae against a dark background.
Confocal laser scanning microscopy images of Tetragoniceps bermudensis.

Copepods are some of the most diverse of all crustaceans, found everywhere from freshwater ponds to the open ocean. These tiny organisms are some of the most abundant animals in the marine plankton, and an essential component of food webs worldwide. However, their huge diversity remains rather poorly known, particularly in challenging environments like subterranean caves.

The new Bermudian copepod, Tetragoniceps bermudensis, was first collected in 2016 by Sahar Khodami, Pedro Martinez Arbizu, and Leocadio Blanco-Bercial from the Bermuda Institute of Ocean Sciences and the Senckenberg am Meer German Centre for Marine Biodiversity Research, who ventured into Roadside Cave through a narrow passageway in Bermuda’s ancient limestone bedrock. However, it was only when researchers analysed it in detail, in 2024, that T. bermudensis was confirmed to be an entirely new species. Like other members of Bermuda’s cave fauna, Tetragoniceps bermudensis – named after the country where it was discovered – might represent an ancient, early-diverging member of its evolutionary lineage, the research team say. Together with other ancient crustaceans inhabiting the island’s caverns, it persisted in a secluded, delicate underground ecosystem relatively free from competitors and predators.

“The new species of copepod crustacean, Tetragoniceps bermudensis, is the first of its genus from Bermuda, as well as the first known cave-dwelling species of the genus anywhere in the world and only the second within its family, Tetragonicipitidae,” says lead author Giovanni Mussini of the University of Cambridge’s Department of Earth Sciences. “This finding from Roadside Cave adds to the great diversity of endemic crustaceans (and other cave fauna) found in the island’s network of limestone caves.”

The team during the sampling expedition to Roadside Cave in 2016.

The team only found one female egg-bearing individual at Roadside Cave, a small cavern in Bermuda. It is hard to estimate just how rare the new species is based on a single specimen, but the finding “suggests a correspondingly limited area and a probable endemic status, consistent with the high degree of endemism typical of Bermuda’s cave-dwelling fauna,” the researchers write in their paper in the journal ZooKeys.

Roadside Cave, where the new species was found, may face threats from “urban development, vandalism, dumping, littering and pollution, and sediment disturbance due to unlawful access by humans and domesticated animals,” which makes protecting this small creature all the more urgent. The researchers call for formal protection of the cave and for robust enforcement of existing measures to protect its precious fauna.

“The discovery of this species highlights that there remains a cryptic diversity of cave-dwelling species still to be discovered even in a densely populated island like Bermuda, whose hidden, underground biodiversity is all too often overlooked,” Mussini says in conclusion.

Research article:

Mussini G, Niimi YJ, Khodami S, Kihara TC, Martinez Arbizu P, Blanco-Bercial L (2025) A new species of Tetragoniceps Brady, 1880 (Copepoda, Harpacticoida, Tetragonicipitidae) from an anchialine cave in Bermuda, with an updated key to the species of the genus. ZooKeys 1239: 1-19. https://doi.org/10.3897/zookeys.1239.144436