EIVE 1.0 – The largest system of ecological indicator values in Europe

EIVE 1.0 is the most comprehensive system of ecological indicator values of vascular plants in Europe to date. It can be used as an important tool for continental-scale analyses of vegetation and floristic data.

Guest blog post by Jürgen Dengler, Florian Jansen & François Gillet

Geographic coverage of the 31 ecological indicator value systems that entered the calculation of the consensus system of EIVE 1.0 (image from the original article).

It took seven years and hundreds of hours of work by an international team of 34 authors to develop and publish the most comprehensive system of ecological indicator values (EIVs) of vascular plants in Europe to date.

EIVE 1.0 is now available as an open access database and described in the accompanying paper (Dengler et al. 2023).

EIVE 1.0 provides the five most-used ecological indicators, M – moisture, N – nitrogen, R – reaction, L – light and T – temperature, for a total of 14,835 vascular plant taxa in Europe, or between 13,748 and 14,714 for the individual indicators. For each of these taxa, EIVE contains three values: the EIVE niche position indicator, the EIVE niche width indicator and the number of regional EIV systems on which the assessment was based. Both niche position and niche width are given on a continuous scale from 0 to 10, not as categorical ordinal values as in the source systems.

Evidently, EIVE can be an important tool for continental-scale analyses of vegetation and floristic data in Europe.

It will allow to analyse the nearly 2 million vegetation plots currently contained in the European Vegetation Archive (EVA; Chytrý et al. 2016) in new ways.

Since EVA apart from elevation, slope inclination and aspect hardly contains any in situ measured environmental variables, the numerous macroecological studies up to date had to rely on coarse modelled environmental data (e.g. climate) instead. This is particularly problematic for soil variables such as pH, moisture or nutrients, which can change dramatically within a few metres.

Here, the approximation of site conditions by mean ecological indicator values can improve the predictive power substantially (Scherrer and Guisan 2019). Likewise, in broad-scale vegetation classification studies, mean EIVE values per plot would allow a better characterisation of the distinguished vegetation units. Lastly, one should not forget that most countries in Europe do not have a national EIV system, and here EIVE could fill the gap.

Violin plots showing largely continuous value distributions of the niche position and niche width values of the five indicators in EIVE 1.0 (image from the original article).

Almost on the same day as EIVE 1.0 another supranational system of ecological indicator values in Europe has been published by Tichý et al. (2023) with a similar approach.

Thus, it will be important for vegetation scientists in Europe to understand the pros and cons of both systems to allow the wise selection of the most appropriate tool:

  • EIVE 1.0 is based on 31 regional EIV systems, while Tichý et al. (2023) uses 12.
  • Both systems provide indicator values for moisture, nitrogen/nutrients, reaction, light and temperature, while Tichý et al. (2023) additionally has a salinity indicator.
  • Tichý et al. (2023) aimed at using the same scales as Ellenberg et al. (1991), which means that the scales vary between indicators (1–9, 0–9, 1–12), while EIVE has a uniform interval scale of 0–10 for all indicators.
  • Only EIVE provides niche width in addition to niche position. Niche width is an important aspect of the niche and might be used to improve the calculation of mean indicator values per plot (e.g. by weighting with inverse niche width).
  • The taxonomic coverage is larger in EIVE than in Tichý et al. (2023): 14,835 vs. 8,908 accepted taxa and 11,148 vs. 8,679 species.
  • EIVE provides indicator values for accepted subspecies, while Tichý et al. (2023) is restricted to species and aggregates. Separate indicator values for subspecies might be important for two reasons: (a) subspecies often strongly differ in at least one niche dimension; (b) many of the taxa now considered as subspecies have been treated at species level in the regional EIV systems.
  • Tichý et al. (2023) added 431 species not contained in any of the source systems based on vegetation-plot data from the European Vegetation Archive (EVA; Chytrý et al. 2016) while EIVE calculated the European indicator values only for taxa occurring at least in one source system. 
  • While both systems present maps that suggest a good coverage across Europe, Tichý et al. (2023)’s source systems largely were from Central Europe, NW Europe and Italy, but, unlike EIVE, these authors did not use source systems from the more “distal” parts of Europe, such as Sweden, Faroe Islands, Russia, Georgia, Romania, Poland and Spain, and they used only a small subset of indicators of the EIV systems of Ukraine, Greece and the Alps.
  • In a validation with GBIF-derived data on temperature niches, Dengler et al. (2023) showed that EIVE has a slightly stronger correlation than Tichý et al. (2023)’s indicators (r = 0.886 vs. 0.852).
The correlation of EIVE-T values of species with GBIF-derived temperature niche data was high and even higher when restricting the calculation to those species whose consensus value was based on at least four sources (image from the original article).

How did EIVE manage to integrate all EIV systems in Europe that contained at least one of the selected indicators for vascular plants, while Tichý et al. (2023) used only a small subset?

This difference is mainly due to a more complex workflow in EIVE (which also was one of the reasons why the preparation took so long). First, Tichý et al. (2023) restricted their search to EIV systems and indicators that had the same number of categories as the “original” Ellenberg system.

Second, from these they discarded those that showed a too low correlation with Ellenberg. By contrast, EIVE’s workflow allowed the use of any system with an ordinal (or even metric) scale, irrespective of the number of categories or the initial match with Ellenberg et al. (1991).

EIVE also did not treat one system (Ellenberg) as the master to assess all others but considered each of them equally valid. While indeed the individual EIV systems are often quite inconsistent, i.e. even if they refer to Ellenberg, the same value of an indicator in one system might mean something different in another system, our iterative linear optimisation enabled us to adjust all 31 systems for the five indicators to a common basis.

This in turn allowed deriving EIVE as the consensus system of all the source systems. The fact that in our validation of the temperature indicator, EIVE performed better than Tichý et al. (2023) and much better than most of the regional EIV systems might be attributable to the so-called wisdom of the crowd, going back to the statistician Francis Galton who found that averaging numerous independent assessments (even by laymen) of a continuous quantity can leads to very good estimates of the true value. 

Apart from the indicator values themselves, EIVE has a second main feature that might not be so obvious at first glance, but which actually took the EIVE team, including several taxonomists, more time than the workflow to generate the indicator values themselves: the taxonomic backbone. EIVE for vascular plants is fully based on the taxonomic concept (including the synonymic relationships) of the Euro+Med Plantbase.

However, since Euro+Med lacks an important part of taxa that are frequently recorded in vegetation plots, to make our backbone fully usable to vegetation science, we expanded it beyond Euro+Med to something called “Euro+Med augmented”. We particularly added hybrids, neophytes and aggregates, three groups of plants hitherto only very marginally covered in Euro+Med. All additions were done by experts consistently with the taxonomic concept of Euro+Med and are fully documented. Likewise, many additional synonym relationships had to be added that were missing in Euro+Med.

