“Oscar describes Oscar”: Interview with Oscar Lasso-Alcalá, Pt 1

“As an ichthyologist, I feel pride in collaborating and contributing to science, nationally, regionally, and globally.”

Oscar Miguel Lasso-Alcalá, MSc., is a Spanish-Venezuelan ichthyologist with undergraduate studies in Oceanography, Fishing Technology and Aquaculture, and Postgraduate studies in Agricultural Zoology and Estuary Ecology. He has worked in diverse areas such as taxonomy, biology, ecology, freshwater, estuarine, and marine fisheries and management. For 33 years, he has participated in more than 70 research projects and published over 250 studies. He has made more than 250 scientific expeditions to different regions of Venezuela and six other countries in America. He has dedicated much of his work to studying, educating, and managing introduced species and their invasions.

This summer, Oscar’s team described a new species of cichlid fish from northern South America in our journal ZooKeys. We spoke to him to find out how they came to the discovery and what it means to him.

When did you discover the new species?

Although some taxonomists have specimens that they believe, or have preliminarily diagnosed, to correspond to different, undescribed or new-to-science species (in my case I know of around 15 species I’ve diagnosed as new), Astronotus mikoljii was different. We did not discover that it was a new species overnight.

Normally, the process of discovering a new species takes a long time and a lot of work. It is not an easy task. First, you need to analyze the external and internal morphology. You study the color pattern and other characteristics and compare them to those of known, described species that are akin or similar to the one being studied, looking for the main differences. It is also very important to carry out exhaustive documentary and bibliographical research, to learn about all related species that have been previously described. Then, if there is complete certainty that it’s a different species that has not been previously described and published, there’s an entire process of formal description of the new species.

Did you immediately recognize it as a new species?

Absolutely not. Mikolji’s Oscar is difficult to differentiate externally. The first researcher who evidenced the main differences of Astronotus ocellatus (a binomial as it was previously known) from the Orinoco River basin, was the Swedish ichthyologist Sven Oscar Kullander, curator at the Swedish Museum of Natural History in Stockholm. He is one of the greatest specialists in the world on species of the Cichlidae family, to which the species we were studying belongs. This was first published in 1981, followed by his 1983, 1986, and 1989 studies (including his Ph.D. thesis) and later in other studies of his published in 2003 (all cited in our recent article published in the ZooKeys journal).

Likewise, my brother, the Spanish and Venezuelan ichthyologist Carlos Andrés Lasso, currently a researcher at the Instituto de Recursos Biológicos Alexander von Humboldt of Colombia, with more than 40 years of experience, also recognized this species from the Orinoco River as different from the one present in the Amazon River basin. In 18 different studies carried out in Venezuela and Colombia (all cited in our article), he records this species as Astronotus cf ocellatus (“cf” means the species name is yet to be confirmed), or directly as Astronotus sp., already assuring that it was a different species and new to science.

We are letting the world know a defined and individual species exists.

With this background, we responsibly acknowledge that it was Sven and Carlos who discovered Mikolji’s Oscar, and not us. Our credit and recognition are given for the process of describing the new species and for its publication. It is very important to clarify here that the discovery of a new-to-science species and its description (and publication) are two different facts, situations, and processes. However, in our study, we discovered some very important morphological characteristics, as well as genetic information, that allowed the differentiation of this species from those already known.

What was most exciting about this finding?

 As an ichthyologist, I feel pride in collaborating and contributing to science, nationally, regionally, and globally. I feel satisfaction every time I share my research results at a scientific event or meeting (congress, symposium), or publish them in a scientific book (or part of it) or in a popular journal. This is not just an ordinary job for me, since I really like to investigate, and almost always have a lot of fun with this activity. As I have said in many of the interviews that I have had throughout my over 30-year career: to me, it’s not a job, it’s a way of living.

It fills me with great satisfaction to have the opportunity, more than 40 years after first meeting these Oscars, to be able to study them, describe them, and give them the name and place they deserve in science, and in the world.

The description of a species which is new to science is something really special, not only for me and my colleagues in this study, but for the vast majority of taxonomists. This is not only due to the fact that our last names will always appear next to the scientific name, but also to the fact that we are letting the world know a defined and individual species exists. By adding another species, we increase the known biodiversity of a country, a region, and the world, and therefore, we demonstrate that biodiversity must be studied, managed, conserved, and used rationally and independently.

Astronotus mikoljii is a very charismatic species, highly appreciated, valued, and loved in the aquarium hobby.

I remember that as a kid (between 7 and 13 years old), in the aquariums built at home by two of my older brothers, José Antonio and Carlos, to whom I largely owe being an ichthyologist today, we had some specimens of Oscars from Orinoco. We bought them in a local aquarium store in Caracas and took care of them, loved them like little children. I remember that in addition to feeling happily identified with the name (Oscar), they felt like real pets. They “got excited” when they saw us, took food directly from our hands without biting our fingers, and even let themselves be caressed, as if they were docile puppies or kittens. They were my favorite fish.

Years later, as an adult, beginning my research years, in the late 80’s and early 90’s, even with aquariums in our house (I had more than 20 in my good time as an aquarist), we had new specimens of these Oscars. This time, they were specimens captured by my brother and me, in the floodplains of the Orinoco River (Llanos de Apure), where for more than five years we studied the biology and ecology of some 200 local fish species, many of them unique in the world just like Mikolji’s Oscar. From that field study came the doctoral thesis of my brother Carlos, and the undergraduate theses of half a dozen other researchers, including mine.

