LifeWatchGreece launches a Special Paper Collection for Greek biodiversity research

Developed in the 1990s and early 2000s, LifeWatch is one of the large-scale European Research Infrastructures (ESFRI) created to support biodiversity science and its developments. Its ultimate goal is to model Earth’s biodiversity based on large-scale data, to build a vast network of partners, and to liaise with other high-quality and viable research infrastructures (RI).

Being one of the founding LifeWatch member states, Greece has not only implemented LifeWatchGreece, but it is all set and ready to “fulfill the vision of the Greek LifeWatch RI and establish it as the biodiversity Centre of Excellence for South-eastern Europe”, according to the authors of the latest Biodiversity Data Journal‘s Editorial: Dr Christos Arvanitidis, Dr Eva Chatzinikolaou, Dr Vasilis Gerovasileiou, Emmanouela Panteri, Dr Nicolas Bailly, all affiliated with the Hellenic Centre for Marine Research (HCMR) and part of the LifeWatchGreece Core Team, together with Nikos Minadakis, Foundation for Research and Technology Hellas (FORTH), Alex Hardisty, Cardiff University, and Dr Wouter Los, University of Amsterdam.

lwg-presentationMaking use of the technologically advanced open access Biodiversity Data Journal and its Collections feature, the LifeWatchGreece team is publishing a vast collection of peer-reviewed scientific outputs, including software descriptions, data papers, taxonomic checklists and research articles, along with the accompanying datasets and supporting material. Their intention is to demonstrate the availability and applicability of the developed e-Services and Virtual Laboratories (vLabs) to both the scientific community, as well as the broader domain of biodiversity management.

The LifeWatchGreece Special Collection is now available in Biodiversity Data Journal, with a series of articles highlighting key contributions to the large-scale European LifeWatch RI. The Software Description papers explain the LifeWatchGreece Portal, where all the e-Services and the vLabs provided by LifeWatchGreece RI are hosted; the Data Services based on semantic web technologies, which provide detailed and specialized search paths to facilitate data mining; the R vLab which can be used for a series of statistical analyses in ecology, based on an integrated and optimized online R environment; and the Micro-CT vLab, which allows the online exploration, dissemination and interactive manipulation of micro-tomography datasets.

The LifeWatchGreece Special Collection also includes a series of taxonomic checklists (preliminary, updated and/or annotated); a series of data papers presenting historical and original datasets; and a selection of research articles reporting on the outcomes, methodologies and citizen science initiatives developed by collaborating research projects, which have shared human, hardware and software resources with LifeWatchGreece RI.

LifeWatchGreece relies on a multidisciplinary approach, involving several subsidiary initiatives; collaborations with Greek, European and World scientific communities; specialised staff, responsible for continuous updates and developments; and, of course, innovative online tools and already established IT infrastructure.

###

Original source:

Arvanitidis C, Chatzinikolaou E, Gerovasileiou V, Panteri E, Bailly N, Minadakis N, Hardisty A, Los W (2016) LifeWatchGreece: Construction and operation of the National Research Infrastructure (ESFRI). Biodiversity Data Journal 4: e10791. https://doi.org/10.3897/BDJ.4.e10791

Additional information:

This work has been supported by the LifeWatchGreece infrastructure (MIS 384676), funded by the Greek Government under the General Secretariat of Research and Technology (GSRT), ESFRI Projects, National Strategic Reference Framework (NSRF).

How to import occurrence records into manuscripts from GBIF, BOLD, iDigBio and PlutoF

On October 20, 2015, we published a blog post about the novel functionalities in ARPHA that allows streamlined import of specimen or occurrence records into taxonomic manuscripts.

Recently, this process was reflected in the “Tips and Tricks” section of the ARPHA authoring tool. Here, we’ll list the individual workflows:

Based on our earlier post, we will now go through our latest updates and highlight the new features that have been added since then.