Finally, we implemented the so-called “concept synonymy” (see Jansen and Dengler 2010), which allows the assignment of the same name from different sources to different accepted names (“taxonomic concepts”). This applies mainly to nested taxa that are treated at different levels in different sources, e.g. once as species with several subspecies, once as aggregate with several species. However, there are also some cases of misapplied names (i.e. names that were not used in agreement with their nomenclatural type in certain EIV systems). Such cases generally cannot be solved by the various tools for automatic taxonomic cleaning, but require experts who make a case-by-case decision.

The whole taxonomic workflow of EIVE is fully transparent with an R code that “digests”:

(a) the names as they are in the source systems,

(b) the official Euro+Med database and

(c) tables that document our additions and modifications (with reasons and references).

This comprehensive documentation will allow continuous and efficient improvement in the future, be it because of taxonomic novelties adopted in Euro+Med or because EIVE’s experts decide to change certain interpretations. That way, “Euro+Med augmented” and the accompanying R-based workflow can also be a valuable tool for other projects that wish to harmonise plant taxonomic information from various sources at a continental scale, e.g. in vegetation-plot databases such as GrassPlot (Dengler et al. 2018) and EVA (Chytrý et al. 2016).

The publication of EIVE 1.0 is not the endpoint, but rather a starting point for future developments in a community-based approach.

Together with interested colleagues from outside, the EIVE core team plans to prepare better and more comprehensive releases of EIVE in the future, including updates to its taxonomic backbone.

Future releases of EIVE will be published in fixed versions, typically together with a paper that describes the changes in the content.

As steps for the next two years, we anticipate that we will first add further taxa (bryophytes, lichens, macroalgae) and some additional indicators, both of which are relatively easy with our established R-based workflow. Then we plan EIVE 2.0 that will use the approx. 2 million vegetation plots in EVA (Chytrý et al. 2016) to re-calibrate EIVE for all taxa (see http://euroveg.org/requests/EVA-data-request-form-2022-02-10-Dengleretal.pdf).

We invite you to get into contact with us if you have:

(a) a new or overlooked indicator value system for any taxonomic group in Europe and adjacent areas (including comprehensive datasets of measured environmental data in vegetation plots);

(b) suggestions for improvements of our taxonomic backbone;

(c) a paper idea in the EIVE context that you would like to realise together with the EIVE core team (since everything is OA, you can, of course, use EIVE 1.0 for any possible purpose without notifying us as long as you cite EIVE properly).

Last but not least, any test of the validity and performance of EIVE, alone or in comparison with Tichý et al. (2023), with in situ measured environmental variables, locally or even continentally, would be most welcome.

***

This Behind the paper post refers to the article Ecological Indicator Values for Europe (EIVE) 1.0 by Jürgen Dengler, Florian Jansen, Olha Chusova, Elisabeth Hüllbusch, Michael P. Nobis, Koenraad Van Meerbeek, Irena Axmanová, Hans Henrik Bruun, Milan Chytrý, Riccardo Guarino, Gerhard Karrer, Karlien Moeys, Thomas Raus, Manuel J. Steinbauer, Lubomir Tichý, Torbjörn Tyler, Ketevan Batsatsashvili, Claudia Bita-Nicolae, Yakiv Didukh, Martin Diekmann, Thorsten Englisch, Eduardo Fernandez Pascual, Dieter Frank, Ulrich Graf, Michal Hájek, Sven D. Jelaska, Borja Jiménez-Alfaro, Philippe Julve, George Nakhutsrishvili, Wim A. Ozinga, Eszter-Karolina Ruprecht, Urban Šilc, Jean-Paul Theurillat, and François Gillet published in Vegetation Classification and Survey (https://doi.org/10.3897/VCS.98324).

***

Follow the Vegetation Classification and Survey journal on Facebook and Twitter.

***

Brief personal summaries: 

Jürgen Dengler is a Professor of Vegetation Ecology at the Zurich University of Applied Science (ZHAW) in Wädenswil, Switzerland. Among others, he cofounded the European Vegetation Database (EVA), the global vegetation-plot database “sPlot” and the “GrassPlot” database of the Eurasian Dry Grassland Group. His major research interests are grassland ecology, grassland conservation, biodiversity patterns, macroecology, vegetation change, broad-scale vegetation classification, methodological developments in vegetation ecology and ecoinformatics.

Florian Jansen is a Professor of Landscape Ecology at the University of Rostock, Germany. His research interests are vegetation ecology and dynamics, mire ecology including greenhouse gas emissions, and numerical ecology with R. He (co-)founded the German Vegetation Database vegetweb.de, the European Vegetation Database (EVA), and the global vegetation-plot database “sPlot”. He wrote the R package eHOF for modelling species response curves along one-dimensional ecological gradients.

François Gillet is an Emeritus Professor of Community Ecology at the University of Franche-Comté in Besançon, France. His major research interests are vegetation diversity, ecology and dynamics, grassland and forest ecology, integrated synusial phytosociology, numerical ecology with R, dynamic modelling of social-ecological systems.

***

References: 

Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., Landucci, F., Schaminée, J.H.J., Aćić, S., (…) & Yamalov, S. 2016. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science 19: 173–180.

Dengler J, Wagner V, Dembicz I, García-Mijangos I, Naqinezhad A, Boch S, Chiarucci A, Conradi T, Filibeck G, … Biurrun I (2018) GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands. Phytocoenologia 48: 331–347.

Dengler, J., Jansen, F., Chusova, O., Hüllbusch, E., Nobis, M.P., Van Meerbeek, K., Axmanová, I., Bruun, H.H., Chytrý, M., (…) & Gillet, F. 2023. Ecological Indicator Values for Europe (EIVE) 1.0. Vegetation Classification and Survey 4: 7–29.

Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1–248.

Jansen F, Dengler J (2010) Plant names in vegetation databases – a neglected source of bias. Journal of Vegetation Science 21: 1179–1186.

Midolo, G., Herben, T., Axmanová, I., Marcenò, C., Pätsch, R., Bruelheide, H., Karger, D.N., Acic, S., Bergamini, A., Bergmeier, E., Biurrun, I., Bonari, G., Carni, A., Chiarucci. A., De Sanctis, M., Demina, O., (…), Dengler, J., (…) & Chytrý, M. 2023. Disturbance indicator values for European plants. Global Ecology and Biogeography 32: 24–34.

Scherrer D, Guisan A (2019) Ecological indicator values reveal missing predictors of species distributions. Scientific Reports 9: Article 3061.

Tichý, L, Axmanová, I., Dengler, J., Guarino, R., Jansen, F., Midolo, G., Nobis, M.P., Van Meerbeek, K., Aćić, S., (…) & Chytrý, M. 2023. Ellenberg-type indicator values for European vascular plant species. Journal of Vegetation Science 34: e13168.

Seeing off 2022 with another selection of awesome new species

A list of the most exciting biodiversity wins we’ve published in the second half of 2022.

Another year rolled by and we at Pensoft have a lot to celebrate! This year, we marked our 30th birthday, and what a ride it’s been! We thank all of you for sticking around and helping us put biodiversity science in the spotlight where it deserves to be.

