Interview: description of two African shovel-snout snakes from Angola

The small number of collected samples, coupled with the animals’ curious skull structure and anomalous ecology, has puzzled scientists for decades.

Recently, our journal ZooKeys published a paper describing two new species of African Shovel-snout snakes: Prosymna confusa, endemic to dry habitats in southwestern Angola, and P. lisima, associated with the Kalahari sands.

We interviewed the authors of the study to find out how they made this discovery and what it means for biodiversity. Werner Conradie (South Africa), the leader of the project, collected most of the specimens and did all the morphological examinations and taxonomy work. Chad Keates (South Africa) conducted the molecular analysis, Javier Lobon-Roviara (Spain) did the CT-scanning skull reconstruction, and Ninda Baptista (Angola) performed fieldwork.

Interview with Werner Conradie, Chad Keates, Ninda L. Baptista, and Javier Lobón-Rovira

Why has the taxonomy of African Shovel-snout snakes been so complicated?

While widespread, the group is infrequently encountered, resulting in a relatively low number of samples being collected through time. This, coupled with the animals’ curious skull structure and anomalous ecology, has puzzled scientists for decades. While we finally seem to have a grip on the higher-level taxonomy (their relatedness to other snakes), their relations among each other remain incomplete. One thing is for sure, the next few years will likely result in the discovery and description of many more.

Live P. confusa. Photo by Bill Branch

Please walk us through your research process.

Similar to solving a puzzle, the process starts off by acquiring the pieces. The pieces come in the form of samples, collected by us and by scientists, accessioned in museums all over the world. Once all the pieces are in one place, it becomes our job to piece them all together and build a picture of the taxonomy of the group. We start in the corners, ironing out our hypotheses. Once we have the outline, a theory of the species composition of the group, we get to work building the puzzle using evidence from multiple different species concepts.

We use genetics, morphology, ecology, and skull osteology and through fitting these concepts together we start to see our species and the boundaries between them. Large chunks of the puzzle begin to take shape, revealing our picture with ever-increasing clarity. As we find, orientate, and fit the last pieces of our puzzle through the creation and completion of the manuscript, we finish the puzzle and in doing so provide you with the complete picture: the updated taxonomy of Angolan shovel-snout snakes.

When did you realize you were dealing with new-to-science species?

It’s hard to pinpoint exactly, but the idea grew from the moment Werner Conradie picked up the first snake whilst on the first expedition with the Okavango Wilderness Project, back in 2016. Funded by National Geographic and managed by the Wild Bird Trust, this paper would not be possible without them, because without the transport and logistical support, most of our dataset would never have been found.

What makes these new species unique?

With the aid of modern nano computerised tomography scanning technology, we observed that one of the new species has a well-developed postorbital bone. We still don’t know the purpose of this postorbital bone and why it is absent in the others. We believe it might serve as additional muscle attachment points that aids them on feeding on different kinds of lizard eggs than the others.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

This is also the first new species of Shovel-snouted snake described in nearly 30 years.

In the late 1980’s Zimbabwean herpetologist, Donald Broadley noted that eastern populations of the Angolan Shovel-snouted snake may be a different species. It took nearly 50 years before more material was collected and with the aid of modern technology, like genetic analysis and CT-scanning, we could show he was correct and described it as a new species.  

What can you tell us about their appearance and behavior?

The Shovel-snouted snakes are unique snakes with a beak-like snout that allow them to dig into sandier soils. Thus most of the time they are below the surface and only come out after heavy rains. They also possess unique backward pointed lancet-shaped teeth that they use for cutting open lizard eggs. These snakes specialize in feeding mostly on soft-shell lizard eggs. They find a freshly laid clutch of eggs and one by one, they swallow them whole. They cut them laterally so that the yolk can be released.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

Do they interact with people?

These snakes may be encountered by people tending to their lands or crossing the road, but, for the most part, they are incredibly secretive. Because of their ability to burrow in soft soils, these animals are infrequently encountered, only forced to the surface during heavy rain and by the urge to breed and to feed. If encountered, however, these snakes pose absolutely no harm, as they possess no venom. When threatened, these animals may wind themselves into a tight coil to protect their heads.

Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates

What is the ecological role of these snakes?

Much like most small vertebrates, these animals form an important component of the food web. They consume lizard eggs, exerting a regulatory force on newborn lizards, and serve as food for larger snakes, rodents, and birds. Animals like these form the bedrock of any healthy ecosystem as they contribute to energy exchanges and the flow of nutrients down and up and down again.

Bonus question: how did you get involved in herpetology?

Everyone in the group has a soft spot for reptiles and amphibians’. Irrespective of our contrasting upbringing and our nation of origin, we all came to herpetology independently. While it is hard to unpack the moment that we all fell in love with these weird and wonderful creatures, one thing is for sure, it’s a lifetime commitment.

About the Authors

Werner Conradie holds a Masters in Environmental Science (M. Env. Sc.) and has 17 years of experience with southern African herpetofauna, with his main research interests focusing on the taxonomy, conservation, and ecology of amphibians and reptiles. Werner has published numerous principal and collaborative scientific papers, and has served on a number of conservation and scientific panels, including the Southern African Reptile and Amphibian Relisting Committees. He has undertaken research expeditions to many African countries including Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa, Zambia, and Zimbabwe. Werner is currently the Curator of Herpetology at the Port Elizabeth Museum (Bayworld), South Africa.

