Plants cheat too: A new species of fungus-parasitizing orchid

Plants usually produce their own nutrients by using sun energy, but not all of them. A new ‘cheater’ species of orchid from Japan, lives off nutrients obtained via a special kind of symbiosis with fungi. The study was published in the open access journal PhytoKeys.

The new orchid species, named Lecanorchis tabugawaensis, is by far not on its own in its strange feeding habits. The so called mycoheterotrophic plants are found among all plant species groups.

Mycoheterotrophy is a term derived from Greek to describe the bizarre symbiotic relationship between some plants and fungi, where the plant gets nutrients parasitizing upon fungi, rather than using photosynthesis.

Considered a kind of a cheating relationship, these plants are sometimes informally referred to as “mycorrhizal cheaters”.

Having long attracted the curiosity of botanists and mycologists, a common feature of most mycoheterotrophic plants is their extreme scarcity and small size. In addition, most species are hiding in the dark understory of forests, only discoverable during the flowering and fruiting period when aboveground organs appear through the leaf litter.

%e3%82%bf%e3%83%96%e3%82%ac%e3%83%af%e3%83%a0%e3%83%a8%e3%82%a6%e3%83%a9%e3%83%b3008Despite it seems like these ‘cheating’ plants have it all easy for themselves, in reality they are highly dependent on the activities of both the fungi and the trees that sustain them. Such a strong dependency makes this fascinating plant group particularly sensitive to environmental destruction.

“Due to the sensitivity of mycoheterotrophic plants it has long been suggested that their species richness provides a useful indicator of the overall floral diversity of forest habitats. A detailed record of the distribution of these vulnerable plants therefore provides crucial data for the conservation of primary forests,” explains leading author Dr Kenji Suetsugu, Kobe University.

Just discovered, the new orchid species has been already assessed with an IUCN status – Critically Endangered. With a distribution restricted to only two locations along the Tabu and Onna Rivers, Yakushima Island, this fungus-eating cheater might need some conservation attention.

###

Original Source:

Suetsugu K, Fukunaga H (2016) Lecanorchis tabugawaensis (Orchidaceae, Vanilloideae), a new mycoheterotrophic plant from Yakushima Island, Japan. PhytoKeys 73: 125-135. doi: 10.3897/phytokeys.73.10019

Orchid or Demon: Flower of a new species of orchid looks like a devil’s head

A lone and unique population of about 30 reddish to dark violet-maroon orchids grows on the small patch of land between the borders of two Colombian departments. However, its extremely small habitat is far from the only striking thing about the new species.

A closer look at its flowers’ heart reveals what appears to be a devil’s head. Named after its demonic patterns, the new orchid species, Telipogon diabolicus, is described in the open access journal PhytoKeys.

Discovered by Dr Marta Kolanowska and Prof Dariusz Szlachetko, both affiliated with University of Gdansk, Poland, together with Dr Ramiro Medina Trejo, Colombia, the new orchid grows a stem measuring between 5.5 – 9 cm in height.

With its only known habitat restricted to a single population spread across a dwarf montane forest at the border between departments Putumayo and Nariño, southern Colombia, the devilish orchid is assigned as a Critically Endangered species in the IUCN Red List.

Although the curious orchid could be mistakenly taken for a few other species, there are still some easy to see physical traits that make the flower stand out. Apart from the demon’s head hidden at the heart of its colours, the petals themselves are characteristically clawed. This feature has not been found in any other Colombian species of the genus.close-up

“In the most recent catalogue of Colombian plants almost 3600 orchid species representing nearly 250 genera are included,” remind the authors. “However, there is no doubt that hundreds of species occurring in this country remain undiscovered. Only in 2015 over 20 novelties were published based on material collected in Colombia.”

Original source:

Kolanowska M, Szlachetko DL, Trejo RM (2016) Telipogon diabolicus (Orchidaceae, Oncidiinae), a new species from southern Colombia. PhytoKeys 65: 113-124. doi:10.3897/phytokeys.65.8674

Curious new bush species growing ‘bleeding’ fruits named by a US class of 150 7th graders

A class of 150 US 7th graders has helped select a name for a newly discovered plant, which amazes with its fruits that appear to be bleeding once they are cut open. Bucknell University biology professor Chris Martine and life science teacher Bradley Catherman challenged the students to come up with ideas for what to call the new Australian species last spring.

