Choloepus hoffmanni capitalis is a poorly known subspecies of two-toed sloth that inhabits coastal southern Colombia and Ecuador(Hayssen 2011). In Ecuador, according to local reports from rehabilitation centers and events recorded by the press, this species is apparently not widely trafficked for pet trade, but it is known to be illegally hunted and consumed, the impact of which is difficult to trace and evaluate. Nevertheless, the conservation status of the two-toed sloths C.h. capitalis Ecuadorian coast keeps leaning towards more threatened categorizations, and nowadays is established as vulnerable (Tirira, 2021).
The sloths Bravo and Linda during rehabilitation.
Its habitat is a hotspot for conservation in all its extent, as it is threatened. In addition, due to multiple origins of impact, it has been recorded as the second most abundant mammal (from the list of animals subjected to wildlife traffic and bushmeat consumption according to Environment Ministry reports) received in the busy rehabilitation center of Guayaquil, Ecuador (Villalba-Briones et al., 2021).
Xenarthrans have been relatively poorly studied, specially sloths (Superina and Loughry 2015), and due to the species’ inconspicuous strategy, it is also difficult to detect and perform population evaluations (Martínez et al. 2020). Taking in account the slow reproduction rate of Choloepus gen., having one offspring every 3 years (Hayssen 2011), it is critical to consider the importance of reintroductions (Paterson et al. 2021, Villalba-Briones et al. 2022), but, to all effects, nothing can substitute the implementation of efficient regulation to cease hunting and bushmeat consumption.
In-situ studies, understanding its ecology, behavior, abundance etc., could provide the necessary tools to estimate its populations, and evaluate its conservation status. Alternatively, non-invasive opportunistic studies in ex-situ programs during rehabilitation procedures could provide improvements in the aspects as diets and health, increasing the survival rate and fitness to release of rehabilitated sloths.
Bravo, the two-toed sloth moving through the trees on the day of release with a biodegradable backpack that supported the Bluetooth detection device (Day 1). Photo by R. Villalba-Briones
We suggest considering follow-up activities to check the animals’ safety during their adaptation to the natural environment. We also propose the inclusion of a follow-up term to redeem the post-release supportive monitoring, develop its scope, and to rely on the presence and readiness of the caregivers or researchers to help the animal during the first weeks after release.
In order to track Bravo after his release, a handmade biodegradable backpack with Bluetooth signal transmission capacity was fitted to his body. The lightweight Tile Bluetooth device did not pose any harm to the sloth, and after some heavy rains cardboard-made attachment just disintegrated, releasing the device.
Motionless defensive behavior of Bravo, the two-toed sloth, under threat from an owl (Night 6). Photo by R. Villalba-Briones
In our work, the presence in the area of a territorial carnivore individual led to the end of the follow-up activity. Consequently, in the case of probable undesired situations, we propose the use of devices to track the animals and monitor their presence daily. Alternatively, accounting for the relationship between movement patterns of the individual and detection probability, we propose 7 pm as the best time for observations of this mainly nocturnal species.
Due to the difficulty monitoring nocturnal animals, economic constraints in conservation, accessibility, and safety of the animals, biodegradable Bluetooth-based backpacks are recommended to ease the location of the animal and support its survival in the wild. The range of detectability of the device used indicates its suitability for tracking low-mobility animals.
Map showing the movements and tree use of the rehabilitated two-toed sloth (Choloepus hoffmanni) in a dry tropical forest in the coastal region of Ecuador.
This first record of the follow-up of a rehabilitated Choloepushoffmanni and the detectability analysis offer valuable information for the future release and follow-up of individuals belonging to the genus Choloepus, and sloths in general.
The knowledge about released animals’ survival could help in clearing rehabilitation uncertainties, and, always, can give the animals the second chance they deserve. Monitoring animal survival after release is essential for recording whether the rehabilitation process has been accomplished, but it is rarely done in practice, given the amount of funds required. It can, however, be substantially cheaper and affordable if the right techniques are used. These activities are more feasible when strategic planning and support exist.
Nowadays, the scarcity of funds to fulfill the needs of conservation projects on sloths (Superina and Loughry 2015, Choperena-Palencia and Mancera-Rodríguez 2018) seems to be an important obstacle. However, with a sensitized population, management effort, and support, it could be possible to understand and preserve the Choloepus hoffmanni capitalis.