Chad Keates is a post-doctoral fellow at the African herpetology lab at Port Elizabeth museum (Nelson Mandela University, based in the SAIAB Genetics Platform). Having recently completed his PhD in Zoology, Chad’s research focusses are African herpetofauna and their evolutionary and ecological structuring. In Chad’s short professional career, he has published several principal and collaborative peer-reviewed scientific papers and book chapters. Chad is also a strong advocate for reptile and amphibian awareness and regularly conducts walks, talks and presentations as well as produces numerous popular scientific outputs on the subject. He has undertaken numerous expeditions to many African countries such as Angola, Zambia and South Africa with a variety of both professional and scientific organisations.

Ninda Baptista is an Angolan biologist, holds an MSc degree in Conservation Biology from the University of Lisbon, and is currently enrolled for a PhD in Biodiversity, Genetics and Evolution in the University of Porto, addressing the diversity of Angolan amphibians. Over the last 12 years she has worked on environmental consulting, research and in-situ conservation projects in Angola, including priority areas for conservation such as Kumbira, Mount Moco and the Humpata plateau. She conducted herpetological surveys throughout the country and created a herpetological collection (Colecção Herpetológica do Lubango), currently deposited in Instituto Superior de Ciências da Educação da Huíla (ISCED – Huíla). Ninda is an author of scientific papers and book chapters on Angolan herpetology and ornithology. She also works on scientific outreach, producing magazine articles, books for children and posters about the country’s biodiversity in collaboration with Fundação Kissama.

Javier Lobón-Rovira is PhD student at Cibio, Portugal, working to unveil evolutionary pattern in southern Africa gekkonids. As Biologist he has worked in different conservation projects and groups around the globe, including reptiles and amphibians at Veragua Rainforest Foundation, Costa Rica or big mammals in Utah, USA. However, as photographer, he has collaborated with different Conservation NGOs in Africa, America and Europe and manage to publish on International Journals as National Geographic, Africa Geographic or Nature’s Best Magazine. 

Read the study:

Conradie W, Keates C, Baptista NL, Lobón-Rovira J (2022) Taxonomical review of Prosymna angolensis Boulenger, 1915 (Elapoidea, Prosymnidae) with the description of two new species. ZooKeys 1121: 97-143. https://doi.org/10.3897/zookeys.1121.85693

Follow ZooKeys on Facebook and Twitter.

Three new species of ground snakes discovered under graveyards and churches in Ecuador

The new snakes, which are small and cylindrical, were named in honor of institutions or people supporting the exploration of remote cloud forests in the tropics.

A group of scientists led by Alejandro Arteaga, grantee of The Explorers Club Discovery Expeditions and researcher at Khamai Foundation, discovered three new cryptozoic (living underground) snakes hidden under graveyards and churches in remote towns in the Andes of Ecuador. The discovery was made official in a study published in the journal ZooKeys. The new snakes, which are small, cylindrical, and rather archaic-looking, were named in honor of institutions or people supporting the exploration and conservation of remote cloud forests in the tropics.

Atractus michaelsabini was found hidden besides a church in the Andean town Guanazán, El Oro province, Ecuador. Photo by Amanda Quezada

Believe or not, graveyards are also land of the living. In the Andes of Ecuador, they are inhabited by a fossorial group of snakes belonging to the genus Atractus. These ground snakes are the most species-rich snake genus in the world (there are now 150 species known globally), but few people have seen one or even heard about their existence. This is probably because these serpents are shy and generally rare, and they remain hidden throughout most of their lives. Additionally, most of them inhabit remote cloud forests and live buried underground or in deep crevices. In this particular case, however, the new ground snakes where found living among crypts.

General view of a graveyard in Amaluza, Azuay province, Ecuador. Photo by Alejandro Arteaga

The discovery of the three new species took place rather fortuitously and in places where one would probably not expect to find these animals. The Discovery Ground Snake (Atractus discovery) was found hidden underground in a small graveyard in a remote cloud forest town in southeastern Ecuador, whereas the two other new species were found besides an old church and in a small school. All of this seems to suggest that, at least in the Andes, new species of snakes might be lurking just around the corner.

Unfortunately, the coexistence of ground snakes and villagers in the same town is generally bad news for the snakes. The study by Arteaga reports that the majority of the native habitat of the new snakes has already been destroyed. As a result of the retreating forest line, the ground snakes find themselves in the need to take refuge in spaces used by humans (both dead and alive), where they are usually killed on sight.

Atractus zgap. Photo by Alejandro Artaga.

Diego Piñán, a teacher of the town where one of the new reptiles was found, says: “when I first arrived at El Chaco in 2013, I used to see many dead snakes on the road; others where hit by machetes or with stones. Now, after years of talking about the importance of snakes, both kids and their parents, while still wary of snakes, now appreciate them and protect them.” Fortunately, Diego never threw away the dead snakes he found: he preserved them in alcohol-filled jars and these were later used by Arteaga to describe the species as new to science.

A jar full of Atractus snakes. Photo by Alejandro Arteaga

In addition to teaching about the importance of snakes, the process of naming species is important to create awareness about the existence of a new animal and its risk of extinction. In this particular case, two of the new snakes are considered to be facing a high risk of extinction in the near future.

The discovery process also provides an opportunity to recognize and honor the work of the people and institutions fighting to protect wildlife.

Alejandro Arteaga examines the holotype of Atractus discovery. He had to examine hundreds museum specimens before confirming the new species as such. Photo by David Jácome

Atractus discovery was named to honor The Explorers Club Discovery Expedition Grants initiative, a program seeking to foster scientific understanding for the betterment of humanity and all life on Earth and beyond. The grant program supports researchers and explorers from around the world in their quest to mitigate climate change, prevent the extinction of species and cultures, and ensure the health of the Earth and its inhabitants.

