The first Red List of Taxonomists in Europe is calling for the support of insect specialists

The Red List of Taxonomists portal, where taxonomy experts in the field of entomology can register to help map and assess expertise across Europe, in order to provide action points necessary to overcome the risks, preserve and support this important scientific community, will remain open until 31st October 2021.

About 1,000 insect taxonomists – both professional and citizen scientists – from across the European region have already signed up on the Red List of Taxonomists, a recently launched European Commission-funded initiative by the Consortium of European Taxonomic Facilities (CETAF), the International Union for Conservation of Nature (IUCN) and the scholarly publisher best-known for its biodiversity-themed journals and high-tech innovations in biodiversity data publishing Pensoft.

Insect taxonomists, both professional and citizen scientists, are welcome to register on the Red List of Taxonomists portal at: red-list-taxonomists.eu and further disseminate the registration portal to fellow taxonomists until 31st October 2021.

Within the one-year project, the partners are to build a database of European taxonomy experts in the field of entomology and analyse the collected data to shed light on the trends in available expertise, including best or least studied insect taxa and geographic distribution of the scientists who are working on those groups. Then, they will present them to policy makers at the European Commission.

By recruiting as many as possible insect taxonomists from across Europe, the Red List of Taxonomists initiative will not only be able to identify taxa and countries, where the “extinction” of insect taxonomists has reached a critical point, but also create a robust knowledge base on taxonomic expertise across the European region to prompt further support and funding for taxonomy in the Old Continent.

On behalf of the project partners, we would like to express our immense gratitude to everyone who has self-declared as an insect taxonomist on the Red List of Taxonomists registration portal. Please feel welcome to share our call for participation with colleagues and social networks to achieve maximum engagement from everyone concerned about the future of taxonomy!

***

Read more about the rationale of the Red List of Taxonomists project.

***

Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag. 

Recruiting participants to the first European Red list of insect taxonomists

Contributors will enable the EU to take action to plug in the essential scientific knowledge to address insect declines

The ‘Red List of Taxonomists’ initiative, funded by the European Union, launches its registration portal, where professionals and citizen scientists are called to register on. The purpose is to build a database of European taxonomy experts in the field of entomology, the biological discipline dedicated to insects. The analysis of these data will elucidate the trends in available expertise, thereby forming the basis of key recommendations for policy makers to further allocate necessary efforts and funds to support taxonomists’ work and contribute to protecting European biodiversity and beyond.

Globally, insect populations have been catastrophically plummeting over the last decades. According to the first major Europe-wide survey of honeybee colonies, conducted in 2013, some European countries lost as many as one-third of their colonies every winter. On the other hand, estimates state, the European agriculture industry alone ‘owes’ at least €22 billion per year to honey bees and wild bees, in addition to many species from other insect orders, as together they ensure pollination for over 80% of crops and wild plants in Europe.

Insect pollination of plants is an irreplaceable service to people
Photo: Lenka Z (pexels)

The health of European pollinators on species and population level and other insects essential in our ecosystems strongly relies on our ability to rapidly turn the growing awareness about these worrying trends into swift, decisive actions. These decisions are crucial to mitigate the negative impacts of these alarming trends in human activities, mainly industrial agriculture. Taxonomists – the people who can identify, discover and monitor insect species – have a decisive role to play.

Often specialised in specific insect groups, they can investigate the diversity and abundance of insects. To a great concern, the numbers of trained insect taxonomists seem also to be fast declining. There is the real danger of losing numerous species before we get the chance to even learn about their existence! 

On a more positive note, while species extinction is an irreversible event, certain taxonomic expertise can be nourished and ‘brought back to life’ if only we have the data and analyses to bring to the attention of the relevant education institutions, governments and policy-makers, so that the necessary resources are allocated to education, training, career support and recognition.