Repositories and data indexing platforms, such as GBIF, BOLD systems, iDigBio, or PlutoF, hold, among other types of data, specimen or occurrence records. It is now possible to directly import specimen or occurrence records into ARPHA taxonomic manuscripts from these platforms [see Fig. 1]. We’ll refer to specimen or occurrence records as simply occurrence records for the rest of this post.

Import_specimen_workflow_
[Fig. 1] Workflow for directly importing occurrence records into a taxonomic manuscript.
Until now, when users of the ARPHA writing tool wanted to include occurrence records as materials in a manuscript, they would have had to format the occurrences as an Excel sheet that is uploaded to the Biodiversity Data Journal, or enter the data manually. While the “upload from Excel” approach significantly simplifies the process of importing materials, it still requires a transposition step – the data which is stored in a database needs to be reformatted to the specific Excel format. With the introduction of the new import feature, occurrence data that is stored at GBIF, BOLD systems, iDigBio, or PlutoF, can be directly inserted into the manuscript by simply entering a relevant record identifier.

The functionality shows up when one creates a new “Taxon treatment” in a taxonomic manuscript in the ARPHA Writing Tool. To import records, the author needs to:

  1. Locate an occurrence record or records in one of the supported data portals;
  2. Note the ID(s) of the records that ought to be imported into the manuscript (see Tips and Tricks for screenshots);
  3. Enter the ID(s) of the occurrence record(s) in a form that is to be seen in the “Materials” section of the species treatment;
  4. Select a particular database from a list, and then simply clicks ‘Add’ to import the occurrence directly into the manuscript.

In the case of BOLD Systems, the author may also select a given Barcode Identification Number (BIN; for a treatment of BIN’s read below), which then pulls all occurrences in the corresponding BIN.

We will illustrate this workflow by creating a fictitious treatment of the red moss, Sphagnum capillifolium, in a test manuscript. We have started a taxonomic manuscript in ARPHA and know that the occurrence records belonging to S. capillifolium can be found on iDigBio. What we need to do is to locate the ID of the occurrence record in the iDigBio webpage. In the case of iDigBio, the ARPHA system supports import via a Universally Unique Identifier (UUID). We have already created a treatment for S. capillifolium and clicked on the pencil to edit materials [Fig. 2].

Figure-61-01
[Fig. 2] Edit materials
In this example, type or paste the UUID (b9ff7774-4a5d-47af-a2ea-bdf3ecc78885), select the iDigBio source and click ‘Add’. This will pull the occurrence record for S. capillifolium from iDigBio and insert it as a material in the current paper [Fig. 3].

taxon-treatments- 3
[Fig. 3] Materials after they have been imported
This workflow can be used for a number of purposes. An interesting future application is the rapid re-description of species, but even more exciting is the description of new species from BIN’s. BIN’s (Barcode Identification Numbers) delimit Operational Taxonomic Units (OTU’s), created algorithmically at BOLD Systems. If a taxonomist decides that an OTU is indeed a new species, then he/she can import all the type information associated with that OTU for the purposes of describing it as a new species.

Not having to retype or copy/paste species occurrence records, the authors save a lot of efforts. Moreover, they automatically import them in a structured Darwin Core format, which can easily be downloaded from the article text into structured data by anyone who needs the data for reuse.

Another important aspect of the workflow is that it will serve as a platform for peer-review, publication and curation of raw data, that is of unpublished individual data records coming from collections or observations stored at GBIF, BOLD, iDigBio and PlutoF. Taxonomists are used to publish only records of specimens they or their co-authors have personally studied. In a sense, the workflow will serve as a “cleaning filter” for portions of data that are passed through the publishing process. Thereafter, the published records can be used to curate raw data at collections, e.g. put correct identifications, assign newly described species names to specimens belonging to the respective BIN and so on.

 

Additional Information:

The work has been partially supported by the EC-FP7 EU BON project (ENV 308454, Building the European Biodiversity Observation Network) and the ITN Horizon 2020 project BIG4 (Biosystematics, informatics and genomics of the big 4 insect groups: training tomorrow’s researchers and entrepreneurs), under Marie Sklodovska-Curie grant agreement No. 642241.