References:
Choperena-Palencia MC, Mancera-Rodríguez NJ (2018) EVALUACIÓN DE PROCESOS DE SEGUIMIENTO Y MONITOREO POST-LIBERACIÓN DE FAUNA SILVESTRE REHABILITADA EN COLOMBIA. Luna Azul: 181–209. https://doi.org/10.17151/luaz.2018.46.11
Hayssen V (2011) Choloepus hoffmanni (Pilosa: Megalonychidae). Mammalian Species 43: 37–55. https://doi.org/10.1644/873.1
Martínez M, Velásquez A, Pacheco-Amador S, Cabrera N, Acosta I, Tursios-Casco M (2020) El perezoso de dos dedos (Choloepus hoffmanni) en Honduras: distribución, historia natural y conservación. Notas sobre Mamíferos Sudamericanos 01: 001–009. https://doi.org/10.31687/saremNMS.20.0.25
Paterson JE, Carstairs S, Davy CM (2021) Population-level effects of wildlife rehabilitation and release vary with life-history strategy. Journal for Nature Conservation 61: 125983. https://doi.org/10.1016/j.jnc.2021.125983
Superina M, Loughry WJ (2015) Why do Xenarthrans matter?: Table 1. Journal of Mammalogy 96: 617–621. https://doi.org/10.1093/jmammal/gyv099
Villalba-Briones R, Molineros E, Monros, J. S. (2021). Estudio retrospectivo de rescates y retenciones de especies de fauna silvestre sujetas a tráfico de fauna en guayaquil, Ecuador. Comité científico.
Villalba-Briones R, Jiménez ER, Monros JS (2022) Release and follow-up of a rehabilitated two-toed sloth (Choloepus hoffmanni) in a tropical dry forest in Ecuador. Neotropical Biology and Conservation 17(4): 253-267. https://doi.org/10.3897/neotropical.17.e91332
Tirira, D. G. (ed.). 2021. Lista Roja de los mamíferos del Ecuador, en: Libro Rojo de los mamíferos del Ecuador (3a edición). Asociación Ecuatoriana de Mastozoología, Fundación Mamíferos y Conservación, Pontificia Universidad Católica del Ecuador y Ministerio del Ambiente, Agua y Transición Ecológica del Ecuador. Publicación Especial sobre los mamíferos del Ecuador 13, Quito.
With more than 7000 individuals populating the Carpathian Mountains and neighboring areas, Romania has the highest density of brown bears in Europe. As they often inhabit human-dominated landscapes, conflicts with people are not uncommon.
“The media play an influential role in how the public perceives brown bears, thus, it can promote human-wildlife coexistence or exacerbate future conflicts”, they say.
Brown bear waiting on the roadside for food scraps (National Road 2D, Vrancea, Romania). Photo by Dr Silviu Chiriac (EPA Vrancea)
The study found that news stories related to brown bears became common in Romanian media only after 2016, following the instatement of a provisional one-year ban on culling, and increased abruptly in 2021 following the whistleblowing of an alleged trophy hunting event.
The majority of reports were about human-bear interaction, hunting, and poaching, offering little context and information on how to avoid conflicts. Articles on the ecology and biology of brown bears were rare, which indicates less consideration of the ecological significance and the impact of human activities on their conservation status.
Focusing on alarming messages without offering evidence or advice can increase fear and undermine efforts to protect the species and the welfare of society.
The attitude towards brown bears, perceived from the studied articles was predominantly negative (53%; 380 articles). In these articles, the authors used phrases such as: “At any moment the people can find themselves in front of a hungry bear;” “Beyond the horror they live with every day, they have lost their patience and trust in the authorities;” and “People are afraid of the worst.”
Even when reporting sightings of bears near populated areas and encounters with no casualties, Romanian media promoted a negative image of bears to their readership. “Focusing on alarming messages without offering evidence or advice can increase fear and undermine efforts to protect the species and the welfare of society,” the researchers said.
Importantly, the team found that media did not consult wildlife and conservation biologists when reporting on human-bear interactions or bear hunting and poaching events. “This can be because the experts are reluctant to be part of the debate, or because the media may not be interested in bringing more scientific context to their reports,” they reason.
Rescuing a bear trapped in wire-snare in an orchard (Vrancea, Romania). Photo by Dr Silviu Chiriac (EPA Vrancea)
“In conclusion, increasing the frequency of reporting interaction events with alarming messages can only lower the level of tolerance for wildlife and negatively influence political decisions regarding the management of the brown bear population.”
The researchers call for publishing detailed and evidence-informed news as a means to educate people to avoid conflict and facilitate the implementation of effective wildlife conservation and management strategies.
“Evidence-informed news can help authorities better understand conflicts and create bottom-up pathways toward an optimistic future for brown bears and Romanian society”, they conclude.
Research article:
Neagu AC, Manolache S, Rozylowicz L (2022) The drums of war are beating louder: Media coverage of brown bears in Romania. Nature Conservation 50: 65-84. https://doi.org/10.3897/natureconservation.50.86019
In the world of biodiversity science, 2022 started with some great discoveries and a lot of hope. Here at Pensoft, we get to see a new species (or more!) make an appearance into the scientific world almost every day. The diversity is impressive, but what is even more amazing is how much more remains undiscovered.
With the first half of the year already behind us, here are the stellar new species that took the world by storm as soon as we published them.
