Should we rely on journal impact factors in systematics and taxonomy?

Probably not, a new mycology-focused study finds.

Guest blog post by Henrik Nilsson.

Originally conceived as a means to compare university library holdings, the journal impact factor (IF) concept is a bibliometric measure that quantifies citations at the journal level, and is used for assessment and ranking.

However, IFs are often gratuitously commandeered for use in ranking individual research papers and even researchers according to perceived impact and importance. Surely, goes the rationale, this must be a time-efficient and data-informed way to obtain an objective ranking in the matter at hand. Over time, the IF concept has come to enjoy a level of decisiveness and mystique not permitted to any other research performance indicator.

“But are impact factors really a good measure of past scientific performance and future potential?” asks mycologist Henrik Nilsson of the University of Gothenburg, Sweden, the lead author of a study recently published in MycoKeys.

“Having served in one too many committees that handed out research funding to systematics and taxonomy on the primary, and sometimes exclusive, basis of impact factors, I felt that the time had come to find out. Simply taking IFs on faith as a performance indicator whose explanatory power is asserted by fiat alone seems deeply unsatisfactory and, frankly, not very scientific.”

Co-author Kessy Abarenkov of the University of Tartu Natural History Museum, Estonia continues, “We brought empirical data to bear on the matter in the form of two data streams for the period 2000-2021: the discovery of fungal species using DNA sequences and the description of new species of fungi.

“These data allowed us to assess whether IFs scale to mycological discovery potential – for instance, are new species of fungi primarily discovered in high-IF journals? Do journals with low IFs really add little, and journals without IFs nothing, to systematic mycology? Because that is what is assumed when candidates are ranked according to IFs.”

The study found no meaningful correlation between IFs and mycological discovery potential. On the contrary, for the last 10 years, the majority of new fungal species were discovered and described in journals with IFs well below the mycological median. Species discovered by molecular means were subsequently recovered in journals of increasingly higher IFs, suggesting that taxonomic results find broader, high-IF use in the mycological community and beyond in a way not usually considered when assessing the impact of taxonomic contributions.

To some extent, different groups of fungi were targeted in high-IF journals compared to low-IF journals, hinting that attempts at suppressing low-IF research are tantamount to advocating an intentionally incomplete view of the fungal kingdom.

“But what resonated the most with me,” co-author Christian Wurzbacher of the Technical University of Munich chips in, “was the large proportion of fungi that were discovered and described entirely outside the IF system. Various national and regional mycological societies and their outlets spring to mind.

“These journals are often dismissed or patronized when candidates and proposals are evaluated, but our study shows that they certainly punch far above their perceived weight. It feels good to lend voice to all the hard work that’s behind these journals and their studies but that is not accorded the clout that is should.”

The study submits that funding agencies and hiring committees that insist on upholding IFs as a central funding and recruitment criterion in systematic mycology should consider using indicators such as research quality, productivity, outreach activities, review services for scientific journals, and teaching ability directly rather than using publication in high-IF journals as a proxy for these indicators. Such an approach would clearly be much more time-consuming, a dilemma to which the study offers no other remedial measure than letting the evaluation step take the time that it needs.

Co-author Alice Retter of the Leibniz Institute for Freshwater Ecology, Germany concludes, “I would say that IFs in systematic mycology demand more explanation than they provide. The trust reposed in IFs in systematic mycology seems largely misplaced and, in fact, often directly counterproductive. I hope that the mycological community will continue to break ranks and colour outside the lines, because for us, the IF concept is a performance indicator of the kind that impoverishes.”

Original source

Nilsson RH, Jansson AT, Wurzbacher C, Anslan S, Belford P, Corcoll N, Dombrowski A, Ghobad-Nejhad M, Gustavsson M, Gómez-Martínez D, Kalsoom Khan F, Khomich M, Lennartsdotter C, Lund D, Van Der Merwe B, Mikryukov V, Peterson M, Porter TM, Põlme S, Retter A, Sanchez-Garcia M, Svantesson S, Svedberg P, Vu D, Ryberg M, Abarenkov K, Kristiansson E (2024) 20 years of bibliometric data illustrates a lack of concordance between journal impact factor and fungal species discovery in systematic mycology. MycoKeys 110: 273-285. https://doi.org/10.3897/mycokeys.110.136048

Follow MycoKeys on Facebook and X.

New Editors-in-Chief join the lead at invasion science journal NeoBiota

Dr. Ana Novoa Perez, Prof. Tammy Robinson, Prof. Phil Hulme and Dr. Andrew (“Sandy”) Liebhold will join forces to bring a wealth of expertise to NeoBiota.

NeoBiota, a leading peer-reviewed, open-access journal dedicated to the study of alien species and biological invasions, announces the appointment of new Editors-in-Chief. 

The new leadership team sees Dr. Ana Novoa Perez, Prof. Tammy Robinson, Prof. Phil Hulme and Dr. Andrew (“Sandy”) Liebhold join forces to bring a wealth of expertise to NeoBiota

They have already begun working in close collaboration with Prof. Ingolf Kühn, who has been serving as Editor-in-Chief ever since the journal was founded in 2011. Throughout these years, he has played a pivotal role in establishing NeoBiota as a leading platform for invasion science, contributing to the journal’s growth and impact. 

Cover of The economic costs of biological invasions around the world, one of NeoBiota’s most successful special issues

“After more than 13 years, I thought that it was time to hand the responsibilities for NeoBiota over to dedicated colleagues. We thought of our dream team, and fortunately, all agreed without hesitation.”