This is how the ‘Red List of Taxonomists’ project, an initiative by the organisation uniting the most important and largest European natural science collections (CETAF), the world’s authority on assessing the risk of extinction of organisms: the International Union for Conservation of Nature (IUCN) and the scientific publisher with a long history in the biodiversity and ecology fields: Pensoft, and funded by the European Commission, comes into play. Launched earlier this year, the ‘Red List of Taxonomists’ aims to compile the very first inventory of taxonomic expertise for any group of organisms, understandably choosing the class of insects. 

Bringing together scientists, research institutions and learned societies from across Europe, the project will compare the trends and extract recommendations to overcome the risks, while preserving and further evolving the expert capacity of this scientific community.

The precious skills of insect taxonomists must be preserved and developed
Photo: Grafvision, Adobe Stock

As partners of the project, CETAF and IUCN are mobilising experts from their respective networks to populate the ‘Red List of Taxonomists’ database. In parallel, Pensoft is extracting further data of authors, reviewers and editors from taxonomic publications across its portfolio of academic journals and books, in addition to major relevant databases working with scholarly literature. 

To reach experts, including professionals not necessarily affiliated with partnering institutions, as well as citizen scientists, the team is now calling for European taxonomists to register via the newly launched ‘Red List of Taxonomists’ portal and provide their data by filling a short survey. Their data will not be publicly available, but it will be used for in-depth analyses and reports in the concluding stage of the project, scheduled for early 2022. The collection of the data is in full compliance with GDPR requirements.

***

Insect taxonomists, both professional and citizen scientists, are welcome to register on the Red List of Taxonomists portal at: red-list-taxonomists.eu and further disseminate the registration portal to fellow taxonomists.

***

Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag. 

A Red List of insect experts in Europe

New EC-funded project will identify trends in taxonomic expertise across Europe to identify gaps in expert knowledge

Europe’s largest bumblebee, Bombus fragrans, is currently assessed as an Endangered species.
Illustration by Denitza Peneva.

Insects are the largest taxonomic group in the animal kingdom. Three out of four described animal species belong to the class Insecta. They are widely distributed in terrestrial and aquatic environments. Indispensable to the ecosystem, insects drive key processes such as pollination, decomposition, soil formation and supply an essential part of the food webs.

Yet, insect populations have been catastrophically plummeting. For example, recent studies have shown a decrease of 75% of insect biomass in German Nature Reserves in less than 30 years, and the situation is probably no less dramatic anywhere in Europe. According to the European Red List of threatened species, one in ten bee species and a quarter of all grasshopper species are at risk of extinction. As it becomes clear how dependent on insects our ecosystems and our economy are, people gradually realise the dramatic consequences of insect decline.

One less known aspect of this global crisis is on the agenda today: the shrinking number of insect taxonomists, the scientists on whose highly specialised skills we depend to obtain knowledge on the diversity of organisms. Without taxonomists, no study of species or ecosystems would be possible, as we would not be able to recognise what biodiversity we are losing.

Here is why the European Commission has funded a new project to embark on the pioneer task to assess the status of taxonomic expertise on insects in Europe. A “Red List” of taxonomists will be compiled for the first time for any group of organisms. The effort is being undertaken by a diverse and interdisciplinary team of experts, including the organisation uniting the most important and largest European natural science collections (CETAF) and the world’s authority on assessing the risk of extinction of organisms: IUCN (the International Union for Conservation of Nature).

As with typical European Red List (ERL) assessments, normally applied to species level, the project involves the collection and evaluation of the available information about the number, location, qualification and field of specialisation of insect taxonomists and the application of systematic criteria to assess the risk of their “extinction”. This concept has never been applied to scientists before, but by using the ERL analogy, the project aims to combine those groups of insects and those countries that bear the highest risk of losing the associated taxonomic expertise and potential gaps.

Bringing together individual scientists, research institutions and learned societies from across Europe, the project will compare the trends and pull up recommendations to overcoming the risks, preserving and further evolving the expert capacity of this scientific community. Unlike species extinctions, the loss of taxonomic knowledge is reversible, especially when the needs are clear and the necessary resources are invested in education, training, career development and recognition.