Atractus zgap. Photo by Alejandro Arteaga

Atractus zgap was named in honor of the Zoological Society for the Conservation of Species and Populations (ZGAP), a program seeking to conserve unknown but highly endangered species and their natural habitats throughout the world. The ZGAP grant program supports the fieldwork of young scientists who are eager to implement and start conservation projects in their home countries.

Atractus discovery. Photo by Alejandro Arteaga

Atractus michaelsabini was named in honor of a young nature lover, Michael Sabin, grandson of American philanthropist and conservationist Andrew “Andy” Sabin. Through the conservation organization Re:wild, the Sabin family has supported field research of threatened reptiles and has protected thousands of acres of critical habitat throughout the world.

“Naming species is at the core of biology”, says Dr. Juan M. Guayasamin, co-author of the study and a professor at Universidad San Francisco de Quito. “Not a single study is really complete if it is not attached to the name of the species, and most species that share the planet with us are not described.”

“The discovery of these new snakes is only the first step towards a much larger conservation project,” says Arteaga. “Now, thanks to the encouragement of ZGAP, we have already started the process of establishing a nature reserve to protect the ground snakes. This action would not have been possible without first unveiling the existence of these unique and cryptic reptiles, even if it meant momentarily disturbing the peace of the dead in the graveyard where the lived.”

Research article:

Arteaga A, Quezada A, Vieira J, Guayasamin JM (2022) Leaving no stone unturned: three additional new species of Atractus ground snakes (Serpentes, Colubridae) from Ecuador discovered using a biogeographical approach. ZooKeys 1121: 175-210. https://doi.org/10.3897/zookeys.1121.89539

Follow ZooKeys on Twitter and Facebook.

Striking new snake species discovered in Paraguay

Only known from three individuals, Phalotris shawnella is endemic to the Cerrado forests of the department of San Pedro in east Paraguay.

Distribution map.

A beautiful non-venomous snake, previously unknown to science, was discovered in Paraguay and described by researchers of the Paraguayan NGO Para La Tierra with the collaboration of Guyra Paraguay and the Instituto de Investigación Biológica del Paraguay. It belongs to the genus Phalotris, which features 15 semi-subterranean species distributed in central South America. This group of snakes is noted for its striking colouration with red, black, and yellow patterns.

Jean-Paul Brouard, one of the involved researchers, came across an individual of the new species by chance while digging a hole at Rancho Laguna Blanca in 2014. Together with his colleagues Paul Smith and Pier Cacciali, he described the discovery in the open-access scientific journal Zoosystematics and Evolution. The authors named it Phalotris shawnella, in honour of two children – Shawn Ariel Smith Fernández and Ella Bethany Atkinson – who were born in the same year as the Fundación Para La Tierra (2008). They inspired the founders of the NGO to work for the conservation of Paraguayan wildlife, in the hope that their children can inherit a better world.

Phalotris shawnella. Photo by Jean-Paul Brouard

The new Phalotris snake is particularly attractive and can be distinguished from other related species in its genus by its red head in combination with a yellow collar, a black lateral band and orange ventral scales with irregular black spots. Only known from three individuals, it is endemic to the Cerrado forests of the department of San Pedro in east Paraguay. Its known distribution consists of two spots with sandy soils in that department – Colonia Volendam and Laguna Blanca – which are 90 km apart. 

Phalotris shawnella. Photo by Jean-Paul Brouard

The extreme rarity of this species led the authors to consider it as “Endangered”, according to the conservation categories of the International Union for Conservation of Nature (IUCN), which means it is in imminent danger of extinction in the absence of measures for its protection.

Phalotris shawnella. Photo by Jean-Paul Brouard

This species can only be found in the famous tourist destination of Laguna Blanca, an area declared as an Important Area for the Conservation of Amphibians and Reptiles. 

Phalotris shawnella. Photo by Jean-Paul Brouard

“This demonstrates once again the need to protect the natural environment in this region of Paraguay,” the authors comment. “Laguna Blanca was designated as a Nature Reserve for a period of 5 years, but currently has no protection at all. The preservation of this site should be considered a national priority for conservation.”

Research article:

Smith P, Brouard J-P, Cacciali P (2022) A new species of Phalotris (Serpentes, Colubridae, Elapomorphini) from Paraguay. Zoosystematics and Evolution 98(1): 77-85. https://doi.org/10.3897/zse.98.61064

A year of biodiversity: Top 10 new species of 2021 from Pensoft journals, Part 2

While 2021 may have been a stressful and, frankly, strange year, in the world of biodiversity there has been plenty to celebrate! Out of the many new species we published in our journals this year, we’ve curated a selection of the 10 most spectacular discoveries. The world hides amazing creatures just waiting to be found – and we’re making this happen, one new species at a time.

Read Part 1 of the Top 10 new species of 2021 here.

5. The Instagram model

Many students and young researchers are encouraged to explore biodiversity by starting from their own backyard. Yes, but how often do they find undescribed snake species in there?

This is exactly what happened to Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar. Confined to his home in Chamba, India because of the COVID-19 lockdown, he started photographing any wildlife he came across and uploading it on his Instagram account. One of his images showed a beautiful kukri snake.

The picture immediately caught the attention of Zeeshan A. Mirza (National Centre for Biological Sciences, Bangalore) and Harshil Patel (Veer Narmad South Gujarat University, Surat), who worked together with Virendar to describe it as a new species under the name Oligodon churahensis.

“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” Zeeshan A. Mirza told us earlier this month.

“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”

Published in: Evolutionary Systematics

4. The tiny snail with an athletic name

Do freshwater snails make good tennis players? Well, one of them certainly has the name for it.

Enter Travunijana djokovici, a new species of aquatic snail named after famous Serbian ten­nis player Novak Djokovic.