Covering both an extensive range of invasion science fields and a wide international representation, this diverse editorial team will be looking to maintain NeoBiota‘s reputation as a leading outlet in its field and expand its global reach and impact.

Today, NeoBiota is one of the most prominent open-access journals in biological invasions, with a Journal Impact Factor of 3.8 and a Scopus CiteScore of 8.1 for 2023. Currently, the journal ranks 11th in the Biodiversity Conservation category on Web of Science and 9th in the Ecological Modelling category on Scopus.

Meet the editors

Dr. Ana Novoa is a scientist at the Estación Experimental de Zonas Áridas of the Consejo Superior de Investigaciones Científicas (EEZA-CSIC) in Spain and the Institute of Botany of the Academy of Sciences of the Czech Republic. Her research explores the socioecological factors influencing the invasion and management of alien species, with a particular interest in the human and social dimensions of biological invasions. She is also Secretary of the European Group on Biological Invasions (NEOBIOTA).

“I’m honored to collaborate with Ingolf, Tammy, Phil and Sandy in guiding the journal forward,” said Ana. “I look forward to supporting innovative research across the diverse aspects of invasion science.”

Prof. Tammy Robinson holds a Research Chair at the Centre for Invasion Biology, Stellenbosch University, South Africa. She is a marine invasion biologist with an ecological background, an interest in evidence-based management of alien species, and a focus on protected areas. She is an associate member of INVASIVESNET, the global network of networks on invasive species. 

“I’m really excited about joining this dynamic team,” said Tammy. “I’m looking forward to fostering an increase in the number of aquatic papers that appear in NeoBiota.”

Prof. Philip Hulme is a Distinguished Professor of Plant Biosecurity at Lincoln University, New Zealand, and Director of the Centre for One Biosecurity Research, Analysis and Synthesis (COBRAS). His research focuses on predicting risks associated with plant invasions, examining traits of successful invasive species, identifying introduction pathways, assessing spread rates, evaluating habitat vulnerability, quantifying impacts, and predicting the influence of climate change on invasive species distributions. His work also includes broader assessments of biosecurity policy and implementation across the human, animal, plant and ecosystem sectors, emphasizing human perspectives, such as trade and economic impacts. Having authored, reviewed, and edited numerous papers in NeoBiota, he was also one of the people behind the journal’s foundation.

“Having been involved with the journal since its foundation it is a real pleasure to have the opportunity to shape its future and continue the amazing work Ingolf has undertaken to ensure NeoBiota is THE leading biological invasions journal in the world”.

Dr. Andrew “Sandy” Liebhold is a lead scientist with the Czech University of Life Sciences in Prague, where he directs The Forest Risk Research Centre. He is also a Scientist Emeritus with the U.S. Forest Service. His research focuses on the macroecology, population ecology, community ecology, and management of insect invasions. He has received numerous awards, including the IUFRO Scientific Achievement Award and is a Fellow of the American Association for the Advancement of Science and the Entomological Society of America

“I am excited about being part of the NeoBiota editorial team and look forward to working with my colleagues to continue the journal’s high level of excellence and advance the field of invasion biology.”

Meet the NeoBiota journal

Founded in 2011 after participants at the 6th NEOBIOTA conference in Copenhagen agreed that a new international, open-access, peer-reviewed journal would definitely benefit the research community, and published by Pensoft Publishers, NeoBiota focuses  on the mechanisms and consequences of biological invasions across all disciplines.

Featuring research on the ecology, evolution, biogeography and human and social dimensions of biological invasions, the journal is committed to publishing high-quality research on the introduction, establishment, spread, and management of invasive alien species worldwide. As biological invasions pose a set of social, legal, and policy challenges, NeoBiota is keen on exploring how they can be managed and controlled.

The open-access journal prides itself on a rapid publication process, typically completing publication within 1-2 weeks after a manuscript’s acceptance. NeoBiota also supports advanced data publishing workflows, strongly encouraging open data publication. This commitment to open access and rapid publication, combined with a broad, interdisciplinary scope, makes it a leading journal in the field of invasion science. 

“The onboarding of additional well-renowned Editors-in-chief at NeoBiota promises a dynamic new chapter for the journal. There is no doubt that the team’s diverse expertise and commitment to open science will set the journal on a positive trajectory as one of the leading academic outlets in invasion science,” said Prof. Lyubomir Penev, CEO and founder of Pensoft.

How can social media users help researchers with ecological or biodiversity studies?

Images and videos on social media platforms like Instagram can help sample species occurrence data. Here’s how

Guest blog post by Melanie Werner

Researchers studying the distribution of species need information about where the plant or animal species in question occurs. This usually requires a field study, which is costly, time-consuming and often CO2-intensive. In addition, not all locations where species occur are accessible to humans, such as high mountain areas. As a result, the full range of species is often not covered and the availability of species information is a major challenge for ecological research.

Social media and citizen science projects offer a great potential to increase this availability. Citizen science refers to the involvement of non-experts in scientific projects. In the case of ecological studies, for example, this is the sampling of species occurrences. Thanks to smartphones – capable of capturing high-quality photos and recording precise locations – the ability to gather and share species information has grown significantly. It’s quite simple: take a photo, save the coordinates, upload it, and researchers can use this data to map species distributions. User-friendly platforms or Apps like iNaturalist have become invaluable for this purpose, enabling researchers and citizen scientists to share and utilize occurrence data to advance ecological understanding.

Process of species occurrence data sampling by citizen science projects.