It fills me with great satisfaction to have the opportunity, more than 40 years after first meeting these Oscars, to be able to study them, describe them, and give them the name and place they deserve in science, and in the world. It also fills me with deep satisfaction, having the opportunity to describe a “large-sized” species that was apparently already known, both locally and nationally (for its importance in fishing), as well as internationally in the world of aquarism. That is why, as I shared our study and finding on social media, I wrote: “Oscar describes the Oscar: Mikolji’s Oscar.

We are also extremely grateful to the many people who helped us and collaborated with us in this study, by collecting new specimens in the field, reviewing fish collections under their care, taking X-rays, searching for specialized bibliographies, studying the native or indigenous names, and even editing and publishing the article in Zookeys journal.

Likewise, it was exciting to share this research experience with colleagues from Brazil (co-authors of this study, just like me), who trusted us and our meticulous work.

Photos by Ivan Mikolji

The story continues with Part 2 and Part 3.

***

Follow the ZooKeys journal on Twitter and Facebook.

Venomous! New pit viper discovered in Jiuzhaigou National Nature Reserve, China

The discovery was published in the open-access journal ZooKeys as part of a new molecular phylogenetic analysis of the Asian pit vipers.

Jiuzhaigou National Nature Reserve, a World Heritage Site, lies in the transition zone from the eastern edge of the Qinghai-Tibet Plateau to the Sichuan Basin in Sichuan Province, China, and occupies an area of 651 km2. The reserve is covered with well-preserved original forests, and numerous alpine lakes. Beautiful and picturesque, it is home to some rare animals, such as the Giant Panda (Ailuropoda melanoleuca) and Golden Snub-nosed Monkey (Rhinopithecus roxellana).

Landscape in Jiuzhaigou National Park. Photo by Jie Du

The herpetological di­versity, in contrast to the mammals, is relatively low in the area due to the harsh alpine environment. To find out more about it, and to investigate the post-earthquake ecological system in the region, a group of researchers conducted a series of investigations in Jiuzhaigou National Nature Reserve. During their herpetological surveys, they collected some specimens of Gloydius, a genus of venomous pit vipers endemic to Asia, from Zharu Valley.

After running morphological and phylogenetic analyses, the scientists found out that these specimens in fact belonged to a yet-to-be-described species.

Holotype of Gloydius lateralis. Photo by Sheng-chao Shi.

“The new species is morphologically similar, and phylogenetically closely related to G. swild, another recently described species from Heishui, Aba, Sichuan, but differs from it by having larger eyes (related to the head) and a continuous regular brown stripe on each dorsolateral side of the body,” explained the corresponding author, Dr Jingsong Shi.

“Thus, we named it after its unique color pattern: Gloydius lateralis.”

Holotype of Gloydius lateralis. Photo by Sheng-chao Shi

The newly described snake feeds on small mammals, such as mice, and “is active on sunny days by the roadside in a hot, dry valley”, the researchers write in their study, which was published in the open-access scientific journal ZooKeys.

“The discovery of G. lateralis provides new insights into the diversity and the distribution patterns of Asian pit vipers”, they write, suggesting that the formation of the Qinghai-Tibet Plateau might be one of the key factors to the geographical isolation of the alpine pit vipers in southwest China.

Jiuzhaigou National Nature Reserve, where G. lateralis was found, receives millions of tourists every year. “The only known habitat of the new species is Zharu Valley, and it is now under touristic development,” the researchers point out. “Thus, warning signs are still needed to remind visitors to watch out for the venomous pit viper, since this and another pit viper species, Protobothrops jerdo­nii, are often found in grass or bushes on both sides of roads.”

Snakes’ thermoregulation needs make them more prone to vehicle collisions, which is why the research team highlights the necessity to remind drivers to slow down in order to avoid road killings.

Original source:

Zhang M-H, Shi S-C, Li C, Yan P, Wang P, Ding L, Du J, Plenković-Moraj A, Jiang J-P, Shi J-S (2022) Exploring cryptic biodiversity in a world heritage site: a new pitviper (Squamata, Viperidae, Crotalinae) from Jiuzhaigou, Aba, Sichuan, China. ZooKeys 1114: 59–76. https://doi.org/10.3897/zookeys.1114.79709

Top new species discoveries for the first half of 2022

The diversity is impressive, but what is even more amazing is how much more remains undiscovered.

In the world of biodiversity science, 2022 started with some great discoveries and a lot of hope. Here at Pensoft, we get to see a new species (or more!) make an appearance into the scientific world almost every day. The diversity is impressive, but what is even more amazing is how much more remains undiscovered.

With the first half of the year already behind us, here are the stellar new species that took the world by storm as soon as we published them.

The magical fairy wrasse

This rainbow-coloured fish is called Cirrhilabrus finifenmaa, or Rose-Veiled Fairy Wrasse, and it was found in the Maldives’ reefs. It can live 160 to 500 feet beneath the ocean’s surface in unexplored coral ecosystems dubbed “the twilight zone”. 

It was discovered within California Academy of SciencesHope for Reefs initiative, which is aimed at better understanding and protecting coral reefs around the world.

“Nobody knows these waters better than the Maldivian people,” says senior author and Academy Curator of Ichthyology Luiz Rocha. “Our research is stronger when it’s done in collaboration with local researchers and divers.”

Apart from its striking appearance, Cirrhilabrus finifenmaa also gained popularity as the first new-to-science species to be described by a Maldivian scientist.

“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists, says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb. “This time it is different.”

It is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.

This beautiful fish is already being exploited through the aquarium hobbyist trade, a fact described as “unsettling” by the people who discovered it.

Published in ZooKeys.

The Taylor Swift millipede

How often is it that a millipede makes top news headlines? Well, Nannaria swiftae sure did.