Looking for a way to engage local youngsters in biodiversity science, Martine scheduled a presentation to the collective 7th grade life science classes at Donald H. Eichhorn Middle School. As the day of his assembly approached, he started to think that the best way to generate interest might be to somehow allow the students to participate in the actual research he was doing in his lab at the time. Only, he knew there were few things he could do with 150 13- and 14-year olds sitting in a gymnasium.

“I emailed Mr. Catherman and I said, ‘How about we ask them to name a new species for me?’ explained Martine. “And then I showed up with live plants, preserved specimens, and my notes from the Outback – and we said, ‘Go ahead, tell us what to call this thing.'”

Nearly a year later, Martine and his co-authors, including two undergraduate students, have published the new species in the open access journal PhytoKeys. The news is coming just in time for the National Teacher Appreciation Day, thus giving tribute to Bradley Catherman, a life science teacher who is not afraid to step beyond the standard curriculum and make that extra step to actually engage his students with their studies.

OLYMPUS DIGITAL CAMERA

“I was really impressed with Mr. Catherman’s willingness to work outside of the typical curriculum on this,” said Martine, “In an age when K-12 teachers are increasingly pressured to ‘teach to the test’ he is still willing to think creatively and try something unusual.”

Curiously, the new flowering bush species ‘behaves’ nothing like an ordinary plant. While its unripened fruits are greenish white on the inside when cut open, they start ‘bleeding’ in no more than two minutes. The scientists have even filmed a video short showing how their insides turn bloody scarlet at first, before growing darker, appearing just like clotting blood.

A week after the presentation, each of the students submitted an essay in which they suggested a name, explained the meaning, and translated it into Latin (the language that scientific names are required to be in). Catherman and Martine then selected the two best essays for the inaugural Discovery Prize, a new middle school science award established by Martine and his wife, Rachel.

“As you might imagine, the suggestions ran the gamut from the silly to the scientific,” said Martine. “But for every request to name the species after a favorite food, family pet, or Taylor Swift, there were many suggestions based on the data the students had been provided.”

According to Martine, a number of the students suggested names based on two characteristics of the plant’s berries: the ‘bleeding’ unripened fruits and the dry and bone-hard mature ones. Based on this, the plant will now be known as Solanum ossicruentum, best translated to Australian blood bone tomato, with “ossi” meaning “bone” and “cruentum” meaning “bloody”. The species belongs to the genus of the tomato.mature fruit

The species is native to the sub-arid tropical zone of northern Australia. Martine collected the seeds, he grew his research plants from, during a 2014 expedition to Western Australia and the Northern Territory. However, specimens of the plant had actually been gathered for years before then.

“This is just one of thousands of unnamed Australian species that have been collected by dedicated field biologists and then stored in museums,” said Martine, who studied specimens of the new species in the Northern Territory Herbarium before hunting for it in the bush.

“There is a wealth of museum material just waiting to be given names – and, of course, the organisms represented by those specimens await that recognition, as well as the attention and protection that come with it.”

 

IMG_5089Luckily for Solanum ossicruentum, attention and protection are not too much of an issue.

“Not only is it widespread and fairly abundant,” said Martine, “but one of the healthiest populations occurs in Mirima National Park, a popular and easily-accessible natural area just outside the Western Australian town of Kununurra.”

“Plus, middle schoolers can be tough to deal with. I don’t think anyone in their right mind would mess with this plant, now,” the botanist joked.

###

Original source:

Martine CT, Cantley JT, Frawley ES, Butler AR, Jordon-Thaden IE (2016) New functionally dioecious bush tomato from northwestern Australia, Solanum ossicruentum, may utilize “trample burr” dispersal. PhytoKeys 63: 19-29. doi: 10.3897/phytokeys.63.7743

Poorly known South African mountain endemic appears to be a very valuable keystone species

Mountain ecosystems are valuable providers of key resources including water. These ecosystems comprise diverse species, some of which appear to be especially important to the ecosystem’s functioning. In poorly studied mountain environments in biodiversity-rich countries, these keystone species can often be overlooked and undervalued.