Although some people are interested in and help with such projects, they do not yet reach a broad mass of people. In our study, we explore the potential of the social media platform Instagram, which is one of the largest social media platforms with 2 billion users worldwide and millions of daily uploads. We hypothesize that even more species occurrence data is being generated on this platform, often without users realising its scientific value.

We searched for Instagram posts from 2021 to 2022 in which the tree species Nothofagus pumilio and the location of the photo can be identified. The deciduous species N. pumilio occurs at the treeline in the southern Andes. The species’ vibrant orange-red autumn colouring, in combination to spectacular landscapes, makes it a popular photo motif for tourists, hikers, and locals alike resulting in numerous Instagram posts. Because treelines are often sensitive to climate change, studying the distribution and dynamics of this species is of particular interest.

Nothofagus pumilio at Mount Fitz Roy, Patagonia (Marina Zvada,  2024 available at: https://unsplash.com/de/fotos/blick-auf-ein-gebirge-in-der-ferne-vMoLf1OrB-k?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash)

Our study began by searching Instagram for specific hashtags related to the species (#nothofaguspumilio and #lenga), as well as for locations through location tags, hashtags, and descriptions within posts. This approach allowed us to identify as many images with N. pumilio as possible, even if the users were unaware of its presence.

To select suitable posts, we focused on those where the species could be clearly identified, the location was described, and landscape elements (e.g. mountains, waterbodies, glaciers, urban and tourist area) are visible in the image, that could also be recognised in satellite imagery. For each post, we mapped at least one point at the location where the photo was taken. Additionally, we included occurrences of N. pumilio visible in the background, such as autumn-coloured treelines. This approach ensured a more comprehensive and evenly distributed sampling of the species’ range. The next image illustrates the sampling process of a post captured at Laguna Capri with Mount Fitz Roy in the background.

Suitable Instagram post (fernando.v.fotografia, 2022, left) and four transferred points with landscape elements (red boxes, right) that helped to identify the location, which is also described in the post with location tag and post caption.

In this way, we were able to generate 1238 Instagram ground truthing points. These points can be directly used in ecological studies. However, it is important to note that our Instagram ground truthing points, like most citizen science data, is spatially biased. This means that locations can only be captured where people have access, leaving remote or high-altitude areas unrepresented.

For this reason, we added a remote sensing method to our study. As this deciduous species forms mono-species forests at the treeline, it can also be identified in satellite imagery. The occurrence data obtained through supervised classification was then validated using the Instagram ground truthing points. This approach allows us to generate less-biased occurrence data for the species across its entire 2000 km latitudinal range.

All 1238 Instagram ground truthing points sampled by our approach (left) and the remote sensing result (right).

Participating in citizen science projects is an essential contribution to research. We encourage you to explore citizen science platforms such as iNaturalist, eBird, or naturgucker, and to include hashtags and detailed location descriptions – ideally with coordinates – when posting your holiday or everyday photos on Instagram. Every contribution helps!

Research article:

Werner M, Weidinger J, Böhner J, Schickhoff U, Bobrowski M (2024) Instagram data for validating Nothofagus pumilio distribution mapping in the Southern Andes: A novel ground truthing approach. Frontiers of Biogeography 17: e140606. https://doi.org/10.21425/fob.17.140606

The International Mycological Association partners with Pensoft to move prestigious IMA Fungus to the ARPHA platform

The journal’s first publications following the transfer are expected in January 2025.

The International Mycological Association (IMA) has partnered with Pensoft to transition its flagship journal IMA Fungus to the ARPHA publishing platform after the open-access scientific publisher and technology provider won the bid by the IMA’s Executive Committee, following the expiration of their contract with BioMed Central (BMC, part of Springer-Nature). Already accepting manuscripts on its new website, the first publications in IMA Fungus since the transfer are expected in January 2025.

The move comes in a series of milestones for the prestigious journal in 2024, which also saw the appointment of its new Editor-in-Chief, Prof. Dr. Marc Stadler of the Helmholtz Centre for Infection Research, who has recently started his presidency at the IMA Council.

Committed to advancing mycological research and ensuring free access to high-quality, peer-reviewed scientific content, while representing the interest of mycology and mycologists worldwide, IMA’s Executive Board is confident that the new collaboration will further improve and streamline the publication process at IMA Fungus, and build up on its reputation in the field.

ARPHA platform’s intuitive and integrated end-to-end publishing workflow is designed to simplify the publication process for authors, reviewers, and editors. From submission to publication, automated full-text export to scientific databases and permanent hosting, all steps will be consolidated within a single, user-friendly interface, resulting in faster review cycles and more efficient communication between all parties involved. In addition to its signature publishing technology, Pensoft is providing IMA Fungus with various human-provided services, including help desk, design, science communication, marketing and journal development support. 

Founded in 2010 at the 9th International Mycological Congress in Edinburgh, IMA Fungus was first published by the Centraalbureau voor Schimmelcultures (an institute of the Royal Dutch Academy of Arts and Sciences, now Westerdijk Fungal Biodiversity Institute) until its move to BMC in 2018. Keeping up with tradition, the transfer of IMA Fungus to Pensoft and ARPHA was publicly announced at this year’s 12th  International Mycological Congress in Maastricht.

Today, IMA Fungus boasts an impressive Scopus CiteScore and Journal Impact Factor, standing at 11.0 and 5.2 respectively. It ranks 6th in the Mycology category on Web of Science.

Since day one, IMA Fungus has been mandated as the only journal in which formal proposals relating to the rules on the naming of fungi or protected lists of names are to be published under the International Code of Nomenclature for algae, fungi and plants. Its scope covers all areas of mycology of interest to the wider mycological community, from basic to applied research.