Found in a karstic spring near Podgorica, the capital of Montenegro, T. Djokovici is part of the family of mud snails, which inhabit fresh or brackish water, including caves and subterranean habitats.

The tiny snail was discovered by Slovak biospeleologist Jozef Grego and Montenegrin zoologist Vladimir Pešić of the University of Montenegro, who claim they named it after the renowned tennis player “to acknowledge his inspiring enthusiasm and energy.”.

To discover some of the world’s rarest animals that inhabit the unique underground habitats of the Dinaric karst, to reach inaccessible cave and spring habitats and for the restless work during processing of the collected material, you need Novak’s energy and enthusiasm,” they add.

Amazingly, Novak Djokovic found out that he’s now a namesake to a tiny snail, and he even had a comment.

“I am honoured that a new species of snail was named after me because I am a big fan of nature and ecosystems and I appreciate all kinds of animals and plants,” he says in an Eurosport article. “I don’t know how symbolic this is, because throughout my career I always tried to be fast and then a snail was named after me,” he joked. “Maybe it’s a message for me, telling me to slow down a bit!”

Published in: Subterranean Biology

3. The Coronavirus caddisfly

The COVID-19 pandemic has undoubtedly affected all of us, and the scientific world is no exception. Fieldwork got postponed, museums remained closed, arranging meet-ups and travel became almost impossible.

Scientists used this as a drive and inspiration as they continued their hard work on new discoveries. Only this year, we published the descriptions of the beetle Trigonopterus corona, the wasp Allorhogas quarentenus, and, yes, the caddisfly Potamophylax coronavirus.

P. coronavirus was collected near a stream in the Bjeshkët e Nemuna National Park in Kosovo by a team of scientists led by Professor Halil Ibrahimi of the University of Prishtina. After molecular and morphological analyses, it was described as a caddisfly species new to science. Its name will be an eternal memory of an extremely difficult period.

In a broader sense, the researchers also wish to bring attention to “another silent pandemic occurring on freshwater organisms in Kosovo’s rivers,” caused by the pollution and degradation of freshwater habitats, as well as the activity increasing in recent years of mismanaged hydropower plants. Particularly, the river basin of the Lumbardhi i Deçanit River, where the new species was discovered, has turned into a ‘battlefield’ for scientists and civil society on one side and the management of the hydropower plant operating on this river on the other.

P. coronavirus is part of the small insect order of Trichoptera, which is very sensitive to water pollution and habitat deterioration. The authors of the species argue that it is a small-scale endemic taxon, very sensitive to the ongoing activities in Lumbardhi i Deçanit river, and failure to understand this may drive it, along with many other species, towards extinction.

Published in: Biodiversity Data Journal

2. The cutest peacock spider ever

If you think spiders can’t be cute, you’ve probably never seen a peacock spider. They have big forward-facing eyes, and their males perform fun courtship dances.

Citizen scientist Sheryl Holliday was the first to spot this vibrant spider while walking in Mount Gambier, Australia, and she posted her find on Facebook. It was later described as a new species by arachnologist Joseph Schubert of Museums Victoria.

Coloured bright orange, it was called Maratus Nemo, after the popular Disney character.

‘It has a really vibrant orange face with white stripes on it, which kind of looks like a clown fish, so I thought Nemo would be a really suitable name for it,’ Joseph Schubert says.

Maratus Nemo is probably the first influencer arachnid – his curious story, bright colours and fun name practically made him an internet star overnight.

Published in: Evolutionary Systematics

1. The tiny ant that challenges gender stereotypes

Found in Ecuador’s evergreen tropical forests, this miniature trap jaw ant bears the curious Latin name Strumigenys ayersthey. Unlike most species named in honour of people, whose names end with -ae (after females) and –i (after males), S. ayersthey might be the only species in the world to have a scientific name with the suffix –they.

“In contrast to the traditional naming practices that identify individuals as one of two distinct genders, we have chosen a non-Latinized portmanteau honoring the artist Jeremy Ayers and representing people that do not identify with conventional binary gender assignments, Strumigenys ayersthey,” authors Philipp Hoenle of the Technical University of
Darmstadt
and Douglas Booher of Yale University state in their paper.

Strumigenys ayersthey sp. nov. is thus inclusively named in honor of Jeremy Ayers for the multitude of humans among the spectrum of gender who have been unrepresented under traditional naming practices.”

Curiously, it was no other than lead singer and lyricist of the American alternative rock band R.E.M. Michael Stipe that joined Booher in writing the etymology section for the research article, where they explain the origin of the species name and honor their mutual friend, activist and artist Jeremy Ayers.

This ant can be distinguished by its predominantly smooth and shining cuticle surface and long trap-jaw mandibles, which make it unique among nearly a thousand species of its genus.

“Such a beautiful and rare animal was just the species to celebrate both biological and human diversity,” Douglas Booher said.

Published in: ZooKeys

A year of biodiversity: Top 10 new species of 2021 from Pensoft journals, Part 1

With 2022 round the corner, we thought we’d start off the celebrations by looking back to some the most memorable discoveries of 2021. And what a year it has been! Many new species made their debuts on the pages of Pensoft journals – here’s our selection of the most exciting animals, plants and fungi that we published in 2021.

With 2022 round the corner, we thought we’d start off the celebrations by looking back to some the most memorable discoveries of 2021. And what a year it has been! Many new species made their debuts on the pages of Pensoft journals – here’s our selection of the most exciting animals, plants and fungi that we published in 2021.

10. The delicious wild oak mushroom

It’s amazing that edible species, long known to local communities, can still present a novelty for science. This was the case with Cantharellus veraecrucis, a chanterelle from – that’s right, Veracruz, Mexico.