Macowania is a group of yellow daisy shrubs occurring in the alpine-like regions of the Drakensberg and highlands of Ethiopia, Eritrea and Yemen. Doctoral student Joanne Bentley, University of Cape Town, studied the genetic relationships between the various Macowaniaspecies and relatives during her Masters degree studies. Her research led to the first collection of the poorly known species Macowania revoluta (known also as the Amathole Macowania) in about 40 years.

The story of Macowania revoluta is published in the open access journal PhytoKeys.

The Amathole Macowania appears to be an exceptionally important keystone species. This is because it forms one of the dominant members of the valuable mountain wetland communities and, thus, likely plays a very important role in wetland functioning and soil protection.

It appears to be somewhat tolerant of woody alien species and a valuable pioneer species protecting its native co-habitants. Plants like this one buffer more sensitive plants from sudden changes in environment (such as forestry, alien invasion and fire), and provide an opportunity for the ecosystem to ‘bounce back’.

113693Restricted to the Amathole mountains in the Eastern Cape Province, South Africa, the Amathole Macowania was first collected sometime before 1870 by the pioneer botanist Peter MacOwan, and was well documented until around 1949. After that, except for one record in 1976, the plant quietly disappeared.

“This was the first Macowania species that we found during our fieldtrip across the greater Drakensberg. We had combed several of the localities where it had been collected before; mostly from several decades ago, some from more than a century ago!” says Joanne Bentley. “We became increasingly doubtful about finding the plant, given the heavily transformed plantation landscape.”

“Ready to throw in the towel, we came across a peaty area on the margins of the forest and decided on one last investigation. We were lucky: it was growing prolifically! It was a very special moment.”

As it often happens, exciting discoveries come in bulk. Joanne’s discovery of the plant in July 2010 was followed by another record in October 2010, by the Curator of the Schonland Herbarium, Tony Dold. In 2014 at least three additional localities were recorded along the popular Amathole Hiking Trail by Dr Ralph Clark, Rhodes University. A further record was added in 2015 by Vathi Zikishe, South African National Biodiversity Institute. The verdict: this is a very localised but patchily abundant species, and an ecologically valuable component of the Amathole flora.

Listed as ‘Data Deficient’ in the Threated Plants List for South Africa, this string of modern records of the species also provided the first opportunity to get an idea of its ecology and abundance, as well as the first photographs.

“The practical value of this species in local land restoration projects still needs to be explored, but the opportunities are exciting,” says Dr Clark. “The discovery that this obscure endemic mountain plant is not only abundant, but is, in fact, fulfilling an extremely important ecological role, highlights the value of detailed mountain biodiversity research in southern Africa.”

###

Original source

Clark VR, Bentley J, Dold AP, Zikishe V, Barker NP (2016) The rediscovery of the Great Winterberg endemic Lotononis harveyi B.-E.van Wyk after 147 years, and notes on the poorly known Amathole endemic Macowania revoluta Oliv. (southern Great Escarpment, South Africa). PhytoKeys 62: 1-13. doi: 10.3897/phytokeys.62.8348

South African endemic mountain plant gives itself up after 147-year absence

South Africa’s mountains are essential to the economic well-being of the country, providing many goods and services essential for social and economic prosperity. However, the biodiversity value of these mountains is still poorly understood. This is exemplified by the large number of plant species still only known from one or two collections made well over a century ago.

The Great Escarpment Biodiversity Research Programme, led by Prof. Nigel Barker, University of Pretoria, has been systematically documenting plant diversity and endemism along much of the Great Escarpment – southern Africa’s principal mountain system.

“This ‘un-sexy’ foot-slogging research has yielded a number of valuable discoveries and rediscoveries, highlighting the biodiversity value of these mountains,” points lead author Dr Ralph Clark, Rhodes University, South Aftica.

One of these rediscoveries is a plant last seen only by one more person: Mrs Elizabeth Barber, one of South Africa’s finest women botanists of the 19th century. Mrs Barber has been a regular correspondent with Charles Darwin and has provided material of South African plants to numerous institutions in Europe.