The holiday season is always great fun, but for us, every biodiversity or conservation win is reason enough to celebrate. And we’ve had so many this year! We already showed you our top species for the first half of 2022. Here’s an update for the second half with the most exciting new species that we’ve published across our journals:

The elusive owl from a remote island

The Principe scops-owl (Otus bikegila) was discovered on the small island of Príncipe, just off Africa’s western coast. Its existence had been suspected since 1998, but locals said its presence on the island could be traced back to 1928.

The bird is endemic to the island of Príncipe. Furthermore, the research team behind its discovery noted that it can be found only in the remaining old-growth native forest on the island, in an area that largely remains uninhabited.

Otus is the generic name given to a group of small owls sharing a common history, commonly called scops-owls. They are found across Eurasia and Africa, and include such widespread species as the Eurasian scops-owl (Otus scops) and the African scops-owl (Otus senegalensis).

The species epithet “bikegila”, in turn, was chosen in homage of Ceciliano do Bom Jesus, nicknamed Bikegila – a former parrot harvester from Príncipe Island and now a park ranger on the island.The new species quickly became insanely popular, generating memes (a true sign of its popularity!). One website even described it as “a flying meme-generator that sounds like a newborn puppy.”

Published in ZooKeys.

The underground carnivore

Nepenthes pudica is a carnivorous plant that grows prey-trapping contraptions underground, feeding off subterranean creatures such as worms, larvae and beetles.

It belongs to pitcher plants – a group of carnivorous plants with modified leaves (called pitfall traps or pitchers) that help them catch their prey.

Pitcher plants usually produce pitfall traps above ground at the surface of the soil or on trees. N. pudica is the first pitcher plant known to catch its prey underground.

At first, the researchers thought the deformed pitcher protruding from the soil that they saw had accidentally been buried. Only later, when they found additional pitcherless plants, did they consider the possibility that the pitchers might be buried in the soil.

Then, as one of the researchers was taking photos, he tore some moss off the base of a tree and found a handful of pitchers.

The unique plant, however, could already be under threat. As it only lives in one small area of Indonesia, scientists believe it should be classed as Critically Endangered.

Published in PhytoKeys.

The graveyard-dwelling snake

In November 2021, biologist Alejandro Arteaga and his colleagues were traveling through the cloud forests of Ecuador looking for toads, when a local woman told them she had seen odd snakes slithering around a graveyard. Based on her description, the team suspected they might be ground snakes from the genus Atractus, which had never been scientifically recorded in that area of Ecuador.

Indeed, they were able to discover three new snake species living beneath graves and churches in remote towns in the Andes mountains.

The “small, cylindrical, and rather archaic-looking” snakes all belong to a group called ground snakes. In general, not a lot of people are familiar with ground snakes, as they usually remain hidden underground.

All three snakes were named in honor of institutions or people supporting the exploration and conservation of remote cloud forests in the tropics. Atractus zgap, pictured here,  was named in honor of the Zoological Society for the Conservation of Species and Populations (ZGAP), a program seeking to conserve unknown but highly endangered species and their natural habitats throughout the world. 

However, the majority of the native habitat of these new snakes has already been destroyed. As a result of the retreating forest line, the ground snakes find themselves in the need to take refuge in spaces used by humans (both dead and alive), where they usually end up being killed on sight.

Published in ZooKeys.

The beautiful aquarium fish

2022 was a good year for fish diversity! In the first half, we had Cirrhilabrus finifenmaa, in the second half we have Astronotus mikoljii.

Unlike some other participants in this list, this one took a while before it was confirmed as a new species: “We did not discover that it was a new species overnight,” says Oscar Lasso-Alcalá, one of the people behind its discovery.

A. mikoljii is a new species for science, but it is not a “new species” for people who already knew it locally under the name of Pavona, Vieja, or Cupaneca in Venezuela or Pavo Real, Carabazú, Mojarra and Mojarra Negra in Colombia. Nor for the aquarium trade, where it is highly appreciated and has been known by the common name of Oscar.

Moreover, the species has been of great food importance for thousands of years for at least nine indigenous ethnic groups, and for more than 500 years to the hundreds of human communities of locals who inhabit the Orinoco River basin in Venezuela and Colombia. In the plains of Orinoco, it is considered a delicacy “due to its pleasant taste and enhanced texture”.

Oscar Lasso-Alcalá has a special relationship with this fish. “It is more than just a fish in an aquarium since it is considered a true pet,” he says.

Published in ZooKeys.

The spiny-tailed gecko

gecko

Recently, Javier Lobon-Rovira, one of the people behind the discovery of this new gecko, told us what it was like to find this exciting new species: “That night we were tired, so we decided to have a short walk around the camp. And… there it was…! Like a ghost, this small, cryptic, and elusive gecko started  showing up in every big rock boulder.”

Kolekanos spinicaudus is part of Kolekanos, a unique and iconic gecko genus that is only known from southwestern Angola.

Until this discovery, Kolekanos only had one species in the genus, known only from ~200km south of the new discovery, but that species had feathers on its tail, not spines like K. spinicaudus. Immediately, the researchers knew they were dealing with a Kolekanos… but they were astonished to see the spines.

The scientific name “spinicaudus” refers to the unique appearance of the tail of this new species.

K. spinicaudus’s home in southern Angola remains poorly explored, even as it has been considered as an important source of diversification and endemism in West Africa.

Published in ZooKeys.

Honorable mention: the bee with a dog-like snout

“Insects in general are so diverse and so important, yet we don’t have scientific descriptions or names for so many of them,” says Dr Kit Prendergast, from the Curtin School of Molecular and Life Sciences.

The new bee species she discovered, Leioproctus zephyr is excellent proof that we still have a lot to learn about bee biodiversity.

The story behind  L. zephyr’s name is quite interesting – it was named after Zephyr the Maremma dog, Dr Prendergast’s fellow companion. The researcher says Zephyr played an important role in providing emotional support during her PhD. The name also references the dog-like “snout” in the bee’s anatomy that she found rather unusual.

The bee species  was in fact first collected in 1979, but it had to wait until 2022 to be officially described.

However, Dr Prendergast says its future remains uncertain, as it is highly specialised, and has a very restricted, fragmented distribution.

“The Leioproctus zephyr has a highly restricted distribution, only occurring in seven locations across the southwest WA to date, and have not been collected from their original location. They were entirely absent from residential gardens and only present at five urban bushland remnants that I surveyed, where they foraged on two plant species of Jacksonia.”

Published in Journal of Hymenoptera Research.

Honorable mention: Two scorpion species described by high-school citizen scientists

In 2019, California teenagers Harper Forbes and Prakrit Jain were looking at entries on the naturalist social network iNaturalist, when they noticed a mysterious scorpion that a citizen scientist had encountered near a lake in the Mojave Desert. The species had remained unidentified since it was uploaded six years earlier.

The entry that they were looking at was a yet undescribed scorpion species whose name they would add to the fauna of California. Shortly after, they found another entry on iNaturalist that also appeared to be an unknown scorpion species.

The new species, Paruroctonus soda and Paruroctonus conclusus, are playa scorpions, meaning they can only be found around dry lake beds, or playas, from the deserts of Central and Southern California.