During the rainy season, locals harvest this mushroom from tropical oak forests to sell it or enjoy it as a delicacy; this is probably why they’ve dubbed it “Oak mushroom”.

Published in: MycoKeys

9. The master of disguise

If you ever see a leaf insect, there’s a good chance you won’t notice it – these little critters are masters of camouflaging.

This picture was taken in 2014, when Jérôme Constant and Joachim Bresseel from the Royal Belgian Institute of Natural Sciences were enjoying a night walk in Vietnam’s Nui Chua National Park. It wasn’t until this year, though, that this beauty got its own scientific name: Cryptophyllium nuichuaense. Named after the park where it was found, it is one of 13 new species of leaf insects described in our journal ZooKeys this February.

This leaf insect, like many others, is endemic to Vietnam. This is why the researchers who found itcall for the creation of more protected areas in order to keep this precious biodiversity intact.

Published in: ZooKeys

8. The Neil Gaiman spider

Unlike most spiders, trapdoor spiders don’t use silk to make a web. Instead, they live in burrows lined with silk that they cover with a “trapdoor”. They are relatively widely spread, but you’d rarely encounter one out in the open, because they spend most of their lives underground.

This is probably why arachnologists and spider lovers the world over got so excited when Dr. Rebecca Godwin (Piedmont University, GA) and Dr. Jason Bond (University of California, Davis, CA) described 33 new species of trapdoor spiders from the genus Ummidia – in addition to the 27 already known.

Dr. Rebecca Godwin talks to L. Brian Patrick about her discovery of 33 new species of trapdoor spiders on his podcast New Species.

One of the 33 is Ummidia neilgaimani, named after fantasy and horror writer Neil Gaiman. A particular favorite of Dr. Godwin, Gaiman is the author of a number of books with spider-based characters. His novel American Gods features a character based on the West African spider god Anansi and a World Tree “one hour south of Blacksburg,” not far from the type locality of this species. He’s also part of the documentary Sixteen Legs, in his own words “An amazing film about Tasmanian cave spider sex.”

“I think anything we can do to increase people’s interest in the diversity around them is worthwhile and giving species names that people recognize but that still have relevant meaning is one way to do that,” says Dr. Godwin.

Published in: ZooKeys

7. The deadly Chinese-goddess snake

Bungarus suzhenae was only described as a new species this year, but its reputation preceded it – in a bad way. Researchers were already familiar with a notorious black-and-white banded krait that bit herpetologists on expeditions in Myanmar and China – in one infamous case, to death. After extensive morphological and phylogenetical analysis, the researchers were finally able to confirm it as new to science.

The story behind B. suzhenae’s name is interesting, too: it was named after a character from the traditional Chinese myth ‘Legend of White Snake’. The powerful snake goddess Bai Su Zhen is to this day regarded as a symbol of true love and good-heartedness in China. 

Snakebites from kraits – including this one – are known to have a high mortality. This is why the new knowledge on B. suzhenae and its description as a new species are essential to the research on its venom and an important step in the development of antivenom and improved snakebite treatment.

Published in: ZooKeys

6. The ephemeral fairy lanterns

Commonly known as “fairy lanterns”, plants of the genus Thismia are very rare and small in size. They are mycoheterotrophic, which means they live in close association with fungi from which they acquire most of their nutrition. They’re also very elusive, growing in dark, remote rainforests, and visible only when they emerge to flower and set seed after heavy rain.

In fact, researchers were only able to find one specimen of the new T. sitimeriamiae, which they discovered in the Terengganu State of Malaysia – the rest of the population had been destroyed by wild boars.

Just discovered, T. sitimeriamiae may already be threatened by extinction – which is why the research team that discovered it suggest that this exceptionally rare plant is classified as Critically Endangered.

Published in: PhytoKeys

Part 2 coming soon – stay tuned!

Two new pit vipers discovered from Qinghai-Tibet Plateau

Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper from Tibet, and the Glacier pit viper found west of the Nujiang River and Heishui, Sichuan.

Guest blog post by Jingsong Shi

Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper (Gloydius lipipengi) from Zayu, Tibet, and the Glacier pit viper (G. swild) found west of the Nujiang River and Heishui, Sichuan, east of the Qinghai-Tibet Plateau. Our team of researchers from the Institute of Vertebrate Paleontology and Paleoanthropology at the Chinese Academy of Sciences and Bangor University published the discovery in the open-access journal ZooKeys. In this study, we performed a new molecular phylogenetic analysis of the Asian pit vipers.

Glacier pit viper (Gloydius swild)

The Nujiang pit viper has a greyish brown back with irregular black ring-shaped crossbands, wide, greyish-brown stripes behind the eyes, and relativity short fangs, while the Glacier pit viper is blueish-grey, with zigzag stripes on its back, and has relatively narrow stripes behind its eyes.

Nujiang pit viper (Gloydius lipipengi)

Interestingly, the Glacier pit viper was found under the Dagu Holy-glacier National Park: the glacier lake lies 2000 meters higher than the habitat of the snakes, at more than 4,880 m above sea level. This discovery suggests that the glaciers might be a key factor to the isolation and speciation of alpine pit vipers in southwest China.

The stories behind the snakes’ scientific names are interesting too: with the new species from Tibet, Gloydius lipipengi, the name is dedicated to my Master’s supervisor, Professor Pi-Peng Li from the Institute of Herpetology at Shenyang Normal University, just in time for Li’s sixtieth birthday. Prof. Li has devoted himself to the study of the herpetological diversity of the Qinghai-Tibet Plateau, and it was under his guidance that I became an Asian pit viper enthusiast and professional herpetological researcher. 