Scientists Derek Hennen, Jackson Means, and Paul Marek, at Virginia Tech, U.S., described the new species in April, naming it after singer-songwriter Taylor Swift. “Her music helped me get through the highs and lows of graduate school, so naming a new millipede species after her is my way of saying thanks,” Derek Hennen says, admitting he has been her fan for years.

N. swiftae joins 16 other new species of twisted-claw millipedes described from the Appalachian Mountains of the United States. To find them, researchers traveled to 17 US states, checking under leaf litter, rocks, and logs. They then sequenced the DNA of the species they found and described them scientifically. They looked at over 1800 specimens collected on their field study or taken from university and museum collections!

These little-known invertebrates are somewhat tricky to catch, because they tend to remain buried in the soil, sometimes staying completely beneath the surface.

Most twisted-claw millipedes live on the forest floor, where they feed on decaying leaves and other plant matter. They also have a valuable role as decomposers: breaking down leaf litter, they release their nutrients into the ecosystem.

Published in ZooKeys.

The Greta Thunberg frog

Swedish climate activist Greta Thunberg has been namesakes with a frog for half a year now. In 2018, Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for some new-to-science species, including Pristimantis gretathunbergae, a black-eyed rainfrog from in eastern Panama.

The undisclosed auction winner wanted to name the frog in honor of Thunberg and her work in highlighting the urgency in preventing climate change. She has impressed global leaders and her work is drawing others to action for the climate.

The international team that discovered the new rainfrog was led by Abel Batista, Ph.D. (Panama) and Konrad Mebert, Ph.D. (Switzerland). They found the frog on Mount Chucanti, a sky island surrounded by lowland tropical rainforest in eastern Panama. Reaching its habitat in the cloud forest required access via horseback through muddy trails, hiking up steep slopes, by-passing two helicopters that crashed decades ago, and camping above 1000 m elevation.

Unfortunately, the frog’s remaining habitat is severely fragmented and highly threatened by rapid deforestation for plantations and cattle pasture. Rising temperatures are another threat as they could destroy its small mountain habitat. The Mount Chucanti region already has lost more than 30% of its forest cover over the past 10 years, and the scientists insist that conservation of the remaining habitat is critical to ensure the survival of the frog.

Published in ZooKeys.

The chocolate frog

Since we’re on the subject of frogs, how about one that almost looks like it’s not real?

Instantly gaining popularity as Chocolate Frog, Synapturanus danta is a curious little frog that was recently discovered in the Peruvian Amazon. Local people had long known about this tiny, burrowing frog with a long snout; one local name for it is rana danta, “tapir frog”, for its resemblance to the large-nosed Amazonian mammal.

“These frogs are really hard to find, and that leads to them being understudied,” says Michelle Thompson, a researcher in the Keller Science Action Center at Chicago’s Field Museum and one of the authors of the study describing the frog. “It’s an example of the Amazon’s hidden diversity, and it’s important to document it to understand how important the ecosystem functions.”

While the frogs are hard to see, they’re not hard to hear. “We just kept hearing this beep-beep-beep coming from underground, and we suspected it could be a new species of burrowing frog,” says Thompson. “But how do we get to it?”

Local guides who were familiar with the frogs led the researchers to peatland areas– wetlands carpeted with nutrient-rich turf made of decaying plant matter. “After 15 to 20 minutes of digging and looking for them, I heard Michelle screaming, and to me that could only mean that she and David had found the first adult,” says Germán Chávez, a researcher at Peru’s Instituto Peruano de Herpetología and the study’s first author.

The researchers used the physical specimens of the frogs, along with the recordings of their calls and an analysis of the frogs’ DNA, to confirm that they were a new species. They named them Synapturanus danta – Synapturanus is the name of the genus they belong to, and danta is the local word for “tapir.”

Published in Evolutionary Systematics.

The fabulous flaming-red snake

This magnificent non-venomous snake, previously unknown to science, was discovered in Paraguay. It belongs to the genus Phalotris, a group of snakes from central South America noted for their striking coloration with red, black, and yellow patterns.

Jean-Paul Brouard, one of the involved researchers, came across an individual of the new species by chance while digging a hole at Rancho Laguna Blanca in 2014. Together with his colleagues Paul Smith and Pier Cacciali, he described the discovery, naming the new snake Phalotris shawnella.

The species name recognizes two children – Shawn Ariel Smith Fernández and Ella Bethany Atkinson – who were born in the same year as the Fundación Para La Tierra (2008). They inspired the founders of the NGO to work for the conservation of Paraguayan wildlife, in the hope that their children can inherit a better world.

This new Phalotris snake is particularly attractive and can be distinguished from other related species in its genus by its red head in combination with a yellow collar, a black lateral band and orange ventral scales with irregular black spots.

Only known from three individuals, this species is endemic to the Cerrado forests of the department of San Pedro in east Paraguay. Its extreme rarity led the authors to consider it as “Endangered”, according to the conservation categories of the International Union for Conservation of Nature (IUCN), which means it is in imminent danger of extinction in the absence of measures for its protection.

Published in Zoosystematics and Evolution.

Learning more about bird diversity: What a museum collection in Romania can tell us

“Due to its historical background and the presence of rare species, it is considered to be one of the most important ornithological collections in Eastern Europe,” researcher Gergely Osváth says

Containing specimens from different locations, sometimes spanning across centuries, museum collections can teach us a lot about how some animals are built and how we can protect them. Properly labeled, preserved specimens can show us how the environment and species distribution has changed over extended time periods. Because in many cases these collections remain largely unexplored, a revision can reveal “treasures” that were hidden in plain sight for decades.