The budding naturalists published a formal description of the two species with the help of Lauren Esposito, PhD,  Curator of Arachnology at the California Academy of Sciences.

“These kids can find anything,” Dr Esposito told The Guardian. “You set them out in a landscape and they’re like: ‘Here’s every species of snake, here’s every scorpion, every butterfly,’ and it’s kind of incredible.”

Forbes and Jain were still in high school when they made their groundbreaking discoveries. Now they are in college: Forbes at the University of Arizona studying evolutionary biology and Jain at the University of California, Berkeley, for integrative biology.

Published in ZooKeys.

Flooded cities: A flood-regulating ecosystem services assessment for heavy rainfalls in urban areas

Scientists from Germany developed a framework with indicator suggestions to quantify and compare flood-regulating ecosystem services supply and demand.

Extreme weather events – like heavy rainfall – are a major environmental risk. Only recently after the Ecosystem Services Partnership (ESP) 2022 Europe Conference on Crete (Greece) some conference attendees were able to directly experience the effects of heavy rainfall, when air traffic was stopped in Heraklion for many hours, streets were flooded, properties damaged, and even people died.

Heavy rainfall can occur anywhere and are usually highly localized. Cities are particularly vulnerable to pluvial flooding because of the high degree of surface sealing, the high population density and the high potential of socio-economic damage in urban areas. In this light, ecosystems are important natural flood-regulating elements that can relieve grey infrastructure such as sewer systems. They can buffer rain events and prevent flooding as their functions turn into a flood-regulating ecosystem service (ES) to protect society.

So far, flood-regulating ES supply and demand for heavy rainfall in urban areas have rarely been studied. Therefore, scientists from the Climate Service Center Germany and the Leibniz University Hannover (Germany) developed a framework with indicator suggestions to quantify and compare flood-regulating ES supply and demand. Interception by canopies and infiltration in the soil serve as essential indicators for urban flood-regulating ES supply. The indicators can be quantified based on the outputs of a hydrological model that has explicitly been developed for this study. The model is based on single, individual landscape elements. It considers vegetation-hydrological interaction, and 2D surface water routing. Social-economic indicators and the surface flooding indicate the related ES demand.

A flooded neighbourhood. Photo by U.S. Geological Survey

In their study, published in the journal One Ecosystem, they assessed the flood-regulating ES of an urban district in the City of Rostock (Germany) for a one-hour heavy rainfall event. They found the highest mean ES supply on greened areas of forests, woodlands and green areas, resulting in a supply surplus. Whereas, sealed areas (paved surface where water cannot infiltrate into the soil), such as settlements, urban dense areas, traffic areas and industry, showed an unmet demand resulting from both low supply and relatively high actual demand. The results indicated that vegetation plays an important part in flood regulation, if the soils are saturated or sealed and, thus, should be considered in urban flood-regulating ES assessments.

Budget of the flood-regulating ecosystem services supply and demand resulting in unmet demand and supply surplus.

Analysing the supply and demand for flood-regulating ES is particularly important for urban planning in order to identify ES supply-demand mismatches. Based on this information, adaptation measures such as Nature-based Solutions can be planned and their possible ES contributions can be quantified. Since heavy precipitation events are projected to become more frequent and intense in the future, the future functionality of current flood-regulating ES and the benefits of adaptation measures under changing climate conditions need to be assessed. This provides information about changing ES supply and the development of ES demand.

Research article:

Wübbelmann T, Bouwer LM, Förster K, Bender S, Burkhard B (2022) Urban ecosystems and heavy rainfall – A Flood Regulating Ecosystem Service modelling approach for extreme events on the local scale. One Ecosystem 7. https://doi.org/10.3897/oneeco.7.e87458

Follow One Ecosystem on Facebook and Twitter.

How science helps the conservation of sloths in Ecuador

We follow the post-release monitoring of Bravo, a male two-toed sloth that arrived in March 2021 at Guayaquil´s Mansión Mascota veterinary clinic.

Guest blog post by Ricardo Villalba-Briones

Choloepus hoffmanni capitalis is a poorly known subspecies of two-toed sloth that inhabits coastal southern Colombia and Ecuador(Hayssen 2011). In Ecuador, according to local reports from rehabilitation centers and events recorded by the press, this species is apparently not widely trafficked for pet trade, but it is known to be illegally hunted and consumed, the impact of which is difficult to trace and evaluate. Nevertheless, the conservation status of the two-toed sloths C.h. capitalis Ecuadorian coast keeps leaning towards more threatened categorizations, and nowadays is established as vulnerable (Tirira, 2021).

The sloths Bravo and Linda during rehabilitation.

Its habitat is a hotspot for conservation in all its extent, as it is threatened. In addition, due to multiple origins of impact, it has been recorded as the second most abundant mammal (from the list of animals subjected to wildlife traffic and bushmeat consumption according to Environment Ministry reports) received in the busy rehabilitation center of Guayaquil, Ecuador (Villalba-Briones et al., 2021).

Xenarthrans have been relatively poorly studied, specially sloths (Superina and Loughry 2015), and due to the species’ inconspicuous strategy, it is also difficult to detect and perform population evaluations (Martínez et al. 2020). Taking in account the slow reproduction rate of Choloepus gen., having one offspring every 3 years (Hayssen 2011), it is critical to consider the importance of reintroductions (Paterson et al. 2021, Villalba-Briones et al. 2022), but, to all effects, nothing can substitute the implementation of efficient regulation to cease hunting and bushmeat consumption.

Choloepus hoffmanni. Photo by briangratwicke under a CC BY 4.0 license

In-situ studies, understanding its ecology, behavior, abundance etc., could provide the necessary tools to estimate its populations, and evaluate its conservation status. Alternatively, non-invasive opportunistic studies in ex-situ programs during rehabilitation procedures could provide improvements in the aspects as diets and health, increasing the survival rate and fitness to release of rehabilitated sloths.

I strongly consider it important that this species is duly studied, in order to appreciate it and support its conservation. In our work, “Release and follow-up of a rehabilitated two-toed sloth (Choloepus hoffmanni) in a tropical dry forest in Ecuador”, published in the journal Neotropical Biology and Conservation, we follow the post-release monitoring of Bravo, a male two-toed sloth that arrived in March 2021 at Guayaquil´s Mansión Mascota veterinary clinic.

We suggest considering follow-up activities to check the animals’ safety during their adaptation to the natural environment. We also propose the inclusion of a follow-up term to redeem the post-release supportive monitoring, develop its scope, and to rely on the presence and readiness of the caregivers or researchers to help the animal during the first weeks after release.

In order to track Bravo after his release, a handmade biodegradable backpack with Bluetooth signal transmission capacity was fitted to his body. The lightweight Tile Bluetooth device did not pose any harm to the sloth, and after some heavy rains cardboard-made attachment just disintegrated, releasing the device.