###

Additional information:

CETAF is the European organization of Natural History Museums, Botanic Gardens and Research Centers with their associated natural science collections comprising 71 of the largest taxonomic institutions from 22 European countries (18 EU, 1 EEA and 3 non-EU), gathering expertise of more than 5,000 researchers. Their collections contain a wide range of specimens including animals, plants, fungi and rocks, and genetic resources which are used for scientific research and exhibitions. CETAF aims to promote training, research collaborations and understanding in taxonomy and systematic biology as well as to facilitate access to our natural heritage by sharing the information derived from the collections.

IUCN (the International Union for Conservation of Nature) is a membership Union composed of both government and civil society organisations. It harnesses the experience, resources and reach of its more than 1,400 Member organisations and the input of more than 17,000 experts. This diversity and vast expertise makes IUCN the global authority on the status of the natural world and the measures needed to safeguard it.

Pensoft is an independent academic publishing company and technology provider, well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials. Through its Research and Technical Development department, the company is involved in various research and technology projects. Founded in 1992 “by scientists, for scientists” and initially focusing on book publishing, Pensoft is now a leading publisher of innovative open access journals in taxonomy and biodiversity science.

Eleven new species of rain frogs discovered in the tropical Andes

One of the newly described species: Pristimantis chomskyi.
Its name honors Noam Chomsky, a renowned linguist from ASU.
Image by David Velalcázar, BIOWEB-PUCE.

Eleven new to science species of rain frogs are described by two scientists from the Museum of Zoology of the Pontifical Catholic University of Ecuador in the open-access journal ZooKeys. Discovered in the Ecuadorian Andes, the species are characterized in detail on the basis of genetic, morphological, bioacoustic, and ecological features.

On the one hand, the publication is remarkable because of the large number of new species of frogs. Regarding vertebrate animals, most studies only list between one and five new to science species, because of the difficulty of their collection and the copious amount of work involved in the description of each. To put it into perspective, the last time a single article dealt with a similar number of newly discovered frogs from the western hemisphere was in 2007, when Spanish scientist Ignacio de la Riva described twelve species from Bolivia.

The Rain frogs comprise a unique group lacking a tadpole stage of development. Their eggs are laid on land and hatch as tiny froglets.
Image by BIOWEB-PUCE.

On the other hand, the new paper by Nadia Paez and Dr Santiago Ron is astounding due to the fact that it comes as part of the undergraduate thesis of Nadia Paez, a former Biology student at the Pontifical Catholic University, where she was supervised by Professor Santiago Ron. Normally, such a publication would be the result of the efforts of a large team of senior scientists. Currently, Nadia Paez is a PhD student in the Department of Zoology at the University of British Columbia in Canada.

Unfortunately, amongst the findings of concern is that most of the newly described frog species are listed as either Data Deficient or Threatened with extinction, according to the criteria of the International Union for Conservation of Nature (IUCN). All of the studied amphibians appear to have very restricted geographic ranges, spanning less than 2,500 km2. To make matters worse, their habitats are being destroyed by human activities, especially cattle raising, agriculture, and mining.

Amongst the newly described species, there is the peculiar Multicolored Rain Frog, where the name refers to its outstanding color variation. Individuals vary from bright yellow to dark brown. Initially, the studied specimens were assumed to belong to at least two separate species. However, genetic data demonstrated that they represented a single, even if highly variable, species.

Variations of the Multicolored Rain Frog. Its name makes reference to the outstandingly varied colorations within the species.
Image by BIOWEB-PUCE.

The rest of the previously unknown frogs were either named after scientists, who have made significant contributions in their fields, or given the names of the places they were discovered, in order to highlight places of conservation priority.

###

Original source:

Paez NB, Ron SR (2019) Systematics of Huicundomantis, a new subgenus of Pristimantis (Anura, Strabomantidae) with extraordinary cryptic diversity and eleven new species. ZooKeys868: 1-112. https://doi.org/10.3897/zookeys.868.26766.