The magical fairy wrasse
This rainbow-coloured fish is called Cirrhilabrus finifenmaa, or Rose-Veiled Fairy Wrasse, and it was found in the Maldives’ reefs. It can live 160 to 500 feet beneath the ocean’s surface in unexplored coral ecosystems dubbed “the twilight zone”.
“Nobody knows these waters better than the Maldivian people,” says senior author and Academy Curator of Ichthyology Luiz Rocha. “Our research is stronger when it’s done in collaboration with local researchers and divers.”
Media attention for our new species isn't slowing down, so I'll keep promoting it! Did you know that in addition to looking incredible in life, the new C. finifenmaa is also fluorescent!? Here's an unreleased photo taken by T. Gerlach and J. Theobald. https://t.co/EVwOtCvRc3pic.twitter.com/aqCNFvbzja
Apart from its striking appearance, Cirrhilabrus finifenmaa also gained popularity as the first new-to-science species to be described by a Maldivian scientist.
“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists, says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb. “This time it is different.”
It is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.
This beautiful fish is already being exploited through the aquarium hobbyist trade, a fact described as “unsettling” by the people who discovered it.
How often is it that a millipede makes top news headlines? Well, Nannaria swiftaesure did.
Scientists Derek Hennen, Jackson Means, and Paul Marek, at Virginia Tech, U.S., described the new species in April, naming it after singer-songwriter Taylor Swift. “Her music helped me get through the highs and lows of graduate school, so naming a new millipede species after her is my way of saying thanks,” Derek Hennen says, admitting he has been her fan for years.
N. swiftae joins 16 other new species of twisted-claw millipedes described from the Appalachian Mountains of the United States. To find them, researchers traveled to 17 US states, checking under leaf litter, rocks, and logs. They then sequenced the DNA of the species they found and described them scientifically. They looked at over 1800 specimens collected on their field study or taken from university and museum collections!
These little-known invertebrates are somewhat tricky to catch, because they tend to remain buried in the soil, sometimes staying completely beneath the surface.
Most twisted-claw millipedes live on the forest floor, where they feed on decaying leaves and other plant matter. They also have a valuable role as decomposers: breaking down leaf litter, they release their nutrients into the ecosystem.
Swedish climate activist Greta Thunberg has been namesakes with a frog for half a year now. In 2018, Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for some new-to-science species, including Pristimantis gretathunbergae, a black-eyed rainfrog from in eastern Panama.
The undisclosed auction winner wanted to name the frog in honor of Thunberg and her work in highlighting the urgency in preventing climate change. She has impressed global leaders and her work is drawing others to action for the climate.
The international team that discovered the new rainfrog was led by Abel Batista, Ph.D. (Panama) and Konrad Mebert, Ph.D. (Switzerland). They found the frog on Mount Chucanti, a sky island surrounded by lowland tropical rainforest in eastern Panama. Reaching its habitat in the cloud forest required access via horseback through muddy trails, hiking up steep slopes, by-passing two helicopters that crashed decades ago, and camping above 1000 m elevation.
Unfortunately, the frog’s remaining habitat is severely fragmented and highly threatened by rapid deforestation for plantations and cattle pasture. Rising temperatures are another threat as they could destroy its small mountain habitat. The Mount Chucanti region already has lost more than 30% of its forest cover over the past 10 years, and the scientists insist that conservation of the remaining habitat is critical to ensure the survival of the frog.
Instantly gaining popularity as Chocolate Frog, Synapturanus danta is a curious little frog that was recently discovered in the Peruvian Amazon. Local people had long known about this tiny, burrowing frog with a long snout; one local name for it is rana danta, “tapir frog”, for its resemblance to the large-nosed Amazonian mammal.
“These frogs are really hard to find, and that leads to them being understudied,” says Michelle Thompson, a researcher in the Keller Science Action Center at Chicago’s Field Museum and one of the authors of the study describing the frog. “It’s an example of the Amazon’s hidden diversity, and it’s important to document it to understand how important the ecosystem functions.”
While the frogs are hard to see, they’re not hard to hear. “We just kept hearing this beep-beep-beep coming from underground, and we suspected it could be a new species of burrowing frog,” says Thompson. “But how do we get to it?”
Local guides who were familiar with the frogs led the researchers to peatland areas– wetlands carpeted with nutrient-rich turf made of decaying plant matter. “After 15 to 20 minutes of digging and looking for them, I heard Michelle screaming, and to me that could only mean that she and David had found the first adult,” says Germán Chávez, a researcher at Peru’s Instituto Peruano de Herpetología and the study’s first author.
The researchers used the physical specimens of the frogs, along with the recordings of their calls and an analysis of the frogs’ DNA, to confirm that they were a new species. They named them Synapturanus danta – Synapturanus is the name of the genus they belong to, and danta is the local word for “tapir.”
This magnificent non-venomous snake, previously unknown to science, was discovered in Paraguay. It belongs to the genus Phalotris, a group of snakes from central South America noted for their striking coloration with red, black, and yellow patterns.