Gloydius swild, the new species from Heishui, Sichuan, is in turn named after the SWILD Group, which studies the fauna and biodiversity of southewst China. They discovered and collected the snake during an expedition to the Dagu Holy-glacier.

A misty morning near the habitat of Glacier pit viper.

We are equally impressed by the sceneries we encountered during our field work: throughout our journey, we got to look at sacred, crystal-like glacier lakes embraced by the mountains, morning mist falling over the village, and colorful broadleaf-conifer forests. During our expedition, we met a lot of hospitable Tibetan inhabitants and enjoyed their kindness and treats, which made the expedition all the more unforgettable.

Research article:

Shi J-S, Liu J-C, Giri R, Owens JB, Santra V, Kuttalam S, Selvan M, Guo K-J, Malhotra A (2021) Molecular phylogenetic analysis of the genus Gloydius (Squamata, Viperidae, Crotalinae), with description of two new alpine species from Qinghai-Tibet Plateau, China. ZooKeys 1061: 87-108. https://doi.org/10.3897/zookeys.1061.70420

New deadly snake from Asia named after character from Chinese myth ‘Legend of White Snake’

In 2001, the famous herpetologist Joseph B. Slowinski died from snakebite by an immature black-and-white banded krait, while leading an expedition team in northern Myanmar. The very krait that caused his death is now confirmed to belong to the same species identified as a new to science venomous snake, following an examination of samples collected between 2016 and 2019 from Yingjiang County, Yunnan Province, China.

The new krait species, found in Southwestern China and Northern Myanmar, is described by Dr Zening Chen of Guangxi Normal University, PhD candidate Shengchao Shi, Dr Li Ding from the Chengdu Institute of Biology at the Chinese Academy of Sciences, Dr Gernot Vogel of the Society for Southeast Asian Herpetology in Germany and Dr Jingsong Shi of the Institute of Vertebrate Paleontology and Paleoanthropology at Chinese Academy of Sciences. Their study is published in the open-access, peer-reviewed journal ZooKeys.

The new krait species Bungarus suzhenae. Photo by Dr Li Ding

The researchers decided to name the new species Bungarus suzhenae – Suzhen’s krait, after the mythical figure of Bai Su Zhen (白素贞) – a powerful snake goddess from the traditional Chinese myth ‘Legend of White Snake (白蛇传)’.

The legend says that, after thousands of years of practicing magic power, the white snake Bai Su Zhen transformed herself into a young woman and fell in love with the human man Xu Xian. Together, they ran a hospital, saving lots of human lives with medicine and magic. However, this love between goddess and human was forbidden by the world of the gods and, eventually, Bai Su Zhen was imprisoned in a tower for eternity. Since then, the Chinese regard her as a symbol of true love and good-heartedness. 

Illustration of the Legend of the White Snake, by Xin Wang, Chongqing museum of natural history

“The black-and-white banded krait is one of the snakes most similar to the white snake in nature, so we decided to name it after Bai Su Zhen,” say the authors.

In fact, the discovery of Suzhen’s krait was inspired by another accident from 2015, when the Chinese herpetologist Mian Hou was bitten by a black-and-white banded krait in Yingjiang. “It hurt around the wound, and the skin around it turned dark,” said the unfortunate man, who luckily survived. 

The skull of Bungarus suzhenae (3d-reconstructed model, by Jingsong Shi)

The authors of the present study realized that the bite was different from those of the many-banded krait B. multicinctus, which go without clear symptoms or pain around the wound. This clue eventually led to the discovery of Suzhen’s krait.

Because kraits are highly lethal, understanding their species diversity and geographic distribution is vital for saving human lives. Thanks to adequate description and classification of deadly snakes, research on venom, antivenom development and proper snakebite treatment can advance more rapidly. 

Suzhen’s krait Bungarus suzhenae preying on Yunnan Caecilian Ichthyophis bannanicus. Credit: GTO

The new study makes it easier to distinguish between krait species from China and adjacent southeastern Asia. “Three species of the black-and-white banded kraits from China were previously put under the same name – many-banded krait, which would hinder appropriate medical treatment,” the authors point out. Additionally, they suggest that antivenom for the many-banded krait be reevaluated accordingly.

Guest blog post: Unique feeding behaviour of Asian kukri snakes gutting frogs and toads

Guest blog post by Henrik Bringsøe

In September 2020, we reported the first evidence for a newly discovered behaviour in snakes, as we provided extensive photographic documentation, demonstrating a macabre feeding strategy of Asian kukri snakes of the species Oligodon fasciolatus, the Small-banded Kukri Snake: a snake cutting open the abdomen of a toad, inserting its head and pulling out the toad’s organs which are then swallowed.

A Small-banded Kukri Snake attacking a Painted Burrowing Frog, which is inflating its lungs. The snake makes rotations about its own longitudinal body axis (“death rolls”), as it is biting and holding the belly of the frog. Video by Navapol Komanasin.

This is done while the toad is alive and it may take several hours before it dies! We have now provided new evidence that two other species of kukri snakes also exhibit this highly unusual behaviour: Oligodon formosanus, the Taiwanese Kukri Snake, and Oligodon ocellatus, the Ocellated Kukri Snake. These three species are closely-related and belong to the same species group in the genus Oligodon.

On two occasions in Hong Kong, a Taiwanese Kukri Snake was observed eviscerating frogs of the species Kaloula pulchra, the Painted Burrowing Frog or Banded Bullfrog. In one case, the snake had cut open the belly of the frog and inserted its head deep into the frog’s abdomen. In this position, the snake performed repeated rotations about its own longitudinal body axis, also called “death rolls”! We believe that the purpose of these death rolls was to tear out organs to be subsequently swallowed. In the other case, the organs of the frog had been forced out of its abdomen.