Tiger geckos in Vietnam could be the next species sold into extinction, shows a new survey

The endemic reptiles are already proposed to be listed by the Convention on International Trade in Endangered Species of Wild Fauna and Flora

While proper information about the conservation status of tiger gecko species is largely missing, these Asian lizards are already particularly vulnerable to extinction, as most of them have extremely restricted distribution. Furthermore, they have been facing severe declines over the last two decades, mostly due to overcollection for the international exotic pet market. Such is the case of the Cat Ba Tiger Gecko, whose tiny populations can only be found on Cat Ba Island and a few islands in the Ha Long Bay (Vietnam).

In their study, a Vietnamese-German research team, led by PhD candidate Hai Ngoc Ngo of the Vietnam National Museum of Nature in Hanoi, provide an overview of the evidence for domestic and international trade in tiger gecko species and update the information about the abundance and threats impacting the subpopulations of the Vietnamese Cat Ba Tiger Gecko in Ha Long Bay.

By presenting both direct and online observations, interviews and existing knowledge, the scientists point out that strict conservation measures and regulations are urgently needed for the protection and monitoring of all tiger geckos. The research article is published in the open-access journal Nature Conservation.

Cat Ba tiger gecko (Goniurosaurus catbaensis) in its natural habitat. Photo by Hai Ngoc Ngo.

Tiger geckos are a genus (Goniurosaurus) of 19 species native to Vietnam, China and Japan. Many of them can only be found within a single locality, mountain range or archipelago. They live in small, disjunct populations, where the population from Ha Long Bay is estimated at about 120 individuals. Due to demands in the international pet trade in the last two decades, as well as habitat destruction, some species are already considered extinct at the localities where they had originally been discovered.

However, it was not until very recently that some species of these geckos received attention from the regulatory institutions in their home countries, leading to the prohibition of their collection without a permit. Only eight tiger geckos have so far had their species conservation status assessed for the IUCN Red List. Not surprisingly, all of them were classified as either Vulnerable, Endangered or Critically Endangered. Nevertheless, none is currently listed by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), which could be the only efficient and reliable method to monitor, regulate and police the trade of the species on a global scale.

“Tiger geckos are neither sufficiently protected by law nor part of conservation programmes, due to the lack of substantial knowledge on the species conservation status and probably due to the general lack of public as well as political interest in biodiversity conservation,” they explain. “To date, exact impacts of trade on the species cannot be identified, as data of legal trade are only recorded for species listed in the CITES Appendices”.

During their survey, the researchers tracked local traders in possession of wild-caught tiger geckos representing all five Vietnamese species en route to foreign exotic pet markets, mainly in the United States, the European Union and Japan. The species were also frequently found to be sold in local pet shops in Vietnam, as well as being offered via various online platforms and social media networks like Facebook.

Having spoken to local dealers in Vietnam, the team found the animals were traded via long and complex chains, beginning from local villagers living within the species’ distribution range, who catch the geckos and sell them to dealers for as little as US$4 – 5 per individual. Then, a lizard either ends up at a local shop with a US$7 – 25 price tag or is either transported by boat or by train to Thailand or Indonesia, from where it is flown to the major overseas markets and sold for anywhere between US$100 and 2,000, depending on its rarity. However, many of these delicate wild animals do not arrive alive at their final destination, as their travels include lengthy trips in overfilled boxes under poor conditions with no food and water.

Indeed, although the researchers reported a large quantity of tiger geckos labelled as captive-bred in Europe, it turns out that their availability is far from enough to meet the current demands.

In conclusion, the team provides a list of several recommendations intended to improve the conservation of the Asian geckos: (1) inclusion of all tiger geckos in the Appendices of CITES; (2) assessment of each species for the IUCN Red List; (3) concealment of any currently unknown localities; and (4) improvement/establishment of coordinated ex-situ breeding programmes for all species.

Signboard handed over to the Ha Long Bay Management Department to point to the threats and conservation need of the Cat Ba tiger gecko in English and Vietnamese languages.