“I am happy that we could get some of the most experienced editors to join us to the new publisher. Likewise, I am glad that many proficient young scientists from around the world, including most of the recent winners of the IMA Young Mycologist Award, joined our interdisciplinary editor panel.”

Prof. Dr. Marc Stadler, commenting on the latest news about IMA Fungus.

“It is a great honour to welcome IMA Fungus to the ARPHA family. We look forward to working with the International Mycological Association and helping to further advance their prestigious journal.”

Prof. Dr. Lyubomir Penev, Pensoft’s founder and CEO.

To learn more about IMA Fungus or submit your manuscript, visit the journal’s newly launched website. Previous issues of the journal are available here.

To stay up-to-date with its new publication, sign up for its Email Alert newsletter from the journal’s homepage, and follow it on X and Facebook.  

***

About Pensoft:

Pensoft is an independent, open-access scholarly publisher and technology provider, best known for its 40+ biodiversity journals, including ZooKeys, Biodiversity Data Journal, PhytoKeys, MycoKeys, One Ecosystem and Metabarcoding and Metagenomics. Ever since becoming the first publisher to introduce semantic enrichments and hyperlinks within a scientific article in the field of biodiversity in 2010, Pensoft has been working on various tools and workflows designed to facilitate data findability, accessibility, discoverability and interoperability.

About ARPHA:

ARPHA is a full-featured, open-access publishing platform for scholarly journals, books, data and conference outputs, developed by the scientific publisher and technology developer Pensoft. Clients are provided with a software solution as well as a range of relevant human-provided services. Standing for Authoring, Reviewing, Publishing, Hosting and Archiving, ARPHA offers a wide range of tailorable services to publishers, societies, university presses, conference organisers and other academic institutions to provide them with a full-featured and all-rounded publishing experience, thereby saving them the extra efforts and unnecessary hassle of dealing with multiple vendors and service providers.

About the International Mycological Association:

The International Mycological Association, founded in 1971, represents the interests of over 30,000 mycologists worldwide. It is a non-for-profit organisation, the purpose of which is the encouragement of mycology in all its branches. This implies that the IMA should strive to promote mycology in its widest sense.

IMA Fungus is the flagship journal of the International Mycological Association. Papers on any aspect of mycology are considered, and published on-line with final pagination after proofs are corrected; taxonomic novelties are then effectively and validly published under the International Code of Nomenclature for algae, fungi, and plants. The journal strongly supports good practice policies, and requires voucher specimens or cultures to be deposited in a public collection with an online database, DNA sequences in GenBank, alignments in TreeBASE, and validating information on new scientific names, including typifications, to be accessioned in MycoBank. 

MycoBank is the online repository and nomenclatural registry provided in collaboration between the International Mycological Association and the Westerdijk Fungal Biodiversity Institute. It provides a free service to the mycological and scientific society by databasing mycological nomenclatural novelties (new names and combinations) and associated data, such as descriptions, illustrations and DNA barcodes. Nomenclatural novelties are each allocated a unique MycoBank number to be cited in the publication where the nomenclatural novelty is introduced, to conform with the requirements of the International Code of Nomenclature for algae, fungi and plants.

One third of Vietnam’s mammals are at risk of extinction

Several iconic species face an uncertain future in the biodiversity hotspot.

One third of Vietnam’s 329 mammal species are threatened with extinction, according to a recent study published in our open-access journal Nature Conservation.

Conducted by German scientist Hanna Höffner of the University of Cologne and Cologne Zoo, alongside an international team, the research underscores Vietnam’s vital but fragile position as a biodiversity hub within the Indo-Burma Biodiversity Hotspot.

The study reveals that 112 mammal species in Vietnam face extinction, despite most being found in at least one protected area. Some micro-endemic species, such as the Da Lat tube-nosed bat (Murina harpioloides), are particularly vulnerable as they are not present in any protected sites. 

Around 40% of the threatened species lack ex situ conservation (zoo conservation breeding) programs, which increases their risk of extinction. Iconic species like the saola (Pseudoryx vuquangensis), the silver-backed chevrotain (Tragulus versicolor), and the large-antlered muntjac (Muntiacus vuquangensis) are among the Critically Endangered taxa at risk.

The study advocates for the IUCN‘s “One Plan Approach” to species conservation, which calls for combining different expertise and integrated in situ and ex situ management strategies. Establishing assurance colonies in zoos and increasing connectivity between isolated protected areas are critical recommendations for safeguarding Vietnam’s unique mammal diversity.

By building up ex situ populations for threatened taxa, zoos can help to literally “buy time” and act as modern arks that can contribute with later releases according to the IUCN’s “Reverse the Red” conservation campaign. Ex situ species holding data by Species360 are now also integrated in the IUCN Red List species’ chapters (a “One Plan” approach to species data).

Vietnam is home to a rich array of mammals, including 36 endemic species and nine micro-endemic taxa. Its primate fauna is particularly noteworthy, with 28 species, the highest number in mainland Southeast Asia. This includes the endemic tonkin snub-nosed monkey (Rhinopithecus avunculus) and Delacour’s langur (Trachypithecus delacouri). 

Northern Vietnam and the Annamite Mountain Range are biodiversity hotspots, hosting species such as the Critically Endangered Cao-vit gibbon (Nomascus nasutus), the southern white-cheeked gibbon (Nomascus siki) and the red-shanked douc (Pygathrix nemaeus).

A red-faced monkey in a tree.
A red-shanked douc (Pygathrix nemaeus).