A Taiwanese Kukri Snake with its head buried deep into the abdomen of a Painted Burrowing Frog. Initially, the frog moves its long fourth toe of the left hind foot up and down 21 times. During the subsequent active struggle, the snake makes three “death rolls”. Video by Jonathan Rotbart.

A Small-banded Kukri Snake was also observed eating a Painted Burrowing Frog in Northeast Thailand, but it swallowed the frog whole. That snake also performed death rolls, although we have never before seen that behaviour in this species of kukri snake (this species was treated in our 2020 paper). This frog is not considered toxic and is also eaten by other snakes. We believe that prey size is crucial in determining whether the gape width allows large prey to be swallowed whole by kukri snakes. If the prey is too large, the snake may eviscerate a frog or toad, in order to swallow the organs. Afterwards, the snake will perhaps be able to swallow the rest of the frog or toad.

In another new paper, we describe and illustrate the Ocellated Kukri Snake eating the toxic toad Asian Black-spotted Toad (Duttaphrynus melanostictus) in Vietnam. Initially, the large snake’s head was buried past its eyes into the abdomen of the toad, but eventually the snake swallowed the toad whole despite its toxicity. We interpret this behaviour that kukri snakes are in fact resistant to the toads’ cardiac glycoside toxins. Furthermore, toads are only eviscerated if they prove too large to be swallowed whole.

An Ocellated Kukri Snake first pierced this poisonous Asian common toad and buried its head deeply into the abdomen of the amphibian, as it was probably eating the organs. However, as seen in the photo, the kukri snake proceeded to swallow the toad whole. 
Photo by James Holden.

We suggest that the unique behaviour of eviscerating frogs and toads and eating their organs may have evolved specifically in a group of kukri snakes named the Oligodon cyclurus group or clade because it has now been recorded in three of its species, namely Oligodon fasciolatus, Oligodon formosanus and Oligodon ocellatus. We hope that future observations may uncover additional aspects of the fascinating feeding habits of kukri snakes though we may indeed call them gruesome.

*

See more video recordings of the snakes’ unique, even if quite gruesome, behaviours provided as supplementary files to one of the discussed research papers.

*

Follow Herpetozoa on Twitter and Facebook.

*

Research papers: 

Bringsøe H, Suthanthangjai M, Suthanthangjai W, Lodder J, Komanasin N (2021) Gruesome twosome kukri rippers: Oligodon formosanus (Günther, 1872) and O. fasciolatus (Günther, 1864) eat Kaloula pulchra Gray, 1831 either by eviscerating or swallowing whole. Herpetozoa 34: 49-55. https://doi.org/10.3897/herpetozoa.34.e62688

Bringsøe H, Holden J (2021) Yet another kukri snake piercing an anuran abdomen: Oligodon ocellatus (Morice, 1875) eats Duttaphrynus melanostictus (Schneider, 1799) in Vietnam. Herpetozoa 34: 57-59. https://doi.org/10.3897/herpetozoa.34.e62689

Reptile poaching in Balochistan (Pakistan) is on a decreasing trend but still troublesome

Since 2013, following a strict enforcement of provincial wildlife legislation in the less studied regions of Asia, the overall trend of illegal reptile poaching is steadily decreasing. Despite that, the issue is not yet resolved and poached reptiles are largely destined not only for the international pet trade, but also utilised in folk medicines and snake charmer shows, according to a recent study, published in the open-access journal Herpetozoa.

Since 2013, following a strict enforcement of provincial wildlife legislation in the less studied regions of Asia, the overall trend of illegal reptile poaching is steadily decreasing. But it’s too early to claim that the issue is solved. Poached reptiles are largely destined not only for the pet trade, but also folk medicines and snake charmer shows, according to the recent study led by the scientists from the Pakistan Museum of Natural History and the University of Peshawar published in the open-access journal Herpetozoa.

For the first time, the exploitation of reptiles for the pet trade has come to the attention of the public in the late 1960s. In general, illegal poaching is one of the problems we still face a lot all over the world, despite strict restrictions which are coming in force massively over the last decades. The wildlife trade leads not only to biodiversity loss (through capture of protected species), but also threatens with a possible spread of animal-borne diseases, due to interspecies contact at pet and folk medicine markets. The case of the recent COVID-19 pandemic gives a lesson to learn, and in order to stop further occurrences, a focus on law-enforcement activities should be brought to wildlife trade hotspots.

In the particular case of Pakistan, a country with high species diversity of reptiles, still very little is known about the links between illegal wildlife trade and wildlife decline. The illegal poaching and trade in Pakistan are largely undocumented and it’s difficult to bring accurate data since the trade involves many channels and follows informal networks. There is marginal information available about the medicinal use of wild flora and fauna for some parts of Pakistan, but there is no report on the commercialisation, harvest, market dynamics and conservation impact of these activities.

Since 2013, a number of confiscations of different reptile species and their parts from Pakistani nationals have been reported widely from across the country, which resulted in the enforcement of legislations regarding the wildlife trade in Pakistan.

An international team of researchers, led by Dr. Rafaqat Masroor from Pakistan Museum of Natural History investigated the extent of illegal reptile collection in southwestern Balochistan. Scientists tried to determine what impact these activities might have on the wild populations.


A topographic map of southwestern Balochistan showing visit sites in Chagai, Nushki, Panjgur, Kharan and Washuk districts.
Credit: Rafaqat Masroor
License: CC-BY 4.0

The field trips, conducted in 2013-2017, targeted Chagai, Nushki, Panjgur, Kharan and Washuk districts in Balochistan province. Over those years, scientists interviewed 73 illegal collectors. Most of the collectors worked in groups, consisting of males, aged between 14 to 50 years.