In our work, the presence in the area of a territorial carnivore individual led to the end of the follow-up activity. Consequently, in the case of probable undesired situations, we propose the use of devices to track the animals and monitor their presence daily. Alternatively, accounting for the relationship between movement patterns of the individual and detection probability, we propose 7 pm as the best time for observations of this mainly nocturnal species.

Due to the difficulty monitoring nocturnal animals, economic constraints in conservation, accessibility, and safety of the animals, biodegradable Bluetooth-based backpacks are recommended to ease the location of the animal and support its survival in the wild. The range of detectability of the device used indicates its suitability for tracking low-mobility animals.

Map showing the movements and tree use of the rehabilitated two-toed sloth (Choloepus hoffmanni) in a dry tropical forest in the coastal region of Ecuador.

This first record of the follow-up of a rehabilitated Choloepushoffmanni and the detectability analysis offer valuable information for the future release and follow-up of individuals belonging to the genus Choloepus, and sloths in general.

The knowledge about released animals’ survival could help in clearing rehabilitation uncertainties, and, always, can give the animals the second chance they deserve.  Monitoring animal survival after release is essential for recording whether the rehabilitation process has been accomplished, but it is rarely done in practice, given the amount of funds required. It can, however, be substantially cheaper and affordable if the right techniques are used. These activities are more feasible when strategic planning and support exist.

Nowadays, the scarcity of funds to fulfill the needs of conservation projects on sloths (Superina and Loughry 2015, Choperena-Palencia and Mancera-Rodríguez 2018) seems to be an important obstacle. However, with a sensitized population, management effort, and support, it could be possible to understand and preserve the Choloepus hoffmanni capitalis.

References:

Choperena-Palencia MC, Mancera-Rodríguez NJ (2018) EVALUACIÓN DE PROCESOS DE SEGUIMIENTO Y MONITOREO POST-LIBERACIÓN DE FAUNA SILVESTRE REHABILITADA EN COLOMBIA. Luna Azul: 181–209. https://doi.org/10.17151/luaz.2018.46.11

Hayssen V (2011) Choloepus hoffmanni (Pilosa: Megalonychidae). Mammalian Species 43: 37–55. https://doi.org/10.1644/873.1

Martínez M, Velásquez A, Pacheco-Amador S, Cabrera N, Acosta I, Tursios-Casco M (2020) El perezoso de dos dedos (Choloepus hoffmanni) en Honduras: distribución, historia natural y conservación. Notas sobre Mamíferos Sudamericanos 01: 001–009. https://doi.org/10.31687/saremNMS.20.0.25

Paterson JE, Carstairs S, Davy CM (2021) Population-level effects of wildlife rehabilitation and release vary with life-history strategy. Journal for Nature Conservation 61: 125983. https://doi.org/10.1016/j.jnc.2021.125983

Superina M, Loughry WJ (2015) Why do Xenarthrans matter?: Table 1. Journal of Mammalogy 96: 617–621. https://doi.org/10.1093/jmammal/gyv099

Villalba-Briones R, Molineros E, Monros, J. S. (2021). Estudio retrospectivo de rescates y retenciones de especies de fauna silvestre sujetas a tráfico de fauna en guayaquil, Ecuador. Comité científico.

Villalba-Briones R, Jiménez ER, Monros JS (2022) Release and follow-up of a rehabilitated two-toed sloth (Choloepus hoffmanni) in a tropical dry forest in Ecuador. Neotropical Biology and Conservation 17(4): 253-267. https://doi.org/10.3897/neotropical.17.e91332

Tirira, D. G. (ed.). 2021. Lista Roja de los mamíferos del Ecuador, en: Libro Rojo de los mamíferos del Ecuador (3a edición). Asociación Ecuatoriana de Mastozoología, Fundación Mamíferos y Conservación, Pontificia Universidad Católica del Ecuador y Ministerio del Ambiente, Agua y Transición Ecológica del Ecuador. Publicación Especial sobre los mamíferos del Ecuador 13, Quito.

Scientists highlight safe access to the outdoors with naming of new plant species

The scientific name and English-language common name acknowledge the importance of maintaining equitable and safe access to outdoor spaces for all people.

Dr. Chris Martine, Bucknell’s David Burpee Professor, examining a Solanum scalarium plant at its only currently known location on the Escarpment Walk, Judbarra National Park, Northern Territory, Australia. Photo by Angela McDonnell

A new species of Australian bush tomato described from the Garrarnawun Lookout in Judbarra National Park provides a compelling example of the need to provide equal and safe access to natural places. Bucknell University postdoctoral fellow Tanisha Williams and biology professor Chris Martine led the study following a chance encounter with an unusual population of plants during a 2019 research expedition to the Northern Territory.

Martine, who has studied northern Australia’s bush tomatoes for more than 20 years, immediately sensed that the plants were representative of a not-yet-described species, so he, Angela McDonnell (St. Cloud State University), Jason Cantley (San Francisco State University), and Peter Jobson (Northern Territory Herbarium in Alice Springs) combed the local area for plants to closely study and make research collections from. The task was made easier by the fact that the Garrarnawun Lookout is accessible by a set of dozens of human-made stone steps running directly from the unpaved parking area to the peak of the sandstone outcrop – without which the new species might have otherwise gone unnoticed.

The botanists were able to collect numerous new specimens and have now published the new species description in the open-access journal PhytoKeys, choosing the name Solanum scalarium as a nod to the steps leading to the plant and the unusual ladder-like prickles that adorn the flowering stems. The Latin “scalarium” translates to “ladder”, “staircase” or “stairs.”

Photo of Solanum scalarium, a newly-described bush tomato species from the Northern Territory, Australia, showing the unusual ladder-like arrangement of prickles on male floral stems. Plants grown in the Rooke Biology Research Greenhouse at Bucknell University were closely studied by undergraduate student Jonathan Hayes (Biology ‘22) under the supervision of Drs. Tanisha Williams and Chris Martine. Photo by J. Hayes

“This Latin name does relate to the appearance of this species, how it looks,” says first-author Williams. “But it is also a way for us to acknowledge how important it is to create ways for people to interact with nature; not just scientists like us, but everyone.”

Solanum scalarium: immature green fruits enclosed in prickly calyx. Photo by Angela McDonnell

According to the authors, a recent study done by the Department of Local Government, Sport and Cultural Industries in Western Australia found that 8 in 10 people felt it is important to have access to natural spaces, both locally and outside of their current jurisdictions. However, one in three persons felt dissatisfied with the current outdoor spaces available to them and many identified barriers to access and participation in outdoor activities that include urbanization – which is especially credited for the growing number of Australians that lack outdoor experiences.

Importantly, the awareness of who has access and feels safe to participate in outdoor activities is being recognized throughout Australia and the lack of diversity in participation from culturally diverse and marginalized populations has been identified as an issue. Key indices such as ethnic background, socio-economic status, physical abilities and gender, are indicators of low outdoor recreation participation.

“These disparities of who are and are not participating and who feels safe and welcomed are artifacts of historic and current environmental and social injustices,” notes Williams. “To overcome these injustices and increase access and participation from diverse groups, intentional and targeted efforts are needed to provide a range of outdoor experiences that attract people from all of the 270 plus ancestries with which Australians identify with and special attention should be placed on groups historically excluded from outdoor spaces.”