“Her discovery – Lotononis harveyi, also known under the common name ‘Mrs Barber’s Beauty’ in her honour, was published in 1862, but unfortunately, as her specimen did not include a date, we do not know the actual year in which she discovered it,” he explains. “What we do know, is that it mysteriously disappeared for at least 147 years, despite attempts to relocate it.”harveyi img2

In 2009, Dr Ralph Clark undertook an extensive collecting trip to the Great Winterberg, where he accidently stumbled across a flowering specimen of ‘Mrs Barber’s Beauty’. It was only in 2014, however, that the plant was properly recognised for what it was, and a second trip was quickly planned.

The results of the second trip included the first photographs and ecological records of this apparently scarce species. Dr Clark’s results have been published in the open access journal PhytoKeys.

“There are currently only six known individuals of this species. The main limiting factors appear to be fire and grazing, the plants only occurring where these two prominent ecological actors have been excluded for some time,” notes Dr Clark.

“However, with much of these mountains still poorly explored by biodiversity scientists, it is possible that additional individuals will come to light. For now the species will be regarded as Critically Endangered.”

###

Original source:

Clark VR, Bentley J, Dold AP, Zikishe V, Barker NP (2016) The rediscovery of the Great Winterberg endemic Lotononis harveyi B.-E.van Wyk after 147 years, and notes on the poorly known Amathole endemic Macowania revolutaOliv. (southern Great Escarpment, South Africa). PhytoKeys 62: 1-13. doi: 10.3897/phytokeys.62.8348

Global Plant Conservation’s Phase 1: The world checklist of hornworts and liverworts

Although it was Charles Darwin himself who more than a century ago voiced his intention to support a complete catalogue of all known plant species, such is yet to be realised. In the present paper, however, an international research team present the first ever worldwide checklist of hornworts and liverworts, covering 7485 species from across 396 genera and representing 92 families from the two phyla.

“This group of generally small-sized plants are an important component of the vegetation in many regions of the world, constituting a major part of the biodiversity in moist forest, wetland, mountain and tundra ecosystems,” says Prof. Lars Soderstrom, the lead investigator from the Norwegian University of Science and Technology. The initiative is a part of the Global Strategy for Plant Conservation aiming to list the whole known plant kingdom by 2020. Their work is published in the open-access journal PhytoKeys.

Assembling a working digital list of all known plant species is a staple within the Global Strategy for Plant Conservation, a framework whose ultimate goal is to halt the loss of plant diversity, which, unfortunately, is already a widely recognised fact. Without such a list, few other targets from the strategy would be met, since there would be a lack of baseline information. There would not be accessible and accurate botanical name information to utilise in researches, conservation and sustainability projects. Eventually, it would be impossible for taxonomists to stand their ground in the atmosphere of real-world politics.

“The present checklist is a result of a lengthy endeavour, started in 2008 at an international meeting hosted by The Field Museum, Chicago, and has blossomed to include over 40 authors and numerous individuals worldwide as well as several funding agencies allowing for a joint community effort to bring this to fruition,” says Dr. von Konrat. Working towards a consensus, together they managed to utilise the existing dataset and centralise nomenclature, taxonomy and geography on a global scale – something that had long been deterring such projects.

Liverworts and hornworts are of critical biological and ecological value, and an important component of the vegetation in many regions of the world. Liverworts, for example, are so widespread that can be found all the way from coastal Antarctica to the tundra of the Northern hemisphere and from the quite dry areas of Australia to the rainforest of Amazonia. Growing almost everywhere, they have turned into a microhabitat for a myriad of organisms such as single-celled eukaryotes, protozoa, and a wide range of invertebrates.

Moreover, both liverworts and hornworts play a vital role in the global carbon budget and carbon dioxide exchange. In the past they have even been used as climate change indicators and could be used as such to track potential signs of global warming in future.

In conclusion, the authors remind that their completion of the world checklist of hornwort and liverwort species is only the first phase towards the ultimate goal – a worldwide list of accepted plant names. Now, that there is a “virtual instrument with a linked environment both internally (e.g., within an article) and externally (GBIF, IPNI, Tropicos, Wikispecies, etc.) that will undoubtedly help accelerate taxonomic research,” the scientific world can set its sights on the next step – creating an easily accessible and generally recognised online platform for the supplementary information. It includes over 25,000 publications, almost 39,000 published names, and the over 700,000 geographical observations and the researchers believe that it will draw the attention and help of ecologists, conservationists, scientists from other disciplines and general interest groups.