The inclusion of all tiger gecko species from China and Vietnam in CITES Appendix II was recently proposed jointly by the European Union, China and Vietnam and is to be decided upon at the Conference of the parties (CoP18) in May-June 2019, held in Sri Lanka.

###

Original source:

Ngo HN, Nguyen TQ, Phan TQ, van Schingen M, Ziegler T (2019) A case study on trade in threatened Tiger Geckos (Goniurosaurus) in Vietnam including updated information on the abundance of the Endangered G. catbaensisNature Conservation 33: 1-19. https://doi.org/10.3897/natureconservation.32.33590

‘Insectageddon’ is ‘alarmist by bad design’: Scientists point out the study’s major flaws

Many insects species require pristine environments, including old-growth forests. Photo by Atte Komonen.

Earlier this year, a research article triggered a media frenzy by predicting that as a result of an ongoing rapid decline, nearly half of the world’s insects will be no more pretty soon

Amidst worldwide publicity and talks about ‘Insectageddon’: the extinction of 40% of the world’s insects, as estimated in a recent scientific reviewa critical response was published in the open-access journal Rethinking Ecology.

Query- and geographically-biased summaries; mismatch between objectives and cited literature; and misuse of existing conservation data have all been identified in the alarming study, according to Drs Atte Komonen, Panu Halme and Janne Kotiaho of the University of Jyväskylä (Finland). Despite the claims of the review paper’s authors that their work serves as a wake-up call for the wider community, the Finnish team explain that it could rather compromise the credibility of conservation science.

The first problem about the paper, titled “Worldwide decline of the entomofauna: A review of its drivers” and published in the journal Biological Conservation, is that its authors have queried the Web of Science database specifically using the keywords “insect”, “decline” and “survey”.

“If you search for declines, you will find declines. We are not questioning the conclusion that insects are declining,” Komonen and his team point out, “but we do question the rate and extent of declines.”

Many butterflies have declined globally. Scolitantides orion, for example, is an endangered species in Finland. Photo by Atte Komonen.

The Finnish research team also note that there are mismatches between methods and literature, and misuse of IUCN Red List categories. The review is criticised for grouping together species, whose conservation status according to the International Union for Conservation of Nature (IUCN) is Data Deficient with those deemed Vulnerable. By definition, there are no data for Data Deficient species to assess their declines.

In addition, the review paper is seen to use “unusually forceful terms for a peer-reviewed scientific paper,” as the Finnish researchers quote a recent news story published in The Guardian. Having given the words dramatic, compelling, extensive, shocking, drastic, dreadful, devastating as examples, they add that that such strong intensifiers “should not be acceptable” in research articles.

“As actively popularising conservation scientists, we are concerned that such development is eroding the importance of the biodiversity crisis, making the work of conservationists harder, and undermining the credibility of conservation science,” the researchers explain the motivation behind their response.

###

Original source:

Komonen A, Halme P, Kotiaho JS (2019) Alarmist by bad design: Strongly popularized unsubstantiated claims undermine credibility of conservation science. Rethinking Ecology 4: 17-19. https://doi.org/10.3897/rethinkingecology.4.34440

Robust rattan palm assessed as Endangered, new Species Conservation Profile shows

An African rattan palm species has recently been assessed as Endangered, according to the IUCN Red List criteria. Although looking pretty robust at height of up to 40 m, the palm is restricted to scattered patches of land across an area of 40 km². It grows in reserves and conservation areas in Ghana and a single forest patch in Côte d’Ivoire. Its Species Conservation Profile is published in the open access Biodiversity Data Journal by an international research team, led by Thomas Couvreur, Institut de Recherche pour le Développement (IRD), France, in collaboration with the University of Yaoundé, Cameroon, Royal Botanic Gardens, Kew, UK, and the Conservatoire et jardin botaniques, Geneva, Switzerland.

oo_106255The rattan palm is confined to moist evergreen forests with high rainfall, located at 100 to 200 meters above sea level. The species is poorly known, yet it is likely very rare judging from the limited amount of forest habitat remaining across its range. Furthermore, the known populations are isolated from each other by large distances, which makes them particularly vulnerable.