Dr. Tanisha Williams, Bucknell’s Richard E. and Yvonne Smith Post-doctoral Fellow,  on the rim of the Wolfe Creek Meteorite Crater during fieldwork in Western Australia in June 2022. Photo by Chris Martine

Also now known as the Garrarnawun Bush Tomato, Solanum scalarium is a distant cousin of the cultivated eggplant and a close relative to a number of other Australian species recently discovered by Martine and colleagues that were also published in PhytoKeys including Solanum plastisexum, named to reflect the diversity of sex forms across Earth’s organisms; and Solanum watneyi, named for the space botanist of the book/film The Martian. 

The scientists hope that the naming of this latest new species highlights the importance of building community around natural spaces.

“We suggest the use of Garrarnawun Bush Tomato for the English-language common name of the species,” the authors write, “In recognition of the Garrarnawun Lookout near where the type collection was made, a traditional meeting place of the Wardaman and Nungali-Ngaliwurru peoples whose lands overlap in this area.”

Access to nature is not just a concern in Australia.

“In the United States, where most of the authors of this paper are located, “access” is one thing but safety and equitability are another,” says Martine, “The U.S. National Parks Service reports that around 95% of those who visit federal parks are white. Meanwhile, African Americans, Latinos, women, and members of the LGBTQIA+ communities often report feeling unwelcome or unsafe in outdoor spaces.”

“If African Americans, for example, are already apprehensive in a country where they make up 13% of the population, it should be understandable that they are hesitant to be part of a community where they represent as little as 1% of participants.”

Dr. Tanisha Williams, Bucknell’s Richard E. and Yvonne Smith Post-doctoral Fellow, and Dr. Chris Martine, Bucknell’s David Burpee Professor, in Western Australia in June 2022. Photo by Claire Marino

Williams suggests that James Edward Mills, author of The Adventure Gap (2014) put it best:

“It’s not enough to say that the outdoors is free and open for everyone to enjoy. Of course it is! But after four centuries of racial oppression and discrimination that systematically made Black Americans fear for their physical safety, we must also make sure that we create a natural environment where people of color can not only feel welcome but encouraged to become active participants as outdoor enthusiasts and stewards dedicated to the protection of the land.”

Recent Bucknell graduate Jonathan Hayes, who measured and analyzed the physical characters of the new species using plants grown from seed in a campus greenhouse, joins Williams, McDonnell, Cantley, Jobson, and Martine as a co-author on the publication.

Research Article:

Williams TM, Hayes J, McDonnell AJ, Cantley JT, Jobson P, Martine CT (2022) Solanum scalarium (Solanaceae), a newly-described dioecious bush tomato from Judbarra/Gregory National Park, Northern Territory, Australia. PhytoKeys 216: 103-116. https://doi.org/10.3897/phytokeys.216.85972

Human activities degrade hippopotamus homes at Bui National Park, Ghana

Researchers found that the number of hippopotamus in the Bui National Park declined by about 70% after the construction of a hydroelectric dam in the reserve.

The Bui National Park is one of the few areas where the common hippopotamus resides in Ghana. The combined resources of the Black Volta River and the abundance of grasses make the area very suitable for hippopotamus. However, in an attempt to solve the electricity crisis the country faced in 2007, the government of Ghana constructed a hydroelectric dam in the heart of their home.

Farmers clearing trees along the rivers to begin cultivation at Bui National Park.

Knowing the consequence of dam creation on aquatic species, scientists Godfred Bempah, Martin Kobby Grant, Changhu Lu, and Amaël Borzée from Nanjing Forestry University, China, wanted to understand how the hippopotamus, a mega semi-aquatic species, was impacted by this project. The results have been published in the journal Nature Conservation. Assessing the impact of the dam construction can advise policy and decision making in future projects like this.

The researchers spent 24 days (2 days per month for 12 months) at the Bui National Park to estimate the number of hippopotamus individuals and understand local migratory activities, as well as to assess changes in land cover in the area after the dam was constructed. They then compared this information with historical data to understand the ecological changes within the area.

A hippopotamus in the Zoologico de Vallarta at Mismaloya south of Puerto Vallarta, Mexico. Photo by David Stanley under a CC BY 2.0 license

To complement the field surveys, the researchers spoke to local people familiar with the reserve before and after the dam construction. These included fishermen, canoe operators and park rangers. During the interactive discussion, all of them stated that the numbers of hippopotamus have declined compared to periods before the dam construction. They attributed the decline to poaching and habitat destruction.

The results indicated a decline in hippo numbers of about 70%: from 209 individuals in 2003 to 64 individuals in 2021.

A seized skull of Hippopotamus amphibius at the Bui national Park.

The study revealed noticeable changes in land cover after the dam construction, and, most importantly, a decline in forest cover, as well as destruction of riparian grasses, the habitat preferred by the hippopotamus. The increase in water levels flooded the areas where the animals used to reside, forcing them to disperse to other suitable areas. As they dispersed, the animals became vulnerable to poaching, which combined with habitat loss eventually led to a decline in hippopotamus numbers. It is possible that some of the animals might have successfully moved to other areas outside the reserve.

The hippopotamus is listed as Vulnerable to extinction by the IUCN Red List of Threatened Species.

In conclusion, the authors note that the number of common hippopotamus individuals in the park has declined following the dam construction, in connection with habitat destruction and poaching. Once these threats are removed, the hippopotamus can survive in the medium to long term, when effective management plans are implemented.

Research article:
 

Bempah G, Kobby Grant M, Lu C, Borzée A (2022) The direct and indirect effects of damming on the Hippopotamus amphibius population abundance and distribution at Bui National Park, Ghana. Nature Conservation 50: 175-201. https://doi.org/10.3897/natureconservation.50.87411

Pensoft among the first 27 publishers to share prices & services via the Journal Comparison Service by Plan S

All journals published by Pensoft – each using the publisher’s self-developed ARPHA Platform – provide extensive and transparent information about their costs and services in line with the Plan S principles.

In support of transparency and openness in scholarly publishing and academia, the scientific publisher and technology provider Pensoft joined the Journal Comparison Service (JCS) initiative by cOAlition S, an alliance of national funders and charitable bodies working to increase the volume of free-to-read research. 

As a result, all journals published by Pensoft – each using the publisher’s self-developed ARPHA Platform – provide extensive and transparent information about their costs and services in line with the Plan S principles.

The JCS was launched to aid libraries and library consortia – the ones negotiating and participating in Open Access agreements with publishers – by providing them with everything they need to know in order to determine whether the prices charged by a certain journal are fair and corresponding to the quality of the service. 

According to cOAlition S, an increasing number of libraries and library consortia from Europe, Africa, North America, and Australia have registered with the JCS over the past year since the launch of the portal in September 2021.

While access to the JCS is only open to librarians, individual researchers may also make use of the data provided by the participating publishers and their journals. 