The bird skin collection of the Zoological Museum of Babeș Bolyai University, Cluj-Napoca, Romania. Photos by Gergely Osváth and Zsolt Kovács

A team of ornithologists and scientists from the Zoological Museum of Babeș-Bolyai University, Milvus Group – Bird and Nature Protection Association and the Romanian Ornithological Society, headed by Gergely Osváth, set out to revise the ornithological collection in the Zoological Museum of Babeș-Bolyai University, Cluj-Napoca, Romania, checking the species identification of the bird skin specimens to provide an updated catalogue

The collection is unique in the region in many ways: it covers a long time span, it contains a variety of species, belonging to different families and orders, and it is composed of the work of several naturalists and employees of the museum”, Osváth says. “Due to its historical background and the presence of rare species, it is considered to be one of the most important ornithological collections in Eastern Europe.”

First, the researchers examined each bird skin and the data cards documenting the identification, locality, date, sex and catalogue number. Afterwards, they checked the species identification of specimens, determining the sex and age of birds where possible. They also updated the scientific names and taxonomy of birds. In addition, they provide a map representation with new distribution data for bird species, offering valuable information on the status of the avifauna of the Carpathian basin in the 19th and 20th centuries.

Published in the open-access journal ZooKeys, this is the first time that all those specimen data are made public.

The collection includes 925 specimens, belonging to 193 species, that were collected between 1859 and 2021. Perching birds (Passeriformes) were the best represented bird order, with 487 specimens, and 93.6 % of the specimens with known data were collected from Transylvania.

By far, the most interesting specimens were the rare ones, such as specimens of Cinereous Vulture (Aegypius monachus), Eastern Imperial Eagle (Aquila heliaca), Lesser Kestrel (Falco naumanni), all collected between 1903 and 1907 from Transylvania.

With updated information on the taxonomy and morphology of birds in Transylvania, the researchers hope this new catalogue can serve as a basis for valuable ornithological studies.

Research article:

Osváth G, Papp E, Benkő Z, Kovács Z (2022) The ornithological collection of the Zoological Museum of Babeș-Bolyai University, Cluj-Napoca, Romania – Part 1: the catalogue of bird skin specimens. ZooKeys 1102: 83-106. https://doi.org/10.3897/zookeys.1102.79102

Tadpoles for dinner? Indigenous community in Mexico reveals a favorite recipe for a particular frog

Tadpoles of the Sierra Juarez brook frog Duellmanohyla ignicolor are consumed in caldo de piedra in the Chinantla region, in Oaxaca, Mexico.

Stone soup (caldo de piedra) is a traditional meal from the Indigenous Chinantla region in the state of Oaxaca, Mexico. Prepared by men, it is made by placing tomato, cilantro, chili peppers, onion, raw fish, salt, and water in a jicara (a bowl made from the fruit of the calabash tree) in a hole dug near a river. Then, the ingredients are cooked by adding red hot rocks to the “pot”.

In 2019, members of the CIIDIR-Oaxaca Amphibian Ecology Laboratory visited Santa Cruz Tepetotutla in the Chinantla region as part of their continued research work in the community’s forests and streams. 

“As we observed and recorded the presence of tadpoles, our guide, Mr. Pedro Osorio-Hernández, remarked that one such tadpole was eaten in stone soup”, says Dr Edna González Bernal, one of the researchers.

Local landscape. Photo by Carlos A. Flores

Although not much attention is paid to tadpoles, they are more important than you might think. They are perfect indicators of the health of bodies of water, due to their sensitivity to changes in the aquatic environment where they develop. When tadpoles are present in a stream, river, or even a puddle, they indicate an acceptable concentration of oxygen, pH, conductivity, and temperature, or overall good dynamics of sediments and plant matter. And, above all, finding tadpoles is the easiest way to know about the presence of an amphibian species that reproduces in that site, regardless of whether or not an adult has been observed. Hence, the identification of the unique characteristics of the tadpoles of each species is an important task that is currently drawing more attention amongst scientists. 

Duellmanohyla ignicolor tadpoles. Photo by Edna González-Bernal

“For us, as Oaxacans, Don Pedro’s words were an eye-opener”, biologist Carlos A. Flores, also part of the study,  continues. “Although we knew about the tradition of stone soup, we would have never imagined that it could be prepared with tadpoles of the Sierra Juárez Brook frog (Duellmanohyla ignicolor)!”

Duellmanohyla ignicolor. Photo by Edna González-Bernal

“As scientists, we wondered: why this species and not another? Since when have these tadpoles been eaten? In what other places are tadpoles consumed and in what form? Does this consumption have a negative effect on amphibian populations?”

To answer these questions, the researchers monitored several streams in the community, collecting data on the structure of these sites, such as depth, water velocity, temperature, etc. They wanted to identify the characteristics of the habitat where the tadpoles of this little known species are found. Their research was recently published in the open-access journal ZooKeys.

The team’s primary interest in the stone soup with tadpoles was to accurately document human interaction with this amphibian species. 

“It is common in anthropological literature to document the consumption of tadpoles in Mexico, but rarely does such documentation reach the species level. Even in some ethnoherpetological works, the consumption of tadpoles is mentioned only anecdotally”, Dr González Bernal explains.  

A boy collects tadpoles. Photo by Edna González-Bernal

“We learned that these larvae tend to form schools: aggregations of several tens to hundreds of individuals. They swim on the surface of the water and move their mouths to feed on suspended particles, which may be remains of plant matter, pollen or insect parts”, she continues. 

“This behavior, as has been documented in other species, biologically implies a strategy to feed more efficiently, control body temperature, protect themselves from predators and even to encourage social interaction. At the same time, it makes it easier for humans to capture several tadpoles using nets, hats, bags or even their own hands.”