“They were all illiterate and their sole livelihood was based on reptile poaching, trade, and street shows. These collectors were well-organized and had trapping equipment for the collection of reptiles. […] These groups were locally known as “jogeez”, who mainly originated from Sindh Province and included snake charmers, having their roots deep with the local hakeems (herbal medicine practitioners) and wildlife traders, businessmen and exporters based at Karachi city. […] We often observed local people killing lizards and snakes, mostly for fear of venom and part for fun and centuries-old myths”,

share Dr. Masroor.

A total number of illegally poached reptiles, recorded during the investigation, results in 5,369 specimens representing 19 species. All of them had already been declared Protected under Schedule-III of the Balochistan Provincial Wildlife Act.

A view of live reptiles. Lytorhynchus maynardi and Eryx tataricus speciosus, the two rarely encountered snakes inside the locally-made boxes.
Credit: Rafaqat Masroor
License: CC-BY 4.0

Amongst the reasons for the province of Balochistan to remain unexplored might have been the lack of government environmental and wildlife protection agencies, lack of resources and specialists of high qualification in the provincial wildlife, forest and environment departments, as well as geopolitical position and remoteness of vast tracts of areas.

 Number of specimens collected against the number of
individuals (illegal collectors).
Credit: Rafaqat Masroor
License: CC-BY 4.0

Scientists call for the provincial and federal government to take action and elaborate a specific strategy for the conservation of endemic and threatened species as a part of the country’s natural heritage both in southwestern Balochistan and whole Pakistan. The conservation plan needs to be consulted with specialists in the respective fields, in order to avoid incompetence.

Also, the research group suggests to strictly ban illegal poaching of venomous snakes for the purpose of venom extraction.

What is important to remember is that Balochistan represents one of the most important areas of Asia with a high number of endemic reptile species. The illegal capture of these species presents a threat to the poorly documented animals. Even though the current trend for captured reptiles is decreasing, more actions are needed, in order to ensure the safety of the biodiversity of the region.

Contact:

Dr. Rafaqat Masroor
Email: rafaqat.masroor78@gmail.com

Original source:

Masroor R, Khisroon M, Jablonski D (2020) A case study on illegal reptile poaching from Balochistan, Pakistan. Herpetozoa 33: 67-75. https://doi.org/10.3897/herpetozoa.33.e51690

Welcome to the House of Slytherin: Salazar’s pit viper, a new green pit viper from India

During an expedition to Arunachal Pradesh in India, part of the Himalayan biodiversity hotspot, a new species of green pit viper Trimeresurus salazar with unique stripes and colouration patterns was discovered near Pakke Tiger Reserve. Scientists named the snake after J.K. Rowling’s fictional character, the Parselmouth wizard and the founder of one of the houses in the magical school Hogwarts, Salazar Slytherin. The discovery is published in the open-access journal Zoosystematics and Evolution.

A new green pit viper species of the genus Trimeresurus was discovered during the herpetological expedition to Arunachal Pradesh in India, part of the Himalayan biodiversity hotspot. The scientists named the newly-discovered snake Trimeresurus salazar after a Parselmouth (able to talk with serpents) wizard, co-founder of Hogwarts School of Witchcraft and Wizardry and the founder of the House of Slytherin – Salazar Slytherin, the fictional character of J.K. Rowling’s saga “Harry Potter”. The discovery is published in the open-access journal Zoosystematics and Evolution.

The pit vipers in the genus Trimeresurus are charismatic venomous serpents, distributed widely across east and southeast Asia. In total, the genus includes at least 48 species, with fifteen representatives occurring in India. The species belonging to the genus are morphologically cryptic, which makes it difficult to distinguish them in the field. As a result, their real diversity could be underestimated.

Arunachal Pradesh, where the new species was found, belongs to the Himalayan biodiversity hotspot, which explains the diverse flora and fauna being continuously discovered there.

The new green pit viper demonstrates a unique orange to reddish stripe, present on the head and body in males.


Trimeresurus salazar sp. nov. juvenile male from Pakke Tiger Reserve.
Credit: Aamod Zambre and Chintan Seth, Eaglenest Biodiversity Project.
License: CC-BY 4.0

Explaining the name of the new species, the scientists suggest that it is colloquially referred to as the Salazar’s pit viper.

This is already the second species discovered within the course of the expedition to Arunachal Pradesh, which reflects the poor nature of biodiversity documentation across north-eastern India.

“Future dedicated surveys conducted across northeastern India will help document biodiversity, which is under threat from numerous development activities that include road widening, agriculture, and hydro-electric projects”, shares the lead researcher Dr. Zeeshan A. Mirza from National Centre for Biological Science of Bangalore, India.


Trimeresurus salazar sp. nov. holotype male BNHS 3554 in life
Credit: Zeeshan Mirza et al., 2020
License: CC-BY 4.0

Additional information

Contact:
Dr. Zeeshan A. Mirza
Email: snakeszeeshan@gmail.com
Facebook: https://www.facebook.com/snakeszeeshan
Instagram: zeeshan_a_mirza

Original source:

Mirza ZA, Bhosale HS, Phansalkar PU, Sawant M, Gowande GG, Patel H (2020) A new species of green pit vipers of the genus Trimeresurus Lacépède, 1804 (Reptilia, Serpentes, Viperidae) from western Arunachal Pradesh, India. Zoosystematics and Evolution 96(1): 123-138. https://doi.org/10.3897/zse.96.48431