This is possible through an integration with the Journal Checker Tool, where researchers can simply enter the name of the journal of interest, their funder and affiliation (if applicable) to check whether the scholarly outlet complies with the Open Access policy of the author’s funder. A full list of all academic titles that provide data to the JCS is also publicly available. By being on the list means a journal and its publisher do not only support cOAlition S, but they also demonstrate that they stand for openness and transparency in scholarly publishing.

“We are delighted that Pensoft, along with a number of other publishers, have shared their price and service data through the Journal Comparison Service. Not only are such publishers demonstrating their commitment to open business models and cultures but are also helping to build understanding and trust within the research community.”

said Robert Kiley, Head of Strategy at cOAlition S. 

***

About cOAlition S:

On 4 September 2018, a group of national research funding organisations, with the support of the European Commission and the European Research Council (ERC), announced the launch of cOAlition S, an initiative to make full and immediate Open Access to research publications a reality. It is built around Plan S, which consists of one target and 10 principles. Read more on the cOAlition S website.

About Plan S:

Plan S is an initiative for Open Access publishing that was launched in September 2018. The plan is supported by cOAlition S, an international consortium of research funding and performing organisations. Plan S requires that, from 2021, scientific publications that result from research funded by public grants must be published in compliant Open Access journals or platforms. Read more on the cOAlition S website.

Experts in insect taxonomy “threatened by extinction” reveals the first European Red List of Taxonomists

While insect populations continue to decline, taxonomic expertise in Europe is at serious risk, confirms data obtained within the European Red List of Insect Taxonomists, a recent study commissioned by the European Union. 

Expertise tends to be particularly poor in the countries with the richest biodiversity, while taxonomists are predominantly male and ageing

While insect populations continue to decline, taxonomic expertise in Europe is at serious risk, confirms data obtained within the European Red List of Insect Taxonomists, a recent study commissioned by the European Union. 

Scientists who specialise in the identification and discovery of insect species – also known as insect taxonomists – are declining across Europe, highlights the newly released report by CETAF, International Union for Conservation of Nature (IUCN) and Pensoft. The authors of this report represent different perspectives within biodiversity science, including natural history and research institutions, nature conservation, academia and scientific publishing.

Despite the global significance of its taxonomic collections, Europe has been losing taxonomic expertise at such a rate that, at the moment nearly half (41.4%) of the insect orders are not covered by a sufficient number of scientists. If only EU countries are counted, the number looks only slightly more positive (34.5%). Even the four largest insect orders: beetles (Coleoptera), moths and butterflies (Lepidoptera), flies (Diptera) and wasps, bees, ants and sawflies (Hymenoptera) are only adequately ‘covered’ in a fraction of the countries.

To obtain details about the number, location and productivity of insect taxonomists, the team extracted information from thousands of peer-reviewed research articles published in the last decade, queried the most important scientific databases and reached out to over fifty natural science institutions and their networks. Furthermore, a dedicated campaign reached out to individual researchers through multiple communication channels. As a result, more than 1,500 taxonomists responded by filling in a self-declaration survey to provide information about their personal and academic profile, qualification and activities. 

Then, the collected information was assessed against numerical criteria to classify the scientists into categories similar to those used by the IUCN Red List of Threatened SpeciesTM. In the European List of Insect Taxonomists, these range from Eroded Capacity (equivalent to Extinct) to Adequate Capacity (equivalent to Least Concern). The assessment was applied to the 29 insect orders (i.e. beetles, moths and butterflies etc.) to figure out which insect groups the society, conservation practitioners and decision-makers need not be concerned at this point.

Overview of the taxonomic capacity in European countries based upon the Red List Index (colour gradient goes from red (Eroded Capacity) to green (Adequate Capacity).
Image by the European Red List of Taxonomists consortium.

On a country level, the results showed that Czechia, Germany and Russia demonstrate the most adequate coverage of insect groups. Meanwhile, Albania, Azerbaijan, Belarus, Luxembourg, Latvia, Ireland and Malta turned out to be the ones with insufficient number of taxonomists.

In most cases, the availability of experts seems to correlate to GDP, as wealthiest countries tend to invest more in their scientific institutions.

What is particularly worrying is that the lack of taxonomic expertise is more evident in the countries with the greatest species diversity. This trend may cause even more significant problems in the knowledge and conservation of these species, further aggravating the situation. Thus, the report provides further evidence about a global pattern where the countries richest in biodiversity are also the ones poorest in financial and human resources. 

The research team also reminds that it is European natural history museums that host the largest scientific collections – including insects – brought from all over the globe. As such, Europe is responsible to the world for maintaining taxonomic knowledge and building adequate expert capacity.

Other concerning trends revealed in the new report are that the community of taxonomists is also ageing and – especially in the older groups – male-dominated (82%). 

One reason to have fewer young taxonomists could be due to limited opportunities for professional training (…), and the fact that not all professional taxonomists provide it, as a significant number of taxonomists are employed by museums and their opportunities for interaction with university students is probably not optimal. Gender bias is very likely caused by multiple factors, including fewer opportunities for women to be exposed to taxonomic research and gain an interest, unequal offer of career opportunities and hiring decisions. A fair-playing field for all genders will be crucial to address these shortcomings and close the gap.

comments Ana CasinoCETAF’s Executive Director.

***

Entomologist examining a small insect under a microscope.
Photo by anton_shoshin/stockadobe.com.
The European Red List of Taxonomists concludes with practical recommendations concerning strategic, science and societal priorities, addressed to specific decision-makers.

The authors give practical examples and potential solutions in support of their call to action.

For instance, in order to develop targeted and sustainable funding mechanisms to support taxonomy, they propose the launch of regular targeted Horizon Europe calls to study important insect groups for which taxonomic capacity has been identified to be at a particularly high risk of erosion.

To address specific gaps in expertise – such as the ones reported in the publication from Romania – a country known for its rich insect diversity, yet poor in taxonomic expertise – the consortium proposes the establishment of a natural history museum or entomological research institute that is well-fitted to serve as a taxonomic facility.

Amongst the scientific recommendations, the authors propose measures to ensure better recognition of taxonomic work at a multidisciplinary level. The scientific community, including disciplines that use taxonomic research, such as molecular biology, medicine and agriculture – need to embrace universal standards and rigorous conduct for the correct citation of scientific publications by insect taxonomists.

Societal engagement is another important call. “It is pivotal to widely raise awareness of the value and impact of taxonomy and the work of taxonomists. We must motivate young generations to join the scientific community” points Prof. Lyubomir Penev, Managing Director of Pensoft.

***

Understanding taxonomy is a key to understanding the extinction risk of speciesIf we strategically target the gaps in expert capacity that this European Red List identifies, we can better protect biodiversity and support the well-being and livelihoods of our societies. With the climate crisis at hand, there is no time left to waste,

added David Allen from the IUCN Red List team.

As a dedicated supporter of the IUCN Red List, I am inspired by this call to strengthen the capacity, guided by evidence and proven scientific methods. However, Europe has much more scientific capacity than most biodiversity-rich regions of the world. So, what this report particularly highlights is the need for massively increasing investment in scientific discovery, and building taxonomic expertise, around the world,”  

said Jon Paul Rodríguez, Chair of the IUCN Species Survival Commission.