The study calls for prioritising the “One Plan Approach” to conservation of highly threatened species, reassessing Data Deficient species, and enhancing habitat connectivity.

The conservation campaign VIETNAMAZING by EAZA (European Association of Zoos and Aquaria) currently highlights Vietnam’s biodiversity treasure and advocates for improved conservation of threatened mammal species.

Original study

Höffner H, Nguyen ST, Dang PH, Motokawa M, Oshida T, Rödder D, Nguyen TQ, Le MD, Bui HT, Ziegler T (2024) Conservation priorities for threatened mammals of Vietnam: Implementation of the IUCN´s One Plan Approach. Nature Conservation 56: 161-180. https://doi.org/10.3897/natureconservation.56.128129 

***

Follow Nature Conservation on Facebook and X.

The Shellowship of the Ring: two new snail species named after Tolkien characters

“You fool. No man can kill me,” said the Witch-king of Angmar.

“I am no man!” Éowyn replied, “I am a newly discovered freshwater snail species from Brazil!”

Okay, maybe that isn’t exactly how it goes – but it’s our way of letting you know that two newly discovered snail species have been named in honour of Éowyn and Meriadoc from The Lord of the Rings

Described in the open-access journal Zoosystematics and Evolution, Idiopyrgus eowynae and Idiopyrgus meriadoci were named by fans of J.R.R. Tolkien’s iconic series (who happen to also be successful researchers).

Multiple scientific photographs of a snail shell with thorn-like protrusions.
Idiopyrgus eowynae.

Explaining the name Idiopyrgus eowynae, they said: “Éowyn exemplifies courage, resilience, and resistance against darkness, both internal and external, standing against Gríma Wormtongue and the Witch-king of Angmar.”

The discovered species are troglobitic and were found in a single limestone cave in the Serra do Ramalho karst area of Bahia state, northeastern Brazil. The gastropods belong to the family Tomichiidae, a group previously known for inhabiting surface freshwater environments but now shown to have adapted to subterranean ecosystems.

Both snails have unique periostracal hairs—thorn-like structures—on their shells, a feature uncommon among Brazilian freshwater snails. Their cave-specific adaptations include reduced pigmentation, fragile shells, and small size.

Photographs of a fprest area and a cave entrance.
The Gruna do Pedro Cassiano cave, area and entrance.

The Gruna do Pedro Cassiano cave, where the snails were discovered, is a fragile ecosystem threatened by water extraction, deforestation, and climate change. Due to the species’ limited habitat and environmental threats to their subterranean ecosystem, the authors recommend a ‘Vulnerable’ classification. The findings highlight the importance of protecting Brazil’s subterranean biodiversity and raise concerns about the impact of human activities on these delicate ecosystems.

These concerns played a part in the naming of Idiopyrgus meriadoci, as the researchers state: “Besides standing with Éowyn against the Witch-king in the Battle of the Pelennor Fields, Merry is also an example of the fight for nature conservation in Middle-earth, pushing the Ents into action and ultimately ending Saruman’s threat to Fangorn Forest.”

Multiple scientific photographs of a translucent snail shell.
Idiopyrgus meriadoci.

On his choice of Tolkien-inspired names for the new species, lead author Dr Rodrigo B. Salvador of the Finnish Museum of Natural History said: “I tend to use lots of pop culture references in my species names—from books, comics, Dungeons & Dragons, and video games. If we think about it, there is a long-standing tradition in taxonomy of using names from mythology and literature to name species.

“Granted, in the old days, those names mostly came from Greek and Roman myths and Shakespeare. Today, we have newer mythologies and literature classics, so in a way, we’re just continuing that tradition.”

Salvador was also resposible for naming a land snail after Shar of Dungeons and Dragons, and more recently Baldur’s Gate, fame. Read about it below!

Original source

Salvador RB, Bichuette ME (2024) Idiopyrgus Pilsbry, 1911 (Gastropoda, Tomichiidae): a relict genus radiating into subterranean environments. Zoosystematics and Evolution 100(4): 1543-1556. https://doi.org/10.3897/zse.100.136428

Follow ZSE on X and Facebook, and subscribe for its newsletter from the journal’s website.

Exploring the hidden treasures of Aziza Cave: A biodiversity hotspot in North Africa

Aziza Cave harbors a rich and diverse array of subterranean life that is only now beginning to be revealed widely.

Guest blog post by Marconi Souza-Silva

Beneath the arid pre-Saharan zone of Morocco lies Aziza Cave, also known as Kef Aziza or Tazouguert Cave. The vast subterranean system stretches over 3.5 kilometers of surveyed galleries, making it Morocco’s fifth-largest cave system and one of the top ten most extensive caves in North Africa.

A view of the Sahara desert and Aziza cave’s entrance.

Beyond its sheer size and geological significance, Aziza Cave harbors a rich and diverse array of subterranean life that is only now beginning to be revealed widely. In a recent study in the journal Subterranean Biology, researchers cataloged the subterranean fauna of Aziza Cave and provided a detailed checklist of 26 different taxa potentially representing cave-restricted species. Among these are 22 troglobitic species, organisms that have adapted to life entirely within the cave environment, and four stygobitic species, which have specially evolved to live in the cave’s groundwater.

Four of the authors of the paper.

The discovery of such a variety of species highlights the cave as a critical biodiversity hotspot, not only in Morocco but for the African continent as a whole. One alarming aspect of this discovery is the large number of species that still need to be thoroughly studied or described.