Even though there are gaps of knowledge concerning the rattan palm species, the research team conclude that it is most likely currently declining, due to habitat loss, fragmentation and over-harvesting. Often mistaken for a sister species, commonly used in trade, the stems of the endangered species are largely used in furniture production. When longitudinally split into ribbons, the canes are also used as ropes for thatching, for making baskets and sieves, and to make traps.

“As with most African rattan species, there is inadequate information on the international trade, but it is likely to be negligible,” explain the scientists.

“Conservation measures are urgently needed to protect the habitat of this species and to control the unsustainable harvest of the stems. A promising solution might be sustainable cultivation of rattans to avoid the exploitation of wild populations,” suggests Ariane Cosiaux (IRD), the lead author of the study currently based in Cameroon.

With their present paper, the authors make use of a specialised novel publication type feature, called Species Conservation Profile, created by Biodiversity Data Journal, to provide scholarly credit and citation for the IUCN Red List species page, as well as pinpoint the population trends and the reasons behind them.

###

Original source:

Cosiaux A, Gardiner L, Ouattara D, Stauffer F, Sonké B, Couvreur T (2017) An endangered West African rattan palm: Eremospatha dransfieldii. Biodiversity Data Journal 5: e11176. https://doi.org/10.3897/BDJ.5.e11176

People can simultaneously give a hand to endangered apes and stay at safe distance

Primates claim the highest proportion of endangered species among all mammals, according to the IUCN Red List. Yet, the substantial conservation interference from humans, which is already in place, could itself lead to even greater losses.

Plenty of studies have proven that while researchers and ecotourists raise vital for ape conservation knowledge and funds, it is actually human presence that compromises primates’ well-being due to extremely similar genetics and, thereby, easily transmittable diseases, ranging from common cold to human tuberculosis and Ebola fever.

In a paper published in the open access journal BioRisk, Rhiannon Schultz, Miami University, seeks the golden mean between giving ape species a hand and keeping safe distance. To showcase the impact human have on primates, the scientist makes example of the Mountain gorilla, an endangered species living in the montane forests of the Democratic Republic of Congo, Uganda and Rwanda.

Simply being in close proximity to primates, humans can easily transmit a wide range of diseases to the animals, including intestinal parasites, hepatitis, tuberculosis, Typhoid fever, Cholera, and Ebola fever. The transmission can occur as easily as having the two species breathing the same air, or the people leaving a banana peel behind.

Furthermore, threats to the gorilla species are also posed by the humans destroying the primates’ habitats. The result is overlapping populations, where a disease is much easier to transmit among the small gorilla populations. For example, normally an ill individual would be put under a ‘natural quarantine’, which is impossible when the habitat has already been reduced.

In the meantime, banning people, both tourists and scientists, from gorilla habitat is not an option, since knowledge about the populations’ dynamics is essential for the conservation of all primate species. On the other hand, ecotourism is what raises a great part of the resources need for conservation work. Income from gorilla trekking is enough to support the Ugandan Wildlife Authority, while also contributing a significant part to the country’s national budget.

The key, Rhiannon Schultz concludes, is to, firstly, promote understanding of the risk for interspecies disease transmission as a conservation threat, and then, improve on current protocols and regulations.

“It may be difficult to ask tourists to wear masks while visiting animals in the wild, and it may be expensive to maintain a veterinary program for wild populations and to improve healthcare systems for local people, but making these improvements could be the key to preventing disease transmission to not only Mountain gorillas but also to other apes,” sums up the scientist.

###

Original source:

Schultz R (2016) Killer Conservation: the implications of disease on gorilla conservation.BioRisk 11: 1-11. doi: 10.3897/biorisk.11.9941

Species conservation profile of a critically endangered endemic for the Azores spider

Subject to continuing population decline due to a number of factors, an exclusively cave-dwelling (troglobitic) spider endemic to the Azores is considered as Critically Endangered according to the IUCN Red List criteria.