***

Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag. 

Tracking an invasion – a single Asian hornet sparked the ongoing spread across Europe

It is likely that all Asian hornets in Europe are descended from a single queen introduced to France in 2004.

In Europe, the Asian (or “Yellow-legged”) Hornet (Vespa velutina) is a predator of insects such as honeybees, hoverflies, and other wasps, and poses serious risks to apiculture, biodiversity and pollination services. This hornet can measure up to 4cm in length and, like all other social wasps, is capable of delivering a painful sting, although it is not aggressive by nature. Thought to have been introduced into Europe from China in 2004, the Asian Hornet has rapidly spread across the continent. While it has been thus far controlled in Britain, the hornet is well established across mainland Europe and the Channel Islands. In April 2021, the Irish National Parks and Wildlife Service confirmed that a single specimen had been found, ‘alive but dying’ in a private dwelling in Dublin, marking the first Irish record of this species.  

The Asian Hornet specimen recovered in Dublin. Image by Dr Aidan O’Hanlon

The circumstances of how the specimen arrived in the Irish capital are not known, but with the area’s extensive regional, national and international connectivity, there can be many possible pathways of introduction. In an Irish context, it was of particular interest to determine whether this individual originated in Europe/Britain or represented a potential new invasion source from within its native range in Southeast Asia.

The specimen was deposited in the National Museum of Ireland and identified by Dr. Aidan O’Hanlon, who suggested performing genetic analysis to determine its provenance. In collaboration with scientists from the School of Biological, Earth and Environmental Sciences (BEES), University College Cork, and partners on the EU Atlantic Positive Project (which aims to establish Europe-wide methodologies for the control of the Asian hornet), genetic analysis was performed and data were compared with those from specimens provided from several other locations across Europe. The researchers then published their findings in Journal of Hymenoptera Research.

An Irish hornet. Image by Danel Solabarrieta, licensed under CC BY-SA 2.0.

“Earlier work had demonstrated that Asian hornets in Europe apparently shared the same genetic lineage, based on studies of a single gene. We took this a step further and looked at two additional genes which would be more sensitive in detecting variation within the invasive population”, explains Dr. Eileen Dillane of BEES.

Data from all three genetic markers confirmed that not only are Asian hornets in Europe of a single pedigree, but are likely descended from a single mated queen hornet that somehow arrived in France in 2004.  Furthermore, this lineage has not yet been described within the native range. 

“Our research has revealed the remarkable potential for population expansion of eusocial insects in invaded areas, even when original genetic diversity is extremely low”, says Dr. Simon Harrison, who is part of the research team .

Female V. velutina specimen from Dublin, Ireland.

These findings are both bad news and good news for the control of the Asian hornet in Europe. Whilst single mated queens can evidently rapidly re-colonise areas from where hornets have been eradicated (for example, where intensive efforts have destroyed all nests in an area), the close relatedness of all individuals of the Asian hornet in Europe offers hope for eradication methods based on biological control. 

In the Irish context, it is unlikely that this is the beginning of a larger-scale invasion, as the climate and habitat landscape of Ireland is likely less than ideal for the Asian hornet, which requires higher summer temperatures and a greater supply of energy-rich food. “Nonetheless, climate change is likely to increase the threat of a successful invasion in the future, so vigilance against this species must be maintained”, the authors of the study advise.

Original source:

Dillane E, Hayden R, O’Hanlon A, Butler F, Harrison S (2022) The first recorded occurrence of the Asian hornet (Vespa velutina) in Ireland, genetic evidence for a continued single invasion across Europe. Journal of Hymenoptera Research 93: 131-138. https://doi.org/10.3897/jhr.93.91209

Oldest Pterodactylus fossil found in Germany

The fossil, just described in a study in the journal Fossil Record, is about one million years older than other Pterodactylus specimens.

Pterosaurs, the flying reptiles of the dinosaur era, originated in the Late Triassic (227 million years ago) and became extinct at the end-Cretaceous extinction event (66 million years ago). With wing spans ranging from 1 to 12 meters, they dominated the world’s skies for more than 160 million years.

The first described and named pterosaur – and namesake of the whole group – is Pterodactylus from the famous Solnhofen Limestone of Bavaria, southern Germany. Originally described in 1784 by the Italian naturalist Cosimo Alessandro Collini, the fossil was considered to be an aquatic animal for 25 years, before Georges Cuvier found out it was a flying reptile belonging to a new, previously unrecognized group.

The oldest specimen of this iconic pterosaur was recently found near Painten, a small town in the southern part of the Franconian Alb in central Bavaria. The fossil, described in a study in the journal Fossil Record, is about one million years older than other Pterodactylus specimens.

The specimen was unearthed in 2014 during excavations in an active limestone quarry. It took more than 120 hours of meticulous mechanical work using pneumatic tools and needles before the researchers could study it. The research team behind the discovery are Felix Augustin, Andreas Matzke, Panagiotis Kampouridis and Josephina Hartung from the University of Tübingen (Germany) and Raimund Albersdörfer from the Dinosaurier Museum Altmühltal (Germany).

“The rocks of the quarry, which yielded the new Pterodactylus specimen, consist of silicified limestone that has been dated to the upper Kimmeridgian stage (around 152 million years ago)”, explains Felix Augustin of the University of Tübingen, who is the lead author of the study. “Previously, Pterodactylus had only been found in younger rocks of southern Germany belonging to the Tithonian stage that follows after the Kimmeridgian”.

The specimen is a complete, well-preserved skeleton of a small-sized individual. “Only a very small portion of the left mandible as well as of the left and right tibia is missing. Otherwise, the skeleton is nearly perfectly preserved with every bone present and in its roughly correct anatomical position”, the researchers write in their study.

With a 5-cm-long skull, the Painten Pterodactylus represents a rare “sub-adult” individual. “Generally, the Pterodactylus specimens are not evenly distributed across the full size range but predominantly fall into distinct size-classes that are separated by marked gaps. The specimen from Painten is a rare representative of the first gap between the small and large sizes,” explains Augustin. “The Painten Pterodactylus was of an intermediate, and rarely found, ontogenetic age at the time of its death, between two consecutive year-classes.”

The Painten quarry has yielded many other “exquisitely preserved fossils”, including ichthyosaurs, turtles, marine and terrestrial crocodile-relatives, and dinosaurs.  Many of them, like this new pterosaur specimen, are on display in the new Dinosaurier Museum Altmühltal in Denkendorf (Bavaria, Germany).

Research article:

Augustin FJ, Kampouridis P, Hartung J, Albersdörfer R, Matzke AT (2022) The geologically oldest specimen of Pterodactylus: a new exquisitely preserved skeleton from the Upper Jurassic (Kimmeridgian) Plattenkalk deposits of Painten (Bavaria, Germany). Fossil Record 25(2): 331-343. https://doi.org/10.3897/fr.25.90692

Follow Fossil Record on Facebook and Twitter.