Dysdera caeca, a cave spider

Only about 34.6% of the species in Aziza Cave have been formally identified and described by scientists. Further research could lead to the identification and description of many new species. The fauna found in Aziza Cave includes a wide variety of life forms, with the richest groups being beetles (Coleoptera), spiders (Araneae), springtails (Entomobryomorpha), and woodlice (Isopoda). Some have evolved remarkable adaptations to their lightless, nutrient-scarce environment, such as reduced pigmentation, elongated appendages, and heightened sensory capabilities that help them navigate and survive in this extreme habitat.

Long-tailed bat Rhinopoma hardwickei.

Despite these discoveries, much of Aziza Cave remains unexplored. Large portions of this karstic system have yet to be surveyed, and researchers believe that the biodiversity uncovered so far is just the beginning. The cave’s unexplored depths likely hold many more secrets, including potentially new species that have yet to be seen by human eyes. This prospect has sparked great interest among speleologists and conservationists, who see Aziza Cave as an important research site for studying subterranean ecosystems.

Magnezia gardei, a cave isopod.

The biodiversity of Aziza Cave is something to celebrate, but it also sheds light on the significant conservation challenges that subterranean habitats in Morocco and across North Africa are facing. Caves are delicate ecosystems that are highly sensitive to changes in their environment. Human activities such as pollution, mining, deforestation, and unsustainable tourism pose severe threats to these ecosystems and the species that depend on them. Once these habitats are damaged or destroyed, it is often impossible to restore them, and the species that inhabit them may face extinction.

Graffiti on the cave walls.

Human-induced impacts have already begun to take their toll in Aziza Cave. Visitors can disrupt the delicate balance of the cave’s ecosystem, change water quality, or introduce pollutants and alien species. These pressures underscore the urgent need for conservation measures to protect this unique environment and its inhabitants. By highlighting the importance of Aziza Cave and similar habitats, the researchers hope to encourage further exploration and study of Africa’s subterranean ecosystems and develop effective conservation strategies to protect them. By protecting these fragile ecosystems and supporting scientific exploration, we can ensure that the incredible biodiversity of Aziza Cave and other subterranean habitats continues to thrive.

Research article:

Moutaouakil S, Souza-Silva M, Oliveira LF, Ghamizi M, Ferreira RL (2024) A cave with remarkably high subterranean diversity in Africa and its significance for biodiversity conservation. Subterranean Biology 50: 1-28. https://doi.org/10.3897/subtbiol.50.113919

New oviposition behaviour spotted in parasitoid wasp

A female Eupelmus messene used her ovipositor to drill through the wall of a polystyrene Petri dish and laid her egg outside the dish.

The thin, flexible, and mobile ovipositor of some female insects, perfected over thousands of years of evolution, can carry substances and drill into various substrates. Although its structure is well studied, many of its functions remain a mystery.

Researchers from Saratov State University and Moscow State University spotted interesting, unusual oviposition behaviour in the parasitoid wasp Eupelmus messene: it used its ovipositor to drill through the wall of a polystyrene Petri dish and lay an egg outside the dish.

Drilling with the ovipositor through a plastic wall of a Petri dish by Eupelmus messene (A), a newly laid egg into the external environment (B), and UV fluorescent biological substance inside the perforations (C). ov – ovipositor, per – perforation, egg – egg.

This is the first time such behaviour has been observed and recorded.

E.messene is a parasitoid of the gall wasp Aulacidea hieracii, which forms a gall on the stems of the hawkweed Hieracium×robustum. The female of E.messene then drills the walls of the gall with its ovipositor in search of a gall wasp larva and, upon finding it, lays an egg next to it.

The researchers reared 56 females from galls of H.×robustum collected near Saratov, Russia. Of them, they placed 18 in Petri dishes without host galls, and later observed five of those wasps drilling into the walls of the Petri dishes.

The team followed the behaviour of one wasp: drilling each perforation in the polystyrene wall took more than two hours, during which the insect often paused to eat, drink water, or wash. In the end, it managed to completely pierce the plastic wall and lay an egg on the outside of the Petri dish. It drilled multiple holes, even after being transferred to a different Petri dish.

Eupelmus messene drilling the wall of the polystyrene Petri dish. Video by Matvey I. Nikelshparg, Evelina I. Nikelshparg, Vasily V. Anikin, Alexey A. Polilov

“We distinguished four steps of drilling: pushing movements, rotational movements, ejection movements, as well as the cementing step. However, in natural gall, we never observed ejection movements. We suppose that such a type of movement is required to rake out plastic particles, which is unnecessary for more elastic plant gall substrate,” write the authors in their study, which was published in the Journal of Hymenoptera Research.

After laying the egg, the female carefully cemented the drilled perforation with an unknown biological substance, likely to keep it safe from the impacts of changing temperatures, water, and microorganisms.

Unlike galls, which usually have an opaque and dense structure, the transparent Petri dish provided a clear view of the whole drilling and oviposition process, allowing the researchers to study it closely.

It is still unknown why the wasp behaved this way, but the scientists believe we can learn a lot from this observation: “Studying in detail the drilling behavior of parasitic mycrohymenopterans can be useful in medicine for the creation of minimally invasive guided probes in neurosurgery, the development of orthopedic surgical instruments, needle biopsies using functionally graded tools,”  they write in their paper.

Research article:

Nikelshparg MI, Nikelshparg EI, Anikin VV, Polilov AA (2023) Extraordinary drilling capabilities of the tiny parasitoid Eupelmus messene Walker (Hymenoptera, Eupelmidae). Journal of Hymenoptera Research 96: 715-722. https://doi.org/10.3897/jhr.96.107786

Follow the Journal of Hymenoptera Research on X and Facebook.