“The broader accessibility to the wealth of auxiliary data will help augment monographic and revisionary work for many taxonomic groups, aid in identifying the need for increased floristic and survey work in many regions throughout the world, and have broad implications and applications beyond taxonomic research such as conservation science,” the scientists summarise. “However, such an effort can only be successful if it comes with sustained funding and infrastructure rather than depending on an ad hoc commitment by a few individuals, however dedicated”.

###

 

Original source:

Soderstrom L, Hagborg A, von Konrat M, Bartholomew-Began S, Bell D, Briscoe L, Brown E, Cargill DC, Costa DP, Crandall-Stotler BJ, Cooper ED, Dauphin G, Engel JJ, Feldberg K, Glenny D, Gradstein SR, He X, Heinrichs J, Hentschel J, Ilkiu-Borges AL, Katagiri T, Konstantinova NA, Larraín J, Long DG, Nebel M, Pocs T, Felisa Puche F, Reiner-Drehwald E, Renner MAM, Sass-Gyarmati A, Schafer-Verwimp A, Moragues JGS, Stotler RE, Sukkharak P, Thiers BM, Uribe J, Vana J, Villarreal JC, Wigginton M, Zhang L, Zhu R-L (2016) World checklist of hornworts and liverworts. PhytoKeys 59: 1-821.doi: 10.3897/phytokeys.59.6261

A botanical survey to help understand change in our wild flora

Volunteers in the north-east of England have created a benchmark survey of common plants with which to identify change in the countryside, its result and causes. This survey will be used in future to monitor the effects of climate change on plants; assess the success of conservation measures and predict future change. Its findings are published in the open-access journal Biodiversity Data Journal, contributing an additional 35,000 observations to the 200,000 observations collected by local recorders since the turn of the millennium .

Many people remark on the changes that are occurring in the countryside, the disappearance of some species and the spread of others. Yet, these anecdotes cannot substitute for hard facts. There are also many suggested causes for all these changes such as warmer climate, different agricultural practices, eutrophication, or alien species. Botanical observations tend to be biased. For example, common species are often ignored in the interest of exceptional ones. Therefore, what was needed was a dedicated survey with a clear and repeatable methodology.

Common plant species are the mainstay of habitats, they create our woodlands, hedgerows and meadows. They also provide the food for herbivores and pollinators and create homes for birds and mammals. Changes in the abundance of rare species have little impact on other species, but change in the abundance of common species can have cascading effects on whole ecosystems of which we are a part.

For these reasons volunteer botanists in the north-east of England conducted a four-year survey to benchmark the abundance of common plants. Led by the Botanical Societies vice county recorders, John Durkin Ecology, Botanical Society of Britain and Ireland, and Botanic Garden Meise, the volunteers surveyed the plants in a randomly selected sample of 1km2 grid squares in the vice counties of Durham and South Northumberland.

They created a solid foundation that can be used to qualify the abundance of common species and compare against previous and future studies. The project was conducted over four years and required volunteers to go to various places. Some surveyed post-industrial brown-field sites, while others walked for miles across bleak moorland to reach sites high in the hills. Although these moors are arguably wilder and natural, the industrial wastelands turn out to be far more biodiverse.

Botanical surveying continues in the region despite the end of the project. Volunteers continue to monitor rare plants in the region and are currently working towards the next atlas of Britain and Ireland, coordinated by the Botanical Society of Britain and Ireland.

“Good biological conservation in the 21st century will have as much to do with sensitive adaption to change as it is about preserving what we have,” point out the authors. “Human memory is short and fickle and it is only with benchmark surveys, such as this that we can hope to understand and manage that change.”

###

Original source:

Groom Q, Durkin J, O’Reilly J, Mclay A, Richards A, Angel J, Horsley A, Rogers M, Young G (2015) A benchmark survey of the common plants of South Northumberland and Durham, United Kingdom. Biodiversity Data Journal 3: e7318. doi: 10.3897/BDJ.3.e7318