This tadpole soup is consumed during the hottest months (April and May), when people go swimming in the river. The rest of the year, it is prepared with fish. Local people described the tadpoles as having a delicious fish-like flavor.

Why do people eat these particular tadpoles? Community members remarked that, because they are found at the surface of the water, they are considered cleaner than those found at the bottom, such as the tadpoles of the the coastal toad (Incilius valliceps) and the gloomy mountain frog (Ptychohyla zophodes). In addition, the tadpoles consumed in the stone broth reach sizes of up to 5 centimeters, which makes them a better choice for the dish.

Tadpoles caught using caps. Photo by Edna González-Bernal

Is stone soup a dish that only exists in the Chinantla region? “We found that while the dish has primarily been documented in this region, it is also consumed in some Indigenous Ayuk (Mixe) municipalities,” Dr González Bernal says. 

The cooking principle itself is a technique that has been used throughout history by different cultures around the world. The particularity of the caldo de piedra lies in its preparation with tomato, cilantro, and chili peppers, as well as prawns or particular species of fish such as the bobo (Joturus prichardi).

In the case of the Sierra Juarez Brook frog’s tadpoles, the researchers concluded that since they are consumed locally and for non-commercial purposes, the species is not at risk. However, the behavior of these tadpoles and their preference for deeper water bodies make them vulnerable to being caught in large quantities.

“In the context of the global amphibian crisis, it is of utmost importance to continue increasing our knowledge about the diversity of species and above all to delve deeper into their ecology, both at the adult and larval stages. Only in this way can we gain a greater understanding of each species’ needs and develop conservation strategies that take into account the biology of species with a complex life cycle, such as amphibians”, the research team says in conclusion. 

Research article:

Flores CA, Arreortúa M, González-Bernal E (2022) Tadpole soup: Chinantec caldo de piedra and behavior of Duellmanohyla ignicolor larvae (Amphibia, Anura, Hylidae). ZooKeys 1097: 117-132. https://doi.org/10.3897/zookeys.1097.76426

Taylor Swift, the millipede: Scientists name a new species after the singer

Scientists described a total of 17 new species from the Appalachian Mountains—now published in the open access journal ZooKeys.

Taylor Swift, U.S. singer-songwriter known for hits such as “Shake It Off” and “You Belong With Me”, has earned a new accolade—she now has a new species of millipede named in her honor.

Taylor Swift. Photo by Eva Rinaldi

The twisted-claw millipede Nannaria swiftae joins 16 other new species described from the Appalachian Mountains of the United States. These little-known invertebrates have a valuable role as decomposers: breaking down leaf litter, they release their nutrients into the ecosystem. They live on the forest floor, where they feed on decaying leaves and other plant matter, and in fact, they are somewhat tricky to catch, because they tend to remain buried in the soil, sometimes staying completely beneath the surface.

Her music helped me get through the highs and lows of graduate school, so naming a new millipede species after her is my way of saying thanks.

Derek Hennen

Scientists Derek Hennen, Jackson Means, and Paul Marek, at Virginia Tech, U.S., describe the new species in a research paper published in the open access journal ZooKeys. The research was funded by a National Science Foundation Advancing Revisionary Taxonomy and Systematics grant (DEB# 1655635).

The newly described twisted-claw millipede, Nannaria swiftae. Photo by Dr Derek Hennen

Because of their presence in museum collections, scientists long suspected that the twisted-claw millipedes included many new species, but these specimens went undescribed for decades. To fix this, the researchers began a multi-year project to collect new specimens throughout the eastern U.S. They traveled to 17 US states, checking under leaf litter, rocks, and logs to find species so that they could sequence their DNA and scientifically describe them.

Example of typical habitat for twisted-claw millipedes. Photo by Dr Derek Hennen

Looking at over 1800 specimens collected on their field study or taken from university and museum collections, the authors described 17 new species, including Nannaria marianae, which was named after Hennen’s wife. They discovered that the millipedes prefer to live in forested habitats near streams and are often found buried under the soil, exhibiting more cryptic behaviors than relatives.

The newly-described millipedes range between 18 and 38 mm long, have shiny caramel-brown to black bodies with white, red, or orange spots, and have white legs. The males have small, twisted and flattened claws on their anterior legs, which is the basis for their common name.

The lead author of the study, Derek Hennen, is a fan of Taylor Swift. 

“Her music helped me get through the highs and lows of graduate school, so naming a new millipede species after her is my way of saying thanks,” he says.

Research article:

Hennen DA, Means JC, Marek PE (2022) A revision of the wilsoni species group in the millipede genus Nannaria Chamberlin, 1918 (Diplopoda, Polydesmida, Xystodesmidae). ZooKeys 1096: 17-118. https://doi.org/10.3897/zookeys.1096.73485

Follow ZooKeys on Twitter and Facebook.

First-ever fish species described by a Maldivian scientist

Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described by a Maldivian researcher.

Named after the country’s national flower, the species is added to the tree of life as part of the California Academy of Sciences’ global Hope for Reefs initiative

Originally published by the California Academy of Sciences

Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described—the scientific process an organism goes through to be recognized as a new species—by a Maldivian researcher.

The new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa), described in the journal ZooKeys, is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.

Scientists from the California Academy of Sciences, the University of Sydney, the Maldives Marine Research Institute (MMRI), and the Field Museum collaborated on the discovery as part of the Academy’s Hope for Reefs initiative aimed at better understanding and protecting coral reefs around the world.