Jean-Paul Brouard, one of the involved researchers, came across an individual of the new species by chance while digging a hole at Rancho Laguna Blanca in 2014. Together with his colleagues Paul Smith and Pier Cacciali, he described the discovery, naming the new snake Phalotris shawnella.
The species name recognizes two children – Shawn Ariel Smith Fernández and Ella Bethany Atkinson – who were born in the same year as the Fundación Para La Tierra (2008). They inspired the founders of the NGO to work for the conservation of Paraguayan wildlife, in the hope that their children can inherit a better world.
🐍 This lovely #snake is the latest addition to the #herpetofauna of Paraguay. The team that discovered it, however, worries that this beautiful and highly endemic #NewSpecies is not well protected.
This new Phalotris snake is particularly attractive and can be distinguished from other related species in its genus by its red head in combination with a yellow collar, a black lateral band and orange ventral scales with irregular black spots.
Only known from three individuals, this species is endemic to the Cerrado forests of the department of San Pedro in east Paraguay. Its extreme rarity led the authors to consider it as “Endangered”, according to the conservation categories of the International Union for Conservation of Nature (IUCN), which means it is in imminent danger of extinction in the absence of measures for its protection.
“Due to its historical background and the presence of rare species, it is considered to be one of the most important ornithological collections in Eastern Europe,” researcher Gergely Osváth says
Containing specimens from different locations, sometimes spanning across centuries, museum collections can teach us a lot about how some animals are built and how we can protect them. Properly labeled, preserved specimens can show us how the environment and species distribution has changed over extended time periods. Because in many cases these collections remain largely unexplored, a revision can reveal “treasures” that were hidden in plain sight for decades.
The bird skin collection of the Zoological Museum of Babeș Bolyai University, Cluj-Napoca, Romania. Photos by Gergely Osváth and Zsolt Kovács
“The collection is unique in the region in many ways: it covers a long time span, it contains a variety of species, belonging to different families and orders, and it is composed of the work of several naturalists and employees of the museum”, Osváth says. “Due to its historical background and the presence of rare species, it is considered to be one of the most important ornithological collections in Eastern Europe.”
First, the researchers examined each bird skin and the data cards documenting the identification, locality, date, sex and catalogue number. Afterwards, they checked the species identification of specimens, determining the sex and age of birds where possible. They also updated the scientific names and taxonomy of birds. In addition, they provide a map representation with new distribution data for bird species, offering valuable information on the status of the avifauna of the Carpathian basin in the 19th and 20th centuries.
Published in the open-access journal ZooKeys, this is the first time that all those specimen data are made public.
The collection includes 925 specimens, belonging to 193 species, that were collected between 1859 and 2021. Perching birds (Passeriformes) were the best represented bird order, with 487 specimens, and 93.6 % of the specimens with known data were collected from Transylvania.
By far, the most interesting specimens were the rare ones, such as specimens of Cinereous Vulture (Aegypius monachus), Eastern Imperial Eagle (Aquila heliaca), Lesser Kestrel (Falco naumanni), all collected between 1903 and 1907 from Transylvania.
With updated information on the taxonomy and morphology of birds in Transylvania, the researchers hope this new catalogue can serve as a basis for valuable ornithological studies.
Research article:
Osváth G, Papp E, Benkő Z, Kovács Z (2022) The ornithological collection of the Zoological Museum of Babeș-Bolyai University, Cluj-Napoca, Romania – Part 1: the catalogue of bird skin specimens. ZooKeys 1102: 83-106.https://doi.org/10.3897/zookeys.1102.79102
Researchers recorded an individual at the Canoas Airbase, one of the last remaining green spaces in a densely urbanized area of a large city in southern Brazil.
You may assume that metropolitan areas are devoid of wildlife, but that is very far from the truth. The remaining green spaces within the urban matrices of large cities can serve as corridors or stepping stones for wild animals. Sometimes, even threatened mammal species end up using them.
On August 12, 2020, a research team from Brazil recorded a South American coati in Canoas, the fourth most populous and densely urbanized city in the southernmost state of Brazil, Rio Grande do Sul. The animal was detected with a camera trap during a Masters research project conducted at the Canoas Airbase, one of the last green spaces remaining in the municipality.
South American Coati at the Canoas airbase in Rio Grande do Sul, Brazil. Video by Diego Floriano da Rocha, Thaís Brauner do Rosario and Cristina Vargas Cademartori
Widely distributed throughout the continent, the South American coati is a medium-sized carnivore living on trees and feeding mainly on small invertebrates and fruits. The species is classified as Vulnerable in Rio Grande do Sul, and it’s considered threatened mainly because of the loss of its forest habitats.
The study that recorded an individual in the urban area was conducted as part of a partnership between the Canoas Airbase and La Salle University. Led by Dr Cristina Vargas Cademartori from La Salle University, the research team was made up of Diego Floriano da Rocha (Doctoral student), Thaís Brauner do Rosario (Masters student), Ana Carolina Pontes Maciel (biologist at the Canoas Airbase), and Duana Suelem Alves (undergraduate student). They described in detail the record and the study area in a paper in the open-access journal Neotropical Biology and Conservation.