12 new Oriental weevil species discovered using advanced imaging tools

Two of these new species occur in Japan, including one species found in Yanbaru National Park, Okinawa.

Jake Lewis, an entomologist in the Environmental Science and Informatics Section at the Okinawa Institute of Science and Technology (OIST), is fascinated by weevils, a diverse group of beetles that includes many species with elephant trunk-like mouthparts (called a rostrum). Weevils provide various ecosystem services such as pollination and decomposition, but some species are serious pests known to decimate crop fields and timber forests.

OIST entomologist and Insect Collection Manager, Jake Lewis, searches for weevils on Okinawa Island, Japan. He and his collaborators collected weevils from Japan, Taiwan, Vietnam, and Malaysia, and discovered 12 new species. Photo credit: Merle Naidoo, OIST

Using x-ray microtomography, a 3D imaging technique that uses x-rays to visualize cross sections of the internal structure of objects, Lewis and his collaborators digitally removed scales that cover the cuticle of the weevils. They found that the underlying cuticle differs significantly between species and can therefore be used for taxonomic and classification purposes. Using this technique in combination with traditional light microscopy and DNA barcoding, they discovered, described, and named 12 new weevil species from Japan, Malaysia, Vietnam, and Taiwan. These species range from 1.5 – 3.0 mm in length and are comparatively quite small weevils.

Two of these new species are present in Japan: Aphanerostethus magnus (Oo-daruma-kuchikakushi-zoumushi) and Aphanerostethus japonicus (Nippon-daruma-kuchikakushi-zoumushi). One of these, Aphanerostethus japonicus, is also found in Yanbaru National Park, Okinawa. This is the first time x-ray microtomography has been used to remove obscuring scales to examine underlying differences in morphology for taxonomic purposes. The findings from this study have been published in the open-access journal ZooKeys.

Researchers have discovered, described, and named 12 new weevil species in Japan, Malaysia, Vietnam, and Taiwan. Aphanerostethus magnus and Aphanerostethus japonicus are found in Japan, with the latter also found in Yanbaru National Park, Okinawa. Photo credit: Lewis et al., 2024

The researchers showed that removing scales using x-ray microtomography reveals significant morphological differences between species, which cannot be easily observed using other methods. Consequently, this technique may gain more popularity as a tool for identifying new insect species, especially those covered in scales or debris.

Lewis, OIST’s Insect Collection Manager and lead author of the paper, examined specimens from collections in Canada, Germany, Japan, Malaysia, Taiwan, and the Netherlands. One of the primary goals was to investigate the use of x-ray microtomography as a tool in weevil taxonomy. The genus Aphanerostethus was poorly studied in the past, but many undescribed species were discovered in museum collections around the world, including the two new species from Japan.

X-ray microtomography generated 3D models of weevil species from the genus Aphanerostethus with the right elytron (forewing) removed, revealing differences in the length, width, and pattern of veins in the hindwing. A lateral view of the full body is shown below each closeup for reference. The red, blue, and yellow arrows indicate the base, midpoint, and apex of the hindwing, respectively. A: Aphanerostethus bifidus; B: A. decoratus; C: A. japonicus; D: A. magnus. Image credit: Lewis et al., 2024

Multiple methods to find new species

The researchers used traditional methods such as light microscopy and dissections to observe differences between species, including the scales along the elytra (back), leg spines, and the shape of the rostral canal (a canal that protects the rostrum). They also used DNA barcoding to analyze their genes and create a phylogenetic tree of eight of the species. Some species were not as easy to separate based on morphology alone, but as the gene sequences differ between species, the phylogenetic tree was informative and provided additional evidence of new species.

: Phylogenetic tree of eight Aphanerostethus species constructed by comparing genetic information to see how closely related different species are.  This helped Lewis and his team verify their predictions about species classification by using DNA analysis instead of only physical traits. The colored, vertical bars represent different species and includes the two new species from Japan. Image credit: Lewis et al., 2024

Although the above methods are standard practice in taxonomy, the researchers’ use of X-ray microtomography was novel and was successfully used to examine the structure of not only the hidden cuticle, but also the hindwings. Aphanerostethus weevils have lost the ability to fly due to the gradual reduction of their hindwings, however the degree of reduction was shown to differ between species. Normally, specimens would have to be dissected to view the hindwings, but because x-ray microtomography allows for non-destructive examination of internal anatomy, it is invaluable when working with rare or precious specimens that cannot be dissected or altered.

X-ray microtomography generated 3D models of Aphanerostethus pronota with scales removed, revealing otherwise hidden differences in underlying puncture morphology A–C Aphanerostethus magnus D–F Aphanerostethus morimotoi. Image credit: Lewis et al., 2024

The presence of partially reduced wings in some species offers a fascinating glimpse into the ongoing process of evolutionary change: “Some species have almost completely lost their hindwings, while others still have non-functional half-wings with remaining vein patterns. The differing degrees in hindwing loss is not only useful for taxonomy and systematics, but also shows how different species within the same group can be at different stages of losing a historically highly important organ that played a crucial role in insect evolution,” Lewis explained.

Investing in Japan’s natural heritage

The discovery of new weevil species can be challenging for two main reasons. Firstly, weevils are incredibly diverse, making complete cataloging time consuming and tedious. Secondly, many weevil species are highly host-specific, may only inhabit very particular microhabitats, and may only be active for a short period of time as adults. For example, some species feed on a single tree species and may only occupy a certain part of a tree, such as the canopy. Furthermore, some species of weevils are strictly nocturnal and rarely observed during the daytime.