“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists. This time, it is different and getting to be part of something for the first time has been really exciting, especially having the opportunity to work alongside top ichthyologists on such an elegant and beautiful species,”

says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb.

First collected by researchers in the 1990s, C. finifenmaa was originally thought to be the adult version of a different species, Cirrhilabrus rubrisquamis, which had been described based on a single juvenile specimen from the Chagos Archipelago, an island chain 1,000 kilometers (621 miles) south of the Maldives. 

In this new study, however, the researchers took a more detailed look at both adults and juveniles of the multicolored marvel, measuring and counting various features, such as the color of adult males, the height of each spine supporting the fin on the fish’s back and the number of scales found on various body regions. These data, along with genetic analyses, were then compared to the C. rubrisquamis specimen to confirm that C. finifenmaa is indeed a unique species. 

Importantly, this revelation greatly reduces the known range of each wrasse, a crucial consideration when setting conservation priorities.  

“What we previously thought was one widespread species of fish, is actually two different species, each with a potentially much more restricted distribution. This exemplifies why describing new species, and taxonomy in general, is important for conservation and biodiversity management,”

says lead author and University of Sydney doctoral student Yi-Kai Tea. 

Despite only just being described, the researchers say that the Rose-Veiled Fairy Wrasse is already being exploited through the aquarium hobbyist trade. 

“Though the species is quite abundant and therefore not currently at a high risk of overexploitation, it’s still unsettling when a fish is already being commercialized before it even has a scientific name. It speaks to how much biodiversity there is still left to be described from coral reef ecosystems,”

says senior author and Academy Curator of Ichthyology Luiz Rocha, PhD, who co-directs the Hope for Reefs initiative.

Last month, Hope for Reefs researchers continued their collaboration with the MMRI by conducting the first surveys of the Maldives’ ‘twilight zone’ reefs—the virtually unexplored coral ecosystems found between 50- to 150-meters (160- to 500-feet) beneath the ocean’s surface—where they found new records of C. finifenmaa along with at least eight potentially new-to-science species yet to be described. 

This new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa) became the first Maldivian fish to ever be described by a local researcher.
Photo by Yi-Kai Tea.

For the researchers, this kind of international partnership is pivotal to best understand and ensure a regenerative future for the Maldives’ coral reefs. 

“Nobody knows these waters better than the Maldivian people. Our research is stronger when it’s done in collaboration with local researchers and divers. I’m excited to continue our relationship with MMRI and the Ministry of Fisheries to learn about and protect the island nation’s reefs together,”

says Rocha says

“Collaborating with organizations such as the Academy helps us build our local capacity to expand knowledge in this field. This is just the start and we are already working together on future projects. Our partnership will help us better understand the unexplored depths of our marine ecosystems and their inhabitants. The more we understand and the more compelling scientific evidence we can gather, the better we can protect them,”

adds Najeeb.

***

Research article:

Tea Y-K, Najeeb A, Rowlett J, Rocha LA (2022) Cirrhilabrus finifenmaa (Teleostei, Labridae), a new species of fairy wrasse from the Maldives, with comments on the taxonomic identity of C. rubrisquamis and C. wakanda. ZooKeys 1088: 65-80. https://doi.org/10.3897/zookeys.1088.78139

***

Follow ZooKeys on Twitter and Facebook.

New rainfrog species named in honor of Greta Thunberg

The Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for new-to-science species. The funds raised are to aid their conservation.

In 2018, Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for some new-to-science species. The funds raised at the auction benefited the conservation of the newly recognized species. It is estimated that about 100 new species are discovered each year.

The scientific article officially describing and naming the new species, Pristimantis gretathunbergae, was published in Pensoft’s scientific journal ZooKeys.

Greta Thunberg, Sweden at the Annual Meeting 2019 of the World Economic Forum in Davos, January 25, 2019. Copyright by World Economic Forum / Manuel Lopez

The international team that discovered the new rainfrog was led by Abel Batista, Ph.D. (Panama) and Konrad Mebert, Ph.D. (Switzerland). The two have collaborated for 10 years in Panama and have published eight scientific articles together and described 12 new species.

The team found the frog on Mount Chucanti, a sky island surrounded by lowland tropical rainforest in eastern Panama. Reaching its habitat in the cloud forest required access via horseback through muddy trails, hiking up steep slopes, by-passing two helicopters that crashed decades ago, and camping above 1000 m elevation. The Chucanti reserve was established by the Panamanian conservation organization ADOPTA with support from Rainforest Trust.

The Greta Thunberg Rainfrog exhibits distinctive black eyes—unique for Central American rainfrogs. Its closest relatives inhabit northwestern Colombia. Unfortunately, the frog’s remaining habitat is severely fragmented and highly threatened by rapid deforestation for plantations and cattle pasture. The Chucanti Reserve where the frog was first found is part of a growing network of natural parks and preserves championed by the Panamanian Government.

Greta Thunberg’s rainfrog, Pristimantis gretathunbergae. Photo by Konrad Mebert

The Rainforest Trust auction winner wanted to name the frog in honor of Greta Thunberg and her work in highlighting the urgency in preventing climate change. Her “School Strike for Climate” outside the Swedish parliament has inspired students worldwide to carry out similar strikes called Fridays for Future. She has impressed global leaders and her work is drawing others to action for the climate.

The plight of the Greta Thunberg Rainfrog is closely linked to climate warming, as rising temperatures would destroy its small mountain habitat. The Mount Chucanti region already has lost more than 30% of its forest cover over the past 10 years. Deadly chytrid fungus pose additional threats for its amphibians. Conservation of the remaining habitat is critical to ensure the survival of the frog. The important work in Panama by ADOPTA and Rainforest Trust globally to protect rainforests is critical to the survival of this frog and many other endangered species.