The researchers were surprised to find the coati in the midst of a dense urban area. Although the species is not considered threatened in the majority of its area of distribution, its populations have been in decline because of habitat loss and hunting.
“This record confirms the capacity of this species to use environments that have been changed by anthropic activity,” the researchers write in their paper, adding that, because of all the food that humans leave behind, urban environments can in fact favor the establishment of more adaptable species like the coati.
The discovery highlights the importance of urban green spaces for wildlife conservation. “This is very important for defining appropriate conservation measurements for endangered species, especially beyond protected areas,” the authors conclude.
Research article: da Rocha DF, do Rosario TB, Maciel ACP, Alves DS, Cademartori CV (2022) Record of occurrence of Nasua nasua (Linnaeus, 1766) (Carnivora, Procyonidae) in a densely urbanized area of the city of Canoas, southern Brazil. Neotropical Biology and Conservation 17(2): 111-116. https://doi.org/10.3897/neotropical.17.e81824
With the 1,000th ZooKeys issue now hot off the press, the time has come to celebrate the millennium of Pensoft’s very first scientific journal: ZooKeys!
With the 1,000thZooKeys issue now hot off the press, the time has come to celebrate the millennium of Pensoft’s very first scientific journal: ZooKeys!
In fact, the cause for celebration is two-fold: this year, it’s also the 10th anniversary of ZooKeys’ very special 50th issue, which marked a new era for biodiversity data publishing by introducing several innovative workflows and tools. This is when ZooKeys became an example to follow globally: a title the journal still takes pride to be holding to this day.
Articles published in ZooKeys since the journal’s launch in 2008 (data from 3/12/2020).
Today, we shall reminisce about everything along the way: from that sunny Californian morning at the Entomological Society of America meeting in 2007, where the idea about a new-age taxonomic journal in zoology sprang up in a breakfast chat between renowned entomologists and future founders of ZooKeys: Prof Lyubomir Penev and Dr Terry Erwin, to this very moment, where we’re counting over 5,500 published articles, authored by more than 8,000 researchers from 144 countries and comprising ~150,000 pages. Thus, we saw the description of one supertribe, seven tribes, five subtribes, 27 families, over 800 genera and more than 12,000 species previously unknown to science. In this journey, ZooKeys climbed up the ladder of academic rigour and trustability to become today’s most prolific open-access journal of zoology.
Even though today is the time to feel exalted and look back on our achievements and conquered milestones with ear-to-ear smiles, it is with heavy hearts that we’ll be raising our glasses tonight, as we won’t be joined by our beloved friend and founding Editor-in-Chief, Dr Terry Erwin, whom we lost on 11th May 2020. While his place in our hearts and ZooKeys’ Editorial board will never be filled, we accept our duty to help for his legacy to persist for the future generations of scientists by taking a vow to never lower our standards or cease to improve our services and care for our readers, authors, reviewers and editors alike.
In honour of Terry, who will be remembered for his splendid personality and zealous enthusiasm for carabid beetles and the world’s immense biodiversity, we’ve opened up a special memorial volume to be published on 11th May 2021.
In fact, we have thousands of people to thank for the place ZooKeys is at right now: these are our authors, who have trusted us with their research work time and time again; our reviewers and editors, who have taken their invaluable time to promptly process submitted manuscripts; and, of course, our readers, who are using ZooKeys content to expand the world’s knowledge, either by learning and building on the findings in their own research, or by spreading the knowledge to those who will.
With a thought for our authors & readers
We’ve been striving to implement the latest and most convenient scholarly publishing technologies and innovations, and also develop some of our own to make sure that ZooKeys users enjoy their experience with our flagship journal.
In hindsight, ZooKeys was the first journal to pioneer a lot of scholarly publishing technologies, which back in the time were quite revolutionary. Notable examples from 2008-2016 include:
Semantic tagging and enhancements of taxonomic articles, in order to provide extensive background information about each taxon mentioned in a paper at a click.
Automated export of species descriptions and other taxon treatments to data aggregators (e.g. EOL, Plazi, Species ID) on the day of publication;
Software tool to automate the mandatory registration of all new taxa in ZooBank.
Yet, this was only the beginning. Fast forward to December 2020, we’re working even harder to build up on our achievements and evolve, so that we stay on top of our game and the scholarly publishing scene. Here are the key innovations we recently implemented in ZooKeys:
Routine data auditing for each submitted data paper, in order to ensure that datasets described in ZooKeys are using data that are FAIR: Findable, Accessible, Interoperable and Reusable;
A standard appendix template for primary biodiversity data to provide direct harvesting and conversion to interlinked FAIR data, thus enabling a convenient link between various data items concerning, for example, a single species, regardless of those items’ locations. The approach was recently piloted in ZooKeys, where a free-to-publish special issue on the biology of bats and pangolins is meant to demonstrate how such linked biodiversity data can help identify important biotic interactions;
The Pensoft Annotator, which matches free text to ontological terms for the use of biodiversity research.