To provide a fast output, potentially benefiting the arachnid’s survival, scientists from the IUCN – Spider and Scorpion Specialist Group and the Azorean Biodiversity Group (cE3c) at University of Azores, where the main objective is to perform research that addresses societal challenges in ecology, evolution and the environment, also known as the three E’s from the centre’s name abbreviation, teamed up with colleagues from University of Barcelona, Spain, and the Finnish Museum of Natural History.

Together, they make use of a specialised novel publication type feature, called Species Conservation Profile, created by the open access journal Biodiversity Data Journal, to provide scholarly credit and citation for the IUCN Red List species page, as well as pinpoint the population trends and the reasons behind them.

The studied spider species (scientifically called Turinyphia cavernicola) is a pale creature with long legs, large eyes and a total size of merely 2 mm in length. These spiders never leave their underground habitats, which are strictly humid lava tubes and volcanic pits. There they build sheet webs in small holes and crevices on the walls of the caves.

The volcanic pit Algar do Carvão (Terceira, Azores), the main location of the species Turyniphia cavernicola.Not only is the species restricted to a single island within the Azorean archipelago (Portugal), but it is only found in three caves. Furthermore, out of the three, only one of them is home to a sustainable large population. These caves are under severe threat due to pasture intensification, road construction and tourist activities.

Although there is not much information about the species distribution through the years, with the spider having been discovered as recently as in 2008, the authors make the assumption that originally there have been significantly greater populations. Not only have they studied thoroughly another fifteen caves located on the island without finding any individuals, but they have identified increasing anthropogenic impact on the habitat.

“The species original distribution was potentially very large compared with the current,” the scientists explain. “Relatively intensive searches in and around the current caves where the species occurs have failed to find additional subpopulations.”

“The trend of decline is based on the assumption that this species can occur in all these caves and that the absence is due to anthropogenic disturbance on caves during the last 50 years,” they note.

 

###

Original source:

Borges P, Crespo L, Cardoso P (2016) Species conservation profile of the cave spiderTurinyphia cavernicola (Araneae, Linyphiidae) from Terceira Island, Azores, Portugal.Biodiversity Data Journal 4: e10274. doi: 10.3897/BDJ.4.e10274

Orchid or Demon: Flower of a new species of orchid looks like a devil’s head

A lone and unique population of about 30 reddish to dark violet-maroon orchids grows on the small patch of land between the borders of two Colombian departments. However, its extremely small habitat is far from the only striking thing about the new species.

A closer look at its flowers’ heart reveals what appears to be a devil’s head. Named after its demonic patterns, the new orchid species, Telipogon diabolicus, is described in the open access journal PhytoKeys.

Discovered by Dr Marta Kolanowska and Prof Dariusz Szlachetko, both affiliated with University of Gdansk, Poland, together with Dr Ramiro Medina Trejo, Colombia, the new orchid grows a stem measuring between 5.5 – 9 cm in height.

With its only known habitat restricted to a single population spread across a dwarf montane forest at the border between departments Putumayo and Nariño, southern Colombia, the devilish orchid is assigned as a Critically Endangered species in the IUCN Red List.

Although the curious orchid could be mistakenly taken for a few other species, there are still some easy to see physical traits that make the flower stand out. Apart from the demon’s head hidden at the heart of its colours, the petals themselves are characteristically clawed. This feature has not been found in any other Colombian species of the genus.close-up

“In the most recent catalogue of Colombian plants almost 3600 orchid species representing nearly 250 genera are included,” remind the authors. “However, there is no doubt that hundreds of species occurring in this country remain undiscovered. Only in 2015 over 20 novelties were published based on material collected in Colombia.”

###

Original source:

Kolanowska M, Szlachetko DL, Trejo RM (2016) Telipogon diabolicus (Orchidaceae, Oncidiinae), a new species from southern Colombia. PhytoKeys 65: 113-124. doi:10.3897/phytokeys.65.8674