Research article:

Mebert K, González-Pinzón M, Miranda M, Griffith E, Vesely M, Schmid PL, Batista A (2022) A new rainfrog of the genus Pristimantis (Anura, Brachycephaloidea) from central and eastern Panama. ZooKeys 1081: 1–34. https://doi.org/10.3897/zookeys.1081.63009

First tarantula to live in bamboo stalks found in Thailand

A new genus of tarantula was discovered inside a bamboo culm from Mae Tho, Tak province, in Thailand. This is the first genus of tarantula that shows the surprising specialization of living in bamboo stalks. The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a wildlife YouTuber from Thailand, who collaborated with arachnologists Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote. The new genus and species are described in the journal ZooKeys.

Guest blog post by Dr. Narin Chomphuphuang

Bamboo is important to some animals as it can serve as a source of nutrition, shelter, and habitat. Inside a bamboo culm, we discovered a new genus of tarantula, which was collected from Mae Tho, Mueang Tak district, Tak province, in Thailand.

Mae Tho, Mueang Tak district, Tak province, in Thailand, where the newly described tarantula was discovered. Photo by Narin Chomphuphuang

The discovered genus has not been previously studied by scientists; this is the first case of a genus of tarantula that shows the surprising specialization of living in bamboo stalks.

We named the new tarantula genus Taksinus in honor of the Thai king Taksin the Great. The name was chosen in recognition of Taksin the Great’s old name, Phraya Tak – governor of Tak province, which is where the new genus was discovered. After the Second Fall of Ayutthaya in 1767, Taksin the Great was the only king of the Thonburi Kingdom to become a key leader of Siam, prior to the establishment of Thailand.

The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a nationally known wildlife YouTuber in Thailand with 2.45 million subscribers, who collaborated with Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote, the arachnologists who studied and described the new genus. 

Zongtum Sippawat, or JoCho Sippawat (left), with Wuttikrai Khaikaew, Kaweesak Keeratikiat, Narin Chomphuphuang and Chaowalit Songsangchote. Photo by Narin Chomphuphuang

In general, tarantulas from Southeast Asia can be either terrestrial or arboreal. Arboreal tarantulas spend time on different types of trees, but until now, researchers had not previously identified a tarantula found only on a specific tree type.

“These animals are truly remarkable; they are the first known tarantulas ever with a bamboo-based ecology,” Narin said.

Finding the new tarantula. Video by JoCho Sippawat

The tarantulas were discovered inside mature culms of Asian bamboo stalks (Gigantochloa sp.), with nest entrances ranging in size from 2–3 cm to a large fissure, within a silk-lined tubular burrow, either in the branch stub or in the middle of the bamboo culms. All the tarantulas found living in the culms had built silken retreat tubes that covered the stem cavity.

The tarantulas cannot bore into bamboo stems; therefore, they depend on the assistance of other animals. Bamboo is preyed upon by a variety of animals, including the bamboo borer beetle, bamboo worm, bamboo-nesting carpenter bee, and small mammals such as rodents. Furthermore, bamboo cracking is primarily caused by rapid changes in moisture content induced by the atmosphere, uneven drying, or drenching followed by rapid drying or by human activities. 

Taksinus bambus tarantula in its habitat. Photo by JoCho Sippawat

Taksinus is classified as a new genus within the Ornithoctoninae subfamily of Southeast Asian tarantulas. The discovery comes 104 years after Chamberlin defined the previous genus in this subfamily, Melognathus, in 1917.

What makes Taksinus distinct from all other Asian arboreal genera is the relatively short embolus of the male pedipalps, which is used to transport sperm to the female seminal receptacles during mating. In addition to morphology, its habitat type and distribution are also different from those of related species. While Asian arboreal tarantulas have been reported in Indonesia (Sangihe Island and Sulawesi), Malaysia, Singapore, Sumatra, and Borneo, Taksinus was discovered in northern Thailand, which is a new geographical location for those spiders.

Looking at an entrance hole of a bamboo culm tarantula. Photo by Narin Chomphuphuang

“We examined all of the trees in the area where the species was discovered. This species is unique because it is associated with bamboo, and we have never observed this tarantula species in any other plant. Bamboo is important to this tarantula, not only in terms of lifestyle but also because it can only be found in high hill forests in the northern part of Thailand, at an elevation of about 1,000 m. It is not an exaggeration to say that they are now Thailand’s rarest tarantulas,” says Narin.

Few people realize how much of Thailand’s wildlife remains undocumented. Thai forests now cover only 31.64% of the country’s total land area. We are primarily on a mission to research and save the biodiversity and wildlife within these forests from extinction, especially species-specific microhabitats.

Research article:

Songsangchote C, Sippawat Z, Khaikaew W, Chomphuphuang N (2022) A new genus of bamboo culm tarantula from Thailand (Araneae, Mygalomorphae, Theraphosidae). ZooKeys 1080: 1-19. https://doi.org/10.3897/zookeys.1080.76876

A year of biodiversity: Top 10 new species of 2021 from Pensoft journals, Part 2

While 2021 may have been a stressful and, frankly, strange year, in the world of biodiversity there has been plenty to celebrate! Out of the many new species we published in our journals this year, we’ve curated a selection of the 10 most spectacular discoveries. The world hides amazing creatures just waiting to be found – and we’re making this happen, one new species at a time.

Read Part 1 of the Top 10 new species of 2021 here.

5. The Instagram model

Many students and young researchers are encouraged to explore biodiversity by starting from their own backyard. Yes, but how often do they find undescribed snake species in there?