Episomus mori weevils. Photo credit: Jake H. Lewis

This extreme specialization and variation in natural history means that unless researchers investigate at night and day, across seasons, and focus on specific parts of many different plant species, they will inevitably overlook certain species.  

Dr. Dan Warren, a research fellow at the Gulbali Institute for Applied Ecology and former leader of the Environmental Science and Informatics Section, emphasized the importance of investing in specimen collections: “These specimen collections are crucial for discovering new species and documenting biodiversity changes, both from human activities and natural cycles. They are essential tools for scientific research and conservation biology,” he stated. “Without proper support for them and the people who maintain them, we risk losing irreplaceable information on species and ecosystems, potentially before we even discover them.”

Euthycus weevils. Photo credit: Jake H. Lewis

“These new weevil species are part of Japan’s natural heritage, and although still poorly known ecologically, discovering and naming them is the first step towards an understanding of their biology,” Lewis added. Protected areas like Yanbaru National Park, home to the newly discovered A. japonicus, are essential to the protection of the island’s rich and endemic biodiversity.

Research article:

Citation: Lewis JH, Kojima H, Suenaga M, Petsopoulos D, Fujisawa Y, Truong XL, Warren DL (2024) The era of cybertaxonomy: X-ray microtomography reveals cryptic diversity and concealed cuticular sculpture in Aphanerostethus Voss, 1957 (Coleoptera, Curculionidae). ZooKeys 1217: 1–45. https://doi.org/10.3897/zookeys.1217.126626

Crustacean with panda-like coloring confirmed to be a new species

The newly classified Melita panda — named after the charismatic mammal — was first found in the 1990s.

Decades after it was first found in Japan, a species of crustacean with unique black-and-white coloring that resembles a panda has been confirmed to be new to science. Melitid amphipods are shrimp-like crustaceans found worldwide. The newly classified Melita panda — named after the charismatic mammal — was first found in the 1990s. Details of the discovery and morphological analysis were published in a ZooKeys article on 21 September.

A panda sitting on a rock outdoors, holding a bamboo branch

The discovery of the Melita panda highlights the importance of studying species taxonomy, which is the naming and classification of organisms, for conservation efforts. It is impossible to know if a species is in danger of disappearing if it hasn’t even been identified.

“Despite the fact that biodiversity conservation is a global issue, species diversity and other aspects of biodiversity are still not fully understood. As a first step toward species conservation, we conducted a taxonomic study of amphipod Crustacea, which boasts high species diversity around Japan,” said Ko Tomikawa, a professor at Hiroshima University’s Graduate School of Humanities and Social Sciences in Hiroshima, Japan.

A new species of amphipod with a unique panda pattern was found in the intertidal zone of the Japanese coast. Photo credit: Ko Tomikawa/Hiroshima University

Before the discovery of Melita panda, there were 63 known species of Melita amphipods, with 16 of those found in Japan. Melita panda was found in intertidal waters in Wakayama Prefecture, Japan. There are likely even more unidentified and undescribed species of Melita amphipods in Japan’s coastal waters.

“Study on the amphipod Crustacea in the coastal zone of Japan is lagging behind. In order to accurately assess species diversity, taxonomic studies are necessary. We hope the discovery of a new species of amphipod with the familiar coloring of the panda pattern will increase the public’s interest in biodiversity and taxonomy,” said Tomikawa.

A line drawing of Melita panda.

To identify the Melita panda, researchers did both a morphological study and molecular phylogeny using genomic DNA. The morphological description of Melita panda found unique features including its panda-like colors and other physical characteristics, while molecular phylogeny is used to identify how closely related the Melita panda is to other Melita amphipods. This information is used to create a phylogenetic tree or evolutionary tree of the known Melita amphipods. Phylogenetic trees are diagrams that show the evolutionary relationships between species.

A line drawing of Melita Panda‘s gnathopod 1.

The molecular phylogeny found that Melita panda is closely related to two other Melita amphipods, the Melita nagatai and Melita koreana. The panda-like coloring distinguishes Melita panda from these two other amphipods, along with other physical differences. Its gnathopods, which are claws that extend from the second thoracic segment, sit more forward than other Melita amphipods, covering another one of its appendages. Its setae, which are hair-like structures that look like bristles, are also distinguishable from other Melita amphipods. Together, the Melita nagataiMelita koreana, and newly discovered Melita panda form a monophyletic group. This means they have a common evolutionary ancestor. In this case, it is the Melita hoshinoi.

Looking ahead, researchers will continue to study the Melita panda.

“Hopefully, a detailed study of the ecology and behavior of Melita panda will reveal the reason for its panda pattern,” said Tomikawa.

Beyond Melita panda, Tomikawa emphasized that there is still more to study.

“Further taxonomic studies on amphipods in uninvestigated areas are expected to lead to the discovery of additional new species. Continued taxonomic studies are expected to elucidate the biodiversity in the coastal environments of the Japanese archipelago and provide important basic data for species conservation,” he said.

Other contributors include Shigeyuki Yamato of Shirahama Katata in Wakayama, Japan, and Hiroyuki Ariyama at the Osaka Museum of Natural History in Osaka, Japan.

The Japan Society for the Promotion of Science KAKENHI grants supported this research.

Research article:

Tomikawa K, Yamato S, Ariyama H (2024) Melita panda, a new species of Melitidae (Crustacea, Amphipoda) from Japan. ZooKeys 1212: 267-283. https://doi.org/10.3897/zookeys.1212.128858

Original article from Hiroshima University.