With a thought for our editors
Besides revolutionising research publishing, at Pensoft, we’re also deeply devoted to facilitating our editors in their day-to-day editorial work, as well as their long-term engagement with the journal and its progress.
Recently, we expanded journal performance reporting services, in order to keep our editors on track with the most recent trends in their journal’s performance. Meanwhile, we’ve also taken care after the continuous improvement in those stats by implementing several features meant to facilitate and expedite the handling of manuscripts.
Follow ARPHA’s blog to keep up with the new features available to users of Pensoft’s journals and all journals hosted on ARPHA Platform.
With a thought for the community
Naturally, research outputs are only as valuable to publish as they are valuable to the community: within and beyond academia. Ultimately, their merit is best measured by citations and readership. This is why, we shall now have a look back at the most impactful papers published in ZooKeys to date.
Author’s delight
Thanks to the indexation of ZooKeys in the research citation database of Dimensions, following the collaboration between ARPHA and Digital Science, which started in 2018, we’re now able to explore the all-time most cited publications in our flagship journal. Detailed information and links to the papers where each of those studies has been cited is available on the webpage of the article.
Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool (DOI: 10.3897/zookeys.150.2109)
Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication (DOI: 10.3897/zookeys.219.3944)
Forty years of carabid beetle research in Europe – from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation (DOI: 10.3897/zookeys.100.1523)
Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions (DOI: 10.3897/zookeys.100.1533)
Reader’s delight
Thanks to ARPHA Platform’s all-roundedness and transparency, we get to explore the most read papers ever published in ZooKeys straight from the Articles section on the journal’s website.
Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito (DOI: 10.3897/zookeys.324.5827)
In 2013, ZooKeys had the honour to announce the first carnivore found in the Western Hemisphere in over three decades. Further, that wasn’t ANY carnivore, but the olinguito, which National Geographic rightfully called a “fuzzy fog-dweller with a face like a teddy bear”.
An extraordinary new family of spiders from caves in the Pacific Northwest (Araneae, Trogloraptoridae) (DOI: 10.3897/zookeys.215.3547)
A year prior to the description of the olinguito, a brand new family of “cave robbing” spiders emerged from the pages of ZooKeys, after US scientists found a previously unknown to science spider with “unique, toothed claws at the end of each leg” in Oregon.
A huge, first-of-its-kind catalogue containing data on all family-group names for all known extant and fossil beetles (order Coleoptera) was published in ZooKeys in an exemplary research collaboration, spanning three continents in 2011.
Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae) (DOI: 10.3897/zookeys.646.11411)
In a truly world-wide sensation, a new species of tiny moth inhabiting a narrow stretch of extremely fragile habitat running between the USA and Mexico, was named after then President-elect Donald Trump in a desperate call to protect this and other similarly vulnerable ecosystems in North America. The species currently goes by the name Neopalpa donaldtrumpi.
Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States (DOI: 10.3897/zookeys.560.6264)
In 2016, US scientists described a total of 14 new to science tarantula species from what many would think to be one the best-researched countries: the United States of America. Curiously enough, one of those tarantula species, found in California near Folsom Prison – a place best known from Cash’s song “Folsom Prison Blues”, was aptly named Aphonopelmajohnnycashi.
Public’s delight
As visionaries, we’ve long realised that scientific impact goes beyond citations and journal subscribers. Communicating science to the community beyond academia is, in fact, one of the strongest components in research dissemination, as it lets the laypeople make sense of the wider world and where exactly they stand in the bigger picture. This is why we’ve been putting that special extra effort to promote research published in our journals–including ZooKeys–using press releases, blog posts and social media content (follow ZooKeys on Twitter and Facebook).
Thanks to our partnership with Altmetric, we’re able to identify the top five most popular papers from ZooKeys for all times. These are the ones that have sparkled the most online discussions via social media, big news headlines, blog posts, Wikipedia and more.
Review of Neopalpa Povolný, 1998 with description of a new species from California and Baja California, Mexico (Lepidoptera, Gelechiidae) (DOI: 10.3897/zookeys.646.11411)
Not only was the previously undescribed species of moth subject to a serious threat of extinction, having been exclusively known from a fragmented area along the Mexico–United States border, but the insect’s “hairstyle” was pointed out to bear a striking resemblance to the golden locks of the 45th U.S. President Donald Trump.
Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco (DOI: 10.3897/zookeys.928.47517)
Published in ZooKeys earlier this year, this extensive geology and paleontology monograph presents an unprecedented in its volume and scientific value account of a large portion of the most important prehistoric vertebrate fossils ever unearthed from the famous Kem Kem beds in Morocco. “A monograph larger than Paralititan,” as a Reddit user justly pointed out.
Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States (DOI: 10.3897/zookeys.560.6264)
On top of taking pride in becoming the discoverer of as many as 14 tarantula species living “right under our noses” in the US, Dr Chris Hamilton enjoyed the spotlight of Live television in his appearance on Sky News. So did a lucky specimen of the newly described species: Aphonopelma johnnycashi! Suffice it to say, the tarantula was named after the legendary American singer-songwriter for all the right reasons.
Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group (DOI: 10.3897/zookeys.751.22661)
Apparently, ants that rip their bodies apart in a self-sacrificial attempt to save their colonies from enemies, weren’t something new by the time PhD student Alice Laciny and her team described the new to science species Colobopsis explodens from Brunei. However, the study published in ZooKeys in 2018 was the first to conduct and film experiments on the peculiar exploding behaviour. Although not the very first for science, C. explodens was the first “T-ant-T” species to be described since 1935.
Mapping the expansion of coyotes (Canis latrans) across North and Central America (DOI: 10.3897/zookeys.759.15149)
Today, coyotes live all around North America: from Alaska to Panama, California to Maine. Once upon a time, or rather, between the Holocene and the early 1900s, their range used to be restricted to the arid west of North America. So, how did the coyotes turn up at the doorstep of South America? North Carolina scientists reached to natural history collections to map the historic colonisation of the coyotes all the way to our days.
In our final remarks on this special occasion, it’s the time to say a special Thank you! to our most prolific authors:
Dr Shuqiang Li, expert on spider taxonomy and systematics at the Chinese Academy of Sciences, who’s also a reviewer and a subject editor at ZooKeys (64 publications).
Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, who is also amongst the top five most active reviewers and the three most active subject editors in ZooKeys (59 publications).
Dr Li-Zhen Li, coleopterist at Shanghai Normal University (57 publications).
Dr Reginald Webster, coleopterist at Natural Resources Canada and a reviewer at ZooKeys (57 publications).
Dr Sergei Golovatch, myriapodologist at the Russian Academy of Sciences, and a reviewer and a subject editor at ZooKeys (53 publications).
Dr Yuri Marusik, arachnologist at the Russian Academy of Sciences and the University of Free State, Magadan, South Africa. He is also a subject editor at ZooKeys.
Dr Donald Lafontaine, entomologist at the Canadian National Collection of Insects, Arachnids, and Nematodes and Agriculture and Agri-Food Canada. He is also a subject editor at ZooKeys.
Dr Ivan H. Tuf, ecologist at Palacký University (Czech Republic) and a subject editor at ZooKeys.
Dr Viatcheslav Ivanenko, taxonomist at the Lomonosov Moscow State University.
Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, and also one of the most productive authors and most active subject editors at ZooKeys.
Prof Pavel Stoev, taxonomist, ecologist, and director at the National Natural History Museum (Bulgaria), and managing editor at ZooKeys.
Prof Lyubomir Penev, entomologist, ecologist at the Bulgarian Academy of Sciences and founder of ZooKeys.
Dr Michael S. Engel, paleontologist and entomologist at the University of Kansas and the American Museum of Natural History, and also one of the most productive authors and most active reviewers at ZooKeys.
Dr Nina Bogutskaya, hydrobiologist and ichthyologist at the Museum of Natural History Vienna, and also a reviewer at ZooKeys.
Dr Jeremy Miller, taxonomist and arachnologist at the Naturalis Biodiversity Center (Netherlands), and also a reviewer at ZooKeys.
Looking forward to sharing with you our next milestones and celebrations!
Meanwhile, make sure to follow ZooKeys on Twitter and Facebook to stay in touch!
The newly described flying squirrel species (Biswamoyopterus gaoligongensis). Photo by Kadoorie Farm & Botanic Garden.
Described in 1981, the genus Biswamoyopterus is regarded as the most mysterious and rarest amongst all flying squirrels. It comprises two large (1.4-1.8 kg) species endemic to southern Asia: the Namdapha flying squirrel (India) and the Laotian giant flying squirrel (Lao PDR). Each is only known from a single specimen discovered in 1981 and 2013, respectively.
Recently, in 2018, a specimen identifiable as Biswamoyopterus was unexpectedly found in the collections of the Kunming Institute of Zoology (KIZ), Chinese Academy of Sciences by in-house expert Quan Li. It had been collected from Mount Gaoligong in Yunnan Province, Southwest China.
The habitat of the newly described flying squirrel. Photo by Kadoorie Farm & Botanic Garden.
However, a closer look at the specimen from KIZ made it clear that the squirrel exhibited a colouration, as well as skull and teeth anatomy, distinct from any of the previously known species in the genus.
Close-up shot of the newly described flying squirrel species. Photo by Kadoorie Farm & Botanic Garden.
Subsequently, joined by his colleagues from China (Xuelong Jiang, Xueyou Li, Fei Li, Ming Jiang, Wei Zhao and Wenyu Song) and Stephen Jackson from Australia, the team of Quan Li conducted a new field survey. Thus, they successfully obtained another specimen and, additionally, recorded observations of two other flying squirrels. As a result, they included a third member to the enigmatic genus: Biswamoyopterus gaoligongensis, also referred to as the Mount Gaoligong flying squirrel. This new to science species was described in a paperpublished in the open-access journal ZooKeys.
“The morphological features of B. gaoligongensis are closer to the critically endangered and missing Namdapha flying squirrel, but is still readily identifiable as a distinct species,” explains Quan Li.
“The new species was discovered in the ‘blank area’ spanning 1,250 km between the isolated habitats of the two known species, which suggests that the genus is much more widespread than previously thought. There is still hope for new Biswamoyopterus populations to be discovered in between or right next to the already known localities,” he says.
As for the conservation status of the newly described species, the researchers note that it inhabits low-altitude forests which are in close proximity to nearby human settlements. Thereby, they are vulnerable to anthropogenic threats, such as agricultural reclamation and poaching.
“Therefore, there is an urgent need to study the ecology, distribution, and conservation status of this rare and very beautiful genus,” concludes the lead author.
The newly described flying squirrel species. Photo by Kadoorie Farm & Botanic Garden.
###
Original source:
Li Q, Li X-Y, Jackson SM, Li F, Jiang M, Zhao W, Song W-Y, Jiang X-Y (2019) Discovery and description of a mysterious Asian flying squirrel (Rodentia, Sciuridae, Biswamoyopterus) from Mount Gaoligong, southwest China. ZooKeys 864: 147-160. https://doi.org/10.3897/zookeys.864.33678
A new species of beetle with remarkably long genitalia that hint at a curious evolutionary “sexual arms race” has been described from Malaysian Borneo.
The new insect was named after actress and biologist Isabella Rossellini in honour of her stage shows and Webby Award-winning series of films about animal reproduction, featured on SundanceTV.
The new species, Ptomaphaginus isabellarossellini, finds a place among the 30 known species of round fungus beetles (subfamily Cholevinae) recorded by the authors from the island of Borneo. Of these, there are a total of 14 which had remained unknown to science until now.
The reason why the scientists named this particular species after the famous actress is its genitalia. The beetle’s penis carries a long, whip-like thread, called flagellum, whereas the female has a similarly long tube leading up to a sperm storage organ.
Lead author Menno Schilthuizen, who himself has previously released a simultaneously educative and entertaining book about the evolution of genitals, says that such exaggerated male and female genitalia often betray an “evolutionary sexual arms race”.
On the male side, natural selection favours longer genitalia because of the ability to directly reach the female’s sperm storage organ. However, female beetles would rather retain their right to favour the DNA of a certain mate over the rest. The upshot is that, over long periods of evolution, penises get longer and vaginas get deeper. Similar evolutionary genital exaggeration is also known in rove beetles and ducks.
“This is better than winning the Oscar,” says honoured Isabella Rossellini.
The Italian-born actress, filmmaker, author, philanthropist, and model has even featured the new beetle in her new Link Link Circus stage shows. Dealing with animal behaviour, the series will be touring theaters in Europe this fall.
###
Original source:
Schilthuizen M, Perreau M, Njunjic I (2018) A review of the Cholevinae from the island of Borneo (Coleoptera, Leiodidae). ZooKeys 777: 57-108. https://doi.org/10.3897/zookeys.777.23212
Thanks to their conspicuous structures, the mollusks have been added to a brand new species group of land snails to be commonly known as the ‘scaly’ snails, so that they can be set apart from the rest in the genus Georissa. Why it is that only some of the species in the genus sport the unique ‘scales’, remains unknown.
Fascinated with the minute ‘scaly’ snail fauna of Borneo, the researchers carried out fieldwork between 2015 and 2017 to find out how these curious shells evolved. In addition, they also examined material deposited in museum and private snail collections.
Apart from DNA data, which is nowadays commonly used in species identification, the team turned to yet-to-become-popular modern tools such as 3D modelling, conducted through X-ray scanning. By doing so, the researchers managed to look at both the inner and outer surfaces of the shells of the tiny specimens from every angle and position, and examine them in great detail.
The researchers note that to identify the ‘scaly’ snails to species level, one needs a combination of both DNA and morphological data:
“Objective species delimitation based solely on molecular data will not be successful for the ‘scaly’ snails in Georissa, at least if one wishes for the taxonomy to reflect morphology as well.”
The six new species are all named after the localities they have been originally collected from, in order to create awareness for species and habitat conservation.
###
Watch rotation and cross-section of the 3D models of the studied species here.
Original source:
Khalik MZ, Hendriks K, Vermeulen JJ, Schilthuizen M (2018) A molecular and conchological dissection of the “scaly” Georissa of Malaysian Borneo (Gastropoda, Neritimorpha, Hydrocenidae). ZooKeys 773: 1-55. https://doi.org/10.3897/zookeys.773.24878