This is exactly what happened to Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar. Confined to his home in Chamba, India because of the COVID-19 lockdown, he started photographing any wildlife he came across and uploading it on his Instagram account. One of his images showed a beautiful kukri snake.

The picture immediately caught the attention of Zeeshan A. Mirza (National Centre for Biological Sciences, Bangalore) and Harshil Patel (Veer Narmad South Gujarat University, Surat), who worked together with Virendar to describe it as a new species under the name Oligodon churahensis.

“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” Zeeshan A. Mirza told us earlier this month.

“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”

Published in: Evolutionary Systematics

4. The tiny snail with an athletic name

Do freshwater snails make good tennis players? Well, one of them certainly has the name for it.

Enter Travunijana djokovici, a new species of aquatic snail named after famous Serbian ten­nis player Novak Djokovic.

Found in a karstic spring near Podgorica, the capital of Montenegro, T. Djokovici is part of the family of mud snails, which inhabit fresh or brackish water, including caves and subterranean habitats.

The tiny snail was discovered by Slovak biospeleologist Jozef Grego and Montenegrin zoologist Vladimir Pešić of the University of Montenegro, who claim they named it after the renowned tennis player “to acknowledge his inspiring enthusiasm and energy.”.

To discover some of the world’s rarest animals that inhabit the unique underground habitats of the Dinaric karst, to reach inaccessible cave and spring habitats and for the restless work during processing of the collected material, you need Novak’s energy and enthusiasm,” they add.

Amazingly, Novak Djokovic found out that he’s now a namesake to a tiny snail, and he even had a comment.

“I am honoured that a new species of snail was named after me because I am a big fan of nature and ecosystems and I appreciate all kinds of animals and plants,” he says in an Eurosport article. “I don’t know how symbolic this is, because throughout my career I always tried to be fast and then a snail was named after me,” he joked. “Maybe it’s a message for me, telling me to slow down a bit!”

Published in: Subterranean Biology

3. The Coronavirus caddisfly

The COVID-19 pandemic has undoubtedly affected all of us, and the scientific world is no exception. Fieldwork got postponed, museums remained closed, arranging meet-ups and travel became almost impossible.

Scientists used this as a drive and inspiration as they continued their hard work on new discoveries. Only this year, we published the descriptions of the beetle Trigonopterus corona, the wasp Allorhogas quarentenus, and, yes, the caddisfly Potamophylax coronavirus.

P. coronavirus was collected near a stream in the Bjeshkët e Nemuna National Park in Kosovo by a team of scientists led by Professor Halil Ibrahimi of the University of Prishtina. After molecular and morphological analyses, it was described as a caddisfly species new to science. Its name will be an eternal memory of an extremely difficult period.

In a broader sense, the researchers also wish to bring attention to “another silent pandemic occurring on freshwater organisms in Kosovo’s rivers,” caused by the pollution and degradation of freshwater habitats, as well as the activity increasing in recent years of mismanaged hydropower plants. Particularly, the river basin of the Lumbardhi i Deçanit River, where the new species was discovered, has turned into a ‘battlefield’ for scientists and civil society on one side and the management of the hydropower plant operating on this river on the other.

P. coronavirus is part of the small insect order of Trichoptera, which is very sensitive to water pollution and habitat deterioration. The authors of the species argue that it is a small-scale endemic taxon, very sensitive to the ongoing activities in Lumbardhi i Deçanit river, and failure to understand this may drive it, along with many other species, towards extinction.

Published in: Biodiversity Data Journal

2. The cutest peacock spider ever

If you think spiders can’t be cute, you’ve probably never seen a peacock spider. They have big forward-facing eyes, and their males perform fun courtship dances.

Citizen scientist Sheryl Holliday was the first to spot this vibrant spider while walking in Mount Gambier, Australia, and she posted her find on Facebook. It was later described as a new species by arachnologist Joseph Schubert of Museums Victoria.

Coloured bright orange, it was called Maratus Nemo, after the popular Disney character.

‘It has a really vibrant orange face with white stripes on it, which kind of looks like a clown fish, so I thought Nemo would be a really suitable name for it,’ Joseph Schubert says.

Maratus Nemo is probably the first influencer arachnid – his curious story, bright colours and fun name practically made him an internet star overnight.

Published in: Evolutionary Systematics

1. The tiny ant that challenges gender stereotypes

Found in Ecuador’s evergreen tropical forests, this miniature trap jaw ant bears the curious Latin name Strumigenys ayersthey. Unlike most species named in honour of people, whose names end with -ae (after females) and –i (after males), S. ayersthey might be the only species in the world to have a scientific name with the suffix –they.

“In contrast to the traditional naming practices that identify individuals as one of two distinct genders, we have chosen a non-Latinized portmanteau honoring the artist Jeremy Ayers and representing people that do not identify with conventional binary gender assignments, Strumigenys ayersthey,” authors Philipp Hoenle of the Technical University of
Darmstadt
and Douglas Booher of Yale University state in their paper.

Strumigenys ayersthey sp. nov. is thus inclusively named in honor of Jeremy Ayers for the multitude of humans among the spectrum of gender who have been unrepresented under traditional naming practices.”

Curiously, it was no other than lead singer and lyricist of the American alternative rock band R.E.M. Michael Stipe that joined Booher in writing the etymology section for the research article, where they explain the origin of the species name and honor their mutual friend, activist and artist Jeremy Ayers.

This ant can be distinguished by its predominantly smooth and shining cuticle surface and long trap-jaw mandibles, which make it unique among nearly a thousand species of its genus.

“Such a beautiful and rare animal was just the species to celebrate both biological and human diversity,” Douglas Booher said.

Published in